| /* | 
 |  *  linux/mm/page_alloc.c | 
 |  * | 
 |  *  Manages the free list, the system allocates free pages here. | 
 |  *  Note that kmalloc() lives in slab.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
 |  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
 |  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
 |  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
 |  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
 |  */ | 
 |  | 
 | #include <linux/stddef.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/memory_hotplug.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/stop_machine.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/div64.h> | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * MCD - HACK: Find somewhere to initialize this EARLY, or make this | 
 |  * initializer cleaner | 
 |  */ | 
 | nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; | 
 | EXPORT_SYMBOL(node_online_map); | 
 | nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; | 
 | EXPORT_SYMBOL(node_possible_map); | 
 | unsigned long totalram_pages __read_mostly; | 
 | unsigned long totalhigh_pages __read_mostly; | 
 | unsigned long totalreserve_pages __read_mostly; | 
 | long nr_swap_pages; | 
 | int percpu_pagelist_fraction; | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order); | 
 |  | 
 | /* | 
 |  * results with 256, 32 in the lowmem_reserve sysctl: | 
 |  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
 |  *	1G machine -> (16M dma, 784M normal, 224M high) | 
 |  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
 |  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
 |  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | 
 |  * | 
 |  * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
 |  * don't need any ZONE_NORMAL reservation | 
 |  */ | 
 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; | 
 |  | 
 | EXPORT_SYMBOL(totalram_pages); | 
 |  | 
 | /* | 
 |  * Used by page_zone() to look up the address of the struct zone whose | 
 |  * id is encoded in the upper bits of page->flags | 
 |  */ | 
 | struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; | 
 | EXPORT_SYMBOL(zone_table); | 
 |  | 
 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; | 
 | int min_free_kbytes = 1024; | 
 |  | 
 | unsigned long __meminitdata nr_kernel_pages; | 
 | unsigned long __meminitdata nr_all_pages; | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned seq; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	do { | 
 | 		seq = zone_span_seqbegin(zone); | 
 | 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | 
 | 			ret = 1; | 
 | 		else if (pfn < zone->zone_start_pfn) | 
 | 			ret = 1; | 
 | 	} while (zone_span_seqretry(zone, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int page_is_consistent(struct zone *zone, struct page *page) | 
 | { | 
 | #ifdef CONFIG_HOLES_IN_ZONE | 
 | 	if (!pfn_valid(page_to_pfn(page))) | 
 | 		return 0; | 
 | #endif | 
 | 	if (zone != page_zone(page)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Temporary debugging check for pages not lying within a given zone. | 
 |  */ | 
 | static int bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	if (page_outside_zone_boundaries(zone, page)) | 
 | 		return 1; | 
 | 	if (!page_is_consistent(zone, page)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 | static inline int bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void bad_page(struct page *page) | 
 | { | 
 | 	printk(KERN_EMERG "Bad page state in process '%s'\n" | 
 | 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" | 
 | 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n" | 
 | 		KERN_EMERG "Backtrace:\n", | 
 | 		current->comm, page, (int)(2*sizeof(unsigned long)), | 
 | 		(unsigned long)page->flags, page->mapping, | 
 | 		page_mapcount(page), page_count(page)); | 
 | 	dump_stack(); | 
 | 	page->flags &= ~(1 << PG_lru	| | 
 | 			1 << PG_private | | 
 | 			1 << PG_locked	| | 
 | 			1 << PG_active	| | 
 | 			1 << PG_dirty	| | 
 | 			1 << PG_reclaim | | 
 | 			1 << PG_slab    | | 
 | 			1 << PG_swapcache | | 
 | 			1 << PG_writeback | | 
 | 			1 << PG_buddy ); | 
 | 	set_page_count(page, 0); | 
 | 	reset_page_mapcount(page); | 
 | 	page->mapping = NULL; | 
