| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_RMAP_H |
| #define _LINUX_RMAP_H |
| /* |
| * Declarations for Reverse Mapping functions in mm/rmap.c |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/rwsem.h> |
| #include <linux/memcontrol.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/memremap.h> |
| |
| /* |
| * The anon_vma heads a list of private "related" vmas, to scan if |
| * an anonymous page pointing to this anon_vma needs to be unmapped: |
| * the vmas on the list will be related by forking, or by splitting. |
| * |
| * Since vmas come and go as they are split and merged (particularly |
| * in mprotect), the mapping field of an anonymous page cannot point |
| * directly to a vma: instead it points to an anon_vma, on whose list |
| * the related vmas can be easily linked or unlinked. |
| * |
| * After unlinking the last vma on the list, we must garbage collect |
| * the anon_vma object itself: we're guaranteed no page can be |
| * pointing to this anon_vma once its vma list is empty. |
| */ |
| struct anon_vma { |
| struct anon_vma *root; /* Root of this anon_vma tree */ |
| struct rw_semaphore rwsem; /* W: modification, R: walking the list */ |
| /* |
| * The refcount is taken on an anon_vma when there is no |
| * guarantee that the vma of page tables will exist for |
| * the duration of the operation. A caller that takes |
| * the reference is responsible for clearing up the |
| * anon_vma if they are the last user on release |
| */ |
| atomic_t refcount; |
| |
| /* |
| * Count of child anon_vmas. Equals to the count of all anon_vmas that |
| * have ->parent pointing to this one, including itself. |
| * |
| * This counter is used for making decision about reusing anon_vma |
| * instead of forking new one. See comments in function anon_vma_clone. |
| */ |
| unsigned long num_children; |
| /* Count of VMAs whose ->anon_vma pointer points to this object. */ |
| unsigned long num_active_vmas; |
| |
| struct anon_vma *parent; /* Parent of this anon_vma */ |
| |
| /* |
| * NOTE: the LSB of the rb_root.rb_node is set by |
| * mm_take_all_locks() _after_ taking the above lock. So the |
| * rb_root must only be read/written after taking the above lock |
| * to be sure to see a valid next pointer. The LSB bit itself |
| * is serialized by a system wide lock only visible to |
| * mm_take_all_locks() (mm_all_locks_mutex). |
| */ |
| |
| /* Interval tree of private "related" vmas */ |
| struct rb_root_cached rb_root; |
| }; |
| |
| /* |
| * The copy-on-write semantics of fork mean that an anon_vma |
| * can become associated with multiple processes. Furthermore, |
| * each child process will have its own anon_vma, where new |
| * pages for that process are instantiated. |
| * |
| * This structure allows us to find the anon_vmas associated |
| * with a VMA, or the VMAs associated with an anon_vma. |
| * The "same_vma" list contains the anon_vma_chains linking |
| * all the anon_vmas associated with this VMA. |
| * The "rb" field indexes on an interval tree the anon_vma_chains |
| * which link all the VMAs associated with this anon_vma. |
| */ |
| struct anon_vma_chain { |
| struct vm_area_struct *vma; |
| struct anon_vma *anon_vma; |
| struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ |
| struct rb_node rb; /* locked by anon_vma->rwsem */ |
| unsigned long rb_subtree_last; |
| #ifdef CONFIG_DEBUG_VM_RB |
| unsigned long cached_vma_start, cached_vma_last; |
| #endif |
| }; |
| |
| enum ttu_flags { |
| TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ |
| TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ |
| TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ |
| TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */ |
| TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible |
| * and caller guarantees they will |
| * do a final flush if necessary */ |
| TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: |
| * caller holds it */ |
| }; |
| |
| #ifdef CONFIG_MMU |
| static inline void get_anon_vma(struct anon_vma *anon_vma) |
| { |
| atomic_inc(&anon_vma->refcount); |
| } |
| |
| void __put_anon_vma(struct anon_vma *anon_vma); |
| |
| static inline void put_anon_vma(struct anon_vma *anon_vma) |
| { |
| if (atomic_dec_and_test(&anon_vma->refcount)) |
| __put_anon_vma(anon_vma); |
| } |
| |
| static inline void anon_vma_lock_write(struct anon_vma *anon_vma) |
| { |
| down_write(&anon_vma->root->rwsem); |
| } |
| |
| static inline int anon_vma_trylock_write(struct anon_vma *anon_vma) |
| { |
| return down_write_trylock(&anon_vma->root->rwsem); |
| } |
| |
| static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) |
| { |
| up_write(&anon_vma->root->rwsem); |
| } |
| |
| static inline void anon_vma_lock_read(struct anon_vma *anon_vma) |
| { |
| down_read(&anon_vma->root->rwsem); |
| } |
| |
| static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) |
| { |
| return down_read_trylock(&anon_vma->root->rwsem); |
| } |
| |
| static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) |
| { |
| up_read(&anon_vma->root->rwsem); |
| } |
| |
| |
| /* |
| * anon_vma helper functions. |
| */ |
| void anon_vma_init(void); /* create anon_vma_cachep */ |
| int __anon_vma_prepare(struct vm_area_struct *); |
| void unlink_anon_vmas(struct vm_area_struct *); |
| int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); |
| int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); |
| |
| static inline int anon_vma_prepare(struct vm_area_struct *vma) |
| { |
| if (likely(vma->anon_vma)) |
| return 0; |
| |
| return __anon_vma_prepare(vma); |
| } |
| |
| static inline void anon_vma_merge(struct vm_area_struct *vma, |
| struct vm_area_struct *next) |
| { |
| VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); |
| unlink_anon_vmas(next); |
| } |
| |
| struct anon_vma *folio_get_anon_vma(struct folio *folio); |
| |
| /* RMAP flags, currently only relevant for some anon rmap operations. */ |
| typedef int __bitwise rmap_t; |
| |
| /* |
| * No special request: if the page is a subpage of a compound page, it is |
| * mapped via a PTE. The mapped (sub)page is possibly shared between processes. |
| */ |
| #define RMAP_NONE ((__force rmap_t)0) |
| |
| /* The (sub)page is exclusive to a single process. */ |
| #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) |
| |
| /* |
| * The compound page is not mapped via PTEs, but instead via a single PMD and |
| * should be accounted accordingly. |
| */ |
| #define RMAP_COMPOUND ((__force rmap_t)BIT(1)) |
| |
| /* |
| * rmap interfaces called when adding or removing pte of page |
| */ |
| void page_move_anon_rmap(struct page *, struct vm_area_struct *); |
| void page_add_anon_rmap(struct page *, struct vm_area_struct *, |
| unsigned long address, rmap_t flags); |
| void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, |
| unsigned long address); |
| void page_add_file_rmap(struct page *, struct vm_area_struct *, |
| bool compound); |
| void page_remove_rmap(struct page *, struct vm_area_struct *, |
| bool compound); |
| |
| void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, |
| unsigned long address, rmap_t flags); |
| void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, |
| unsigned long address); |
| |
| static inline void __page_dup_rmap(struct page *page, bool compound) |
| { |
| atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); |
| } |
| |
| static inline void page_dup_file_rmap(struct page *page, bool compound) |
| { |
| __page_dup_rmap(page, compound); |
| } |
| |
| /** |
| * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped |
| * anonymous page |
| * @page: the page to duplicate the mapping for |
| * @compound: the page is mapped as compound or as a small page |
| * @vma: the source vma |
| * |
| * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq. |
| * |
| * Duplicating the mapping can only fail if the page may be pinned; device |
| * private pages cannot get pinned and consequently this function cannot fail. |
| * |
| * If duplicating the mapping succeeds, the page has to be mapped R/O into |
| * the parent and the child. It must *not* get mapped writable after this call. |
| * |
| * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. |
| */ |
| static inline int page_try_dup_anon_rmap(struct page *page, bool compound, |
| struct vm_area_struct *vma) |
| { |
| VM_BUG_ON_PAGE(!PageAnon(page), page); |
| |
| /* |
| * No need to check+clear for already shared pages, including KSM |
| * pages. |
| */ |
| if (!PageAnonExclusive(page)) |
| goto dup; |
| |
| /* |
| * If this page may have been pinned by the parent process, |
| * don't allow to duplicate the mapping but instead require to e.g., |
| * copy the page immediately for the child so that we'll always |
| * guarantee the pinned page won't be randomly replaced in the |
| * future on write faults. |
| */ |
| if (likely(!is_device_private_page(page)) && |
| unlikely(page_needs_cow_for_dma(vma, page))) |
| return -EBUSY; |
| |
| ClearPageAnonExclusive(page); |
| /* |
| * It's okay to share the anon page between both processes, mapping |
| * the page R/O into both processes. |
| */ |
| dup: |
| __page_dup_rmap(page, compound); |
| return 0; |
| } |
| |
| /** |
| * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly |
| * shared to prepare for KSM or temporary unmapping |
| * @page: the exclusive anonymous page to try marking possibly shared |
| * |
| * The caller needs to hold the PT lock and has to have the page table entry |
| * cleared/invalidated. |
| * |
| * This is similar to page_try_dup_anon_rmap(), however, not used during fork() |
| * to duplicate a mapping, but instead to prepare for KSM or temporarily |
| * unmapping a page (swap, migration) via page_remove_rmap(). |
| * |
| * Marking the page shared can only fail if the page may be pinned; device |
| * private pages cannot get pinned and consequently this function cannot fail. |
| * |
| * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY |
| * otherwise. |
| */ |
| static inline int page_try_share_anon_rmap(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page); |
| |
| /* device private pages cannot get pinned via GUP. */ |
| if (unlikely(is_device_private_page(page))) { |
| ClearPageAnonExclusive(page); |
| return 0; |
| } |
| |
| /* |
| * We have to make sure that when we clear PageAnonExclusive, that |
| * the page is not pinned and that concurrent GUP-fast won't succeed in |
| * concurrently pinning the page. |
| * |
| * Conceptually, PageAnonExclusive clearing consists of: |
| * (A1) Clear PTE |
| * (A2) Check if the page is pinned; back off if so. |
| * (A3) Clear PageAnonExclusive |
| * (A4) Restore PTE (optional, but certainly not writable) |
| * |
| * When clearing PageAnonExclusive, we cannot possibly map the page |
| * writable again, because anon pages that may be shared must never |
| * be writable. So in any case, if the PTE was writable it cannot |
| * be writable anymore afterwards and there would be a PTE change. Only |
| * if the PTE wasn't writable, there might not be a PTE change. |
| * |
| * Conceptually, GUP-fast pinning of an anon page consists of: |
| * (B1) Read the PTE |
| * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so. |
| * (B3) Pin the mapped page |
| * (B4) Check if the PTE changed by re-reading it; back off if so. |
| * (B5) If the original PTE is not writable, check if |
| * PageAnonExclusive is not set; back off if so. |
| * |
| * If the PTE was writable, we only have to make sure that GUP-fast |
| * observes a PTE change and properly backs off. |
| * |
| * If the PTE was not writable, we have to make sure that GUP-fast either |
| * detects a (temporary) PTE change or that PageAnonExclusive is cleared |
| * and properly backs off. |
| * |
| * Consequently, when clearing PageAnonExclusive(), we have to make |
| * sure that (A1), (A2)/(A3) and (A4) happen in the right memory |
| * order. In GUP-fast pinning code, we have to make sure that (B3),(B4) |
| * and (B5) happen in the right memory order. |
| * |
| * We assume that there might not be a memory barrier after |
| * clearing/invalidating the PTE (A1) and before restoring the PTE (A4), |
| * so we use explicit ones here. |
| */ |
| |
| /* Paired with the memory barrier in try_grab_folio(). */ |
| if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) |
| smp_mb(); |
| |
| if (unlikely(page_maybe_dma_pinned(page))) |
| return -EBUSY; |
| ClearPageAnonExclusive(page); |
| |
| /* |
| * This is conceptually a smp_wmb() paired with the smp_rmb() in |
| * gup_must_unshare(). |
| */ |
| if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) |
| smp_mb__after_atomic(); |
| return 0; |
| } |
| |
| /* |
| * Called from mm/vmscan.c to handle paging out |
| */ |
| int folio_referenced(struct folio *, int is_locked, |
| struct mem_cgroup *memcg, unsigned long *vm_flags); |
| |
| void try_to_migrate(struct folio *folio, enum ttu_flags flags); |
| void try_to_unmap(struct folio *, enum ttu_flags flags); |
| |
| int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, |
| unsigned long end, struct page **pages, |
| void *arg); |
| |
| /* Avoid racy checks */ |
| #define PVMW_SYNC (1 << 0) |
| /* Look for migration entries rather than present PTEs */ |
| #define PVMW_MIGRATION (1 << 1) |
| |
| struct page_vma_mapped_walk { |
| unsigned long pfn; |
| unsigned long nr_pages; |
| pgoff_t pgoff; |
| struct vm_area_struct *vma; |
| unsigned long address; |
| pmd_t *pmd; |
| pte_t *pte; |
| spinlock_t *ptl; |
| unsigned int flags; |
| }; |
| |
| #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \ |
| struct page_vma_mapped_walk name = { \ |
| .pfn = page_to_pfn(_page), \ |
| .nr_pages = compound_nr(_page), \ |
| .pgoff = page_to_pgoff(_page), \ |
| .vma = _vma, \ |
| .address = _address, \ |
| .flags = _flags, \ |
| } |
| |
| #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ |
| struct page_vma_mapped_walk name = { \ |
| .pfn = folio_pfn(_folio), \ |
| .nr_pages = folio_nr_pages(_folio), \ |
| .pgoff = folio_pgoff(_folio), \ |
| .vma = _vma, \ |
| .address = _address, \ |
| .flags = _flags, \ |
| } |
| |
| static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) |
| { |
| /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ |
| if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma)) |
| pte_unmap(pvmw->pte); |
| if (pvmw->ptl) |
| spin_unlock(pvmw->ptl); |
| } |
| |
| bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); |
| |
| /* |
| * Used by swapoff to help locate where page is expected in vma. |
| */ |
| unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); |
| |
| /* |
| * Cleans the PTEs of shared mappings. |
| * (and since clean PTEs should also be readonly, write protects them too) |
| * |
| * returns the number of cleaned PTEs. |
| */ |
| int folio_mkclean(struct folio *); |
| |
| int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, |
| struct vm_area_struct *vma); |
| |
| void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked); |
| |
| int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); |
| |
| /* |
| * rmap_walk_control: To control rmap traversing for specific needs |
| * |
| * arg: passed to rmap_one() and invalid_vma() |
| * try_lock: bail out if the rmap lock is contended |
| * contended: indicate the rmap traversal bailed out due to lock contention |
| * rmap_one: executed on each vma where page is mapped |
| * done: for checking traversing termination condition |
| * anon_lock: for getting anon_lock by optimized way rather than default |
| * invalid_vma: for skipping uninterested vma |
| */ |
| struct rmap_walk_control { |
| void *arg; |
| bool try_lock; |
| bool contended; |
| /* |
| * Return false if page table scanning in rmap_walk should be stopped. |
| * Otherwise, return true. |
| */ |
| bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, |
| unsigned long addr, void *arg); |
| int (*done)(struct folio *folio); |
| struct anon_vma *(*anon_lock)(struct folio *folio, |
| struct rmap_walk_control *rwc); |
| bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); |
| }; |
| |
| void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); |
| void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); |
| struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, |
| struct rmap_walk_control *rwc); |
| |
| #else /* !CONFIG_MMU */ |
| |
| #define anon_vma_init() do {} while (0) |
| #define anon_vma_prepare(vma) (0) |
| #define anon_vma_link(vma) do {} while (0) |
| |
| static inline int folio_referenced(struct folio *folio, int is_locked, |
| struct mem_cgroup *memcg, |
| unsigned long *vm_flags) |
| { |
| *vm_flags = 0; |
| return 0; |
| } |
| |
| static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
| { |
| } |
| |
| static inline int folio_mkclean(struct folio *folio) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| static inline int page_mkclean(struct page *page) |
| { |
| return folio_mkclean(page_folio(page)); |
| } |
| #endif /* _LINUX_RMAP_H */ |