 | 	add_taint(TAINT_BAD_PAGE); | 
 | } | 
 |  | 
 | /* | 
 |  * Higher-order pages are called "compound pages".  They are structured thusly: | 
 |  * | 
 |  * The first PAGE_SIZE page is called the "head page". | 
 |  * | 
 |  * The remaining PAGE_SIZE pages are called "tail pages". | 
 |  * | 
 |  * All pages have PG_compound set.  All pages have their ->private pointing at | 
 |  * the head page (even the head page has this). | 
 |  * | 
 |  * The first tail page's ->lru.next holds the address of the compound page's | 
 |  * put_page() function.  Its ->lru.prev holds the order of allocation. | 
 |  * This usage means that zero-order pages may not be compound. | 
 |  */ | 
 |  | 
 | static void free_compound_page(struct page *page) | 
 | { | 
 | 	__free_pages_ok(page, (unsigned long)page[1].lru.prev); | 
 | } | 
 |  | 
 | static void prep_compound_page(struct page *page, unsigned long order) | 
 | { | 
 | 	int i; | 
 | 	int nr_pages = 1 << order; | 
 |  | 
 | 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */ | 
 | 	page[1].lru.prev = (void *)order; | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct page *p = page + i; | 
 |  | 
 | 		__SetPageCompound(p); | 
 | 		set_page_private(p, (unsigned long)page); | 
 | 	} | 
 | } | 
 |  | 
 | static void destroy_compound_page(struct page *page, unsigned long order) | 
 | { | 
 | 	int i; | 
 | 	int nr_pages = 1 << order; | 
 |  | 
 | 	if (unlikely((unsigned long)page[1].lru.prev != order)) | 
 | 		bad_page(page); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct page *p = page + i; | 
 |  | 
 | 		if (unlikely(!PageCompound(p) | | 
 | 				(page_private(p) != (unsigned long)page))) | 
 | 			bad_page(page); | 
 | 		__ClearPageCompound(p); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | 
 | 	/* | 
 | 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | 
 | 	 * and __GFP_HIGHMEM from hard or soft interrupt context. | 
 | 	 */ | 
 | 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); | 
 | 	for (i = 0; i < (1 << order); i++) | 
 | 		clear_highpage(page + i); | 
 | } | 
 |  | 
 | /* | 
 |  * function for dealing with page's order in buddy system. | 
 |  * zone->lock is already acquired when we use these. | 
 |  * So, we don't need atomic page->flags operations here. | 
 |  */ | 
 | static inline unsigned long page_order(struct page *page) | 
 | { | 
 | 	return page_private(page); | 
 | } | 
 |  | 
 | static inline void set_page_order(struct page *page, int order) | 
 | { | 
 | 	set_page_private(page, order); | 
 | 	__SetPageBuddy(page); | 
 | } | 
 |  | 
 | static inline void rmv_page_order(struct page *page) | 
 | { | 
 | 	__ClearPageBuddy(page); | 
 | 	set_page_private(page, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Locate the struct page for both the matching buddy in our | 
 |  * pair (buddy1) and the combined O(n+1) page they form (page). | 
 |  * | 
 |  * 1) Any buddy B1 will have an order O twin B2 which satisfies | 
 |  * the following equation: | 
 |  *     B2 = B1 ^ (1 << O) | 
 |  * For example, if the starting buddy (buddy2) is #8 its order | 
 |  * 1 buddy is #10: | 
 |  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 
 |  * | 
 |  * 2) Any buddy B will have an order O+1 parent P which | 
 |  * satisfies the following equation: | 
 |  *     P = B & ~(1 << O) | 
 |  * | 
 |  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER | 
 |  */ | 
 | static inline struct page * | 
 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | 
 | { | 
 | 	unsigned long buddy_idx = page_idx ^ (1 << order); | 
 |  | 
 | 	return page + (buddy_idx - page_idx); | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | __find_combined_index(unsigned long page_idx, unsigned int order) | 
 | { | 
 | 	return (page_idx & ~(1 << order)); | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks whether a page is free && is the buddy | 
 |  * we can do coalesce a page and its buddy if | 
 |  * (a) the buddy is not in a hole && | 
 |  * (b) the buddy is in the buddy system && | 
 |  * (c) a page and its buddy have the same order && | 
 |  * (d) a page and its buddy are in the same zone. | 
 |  * | 
 |  * For recording whether a page is in the buddy system, we use PG_buddy. | 
 |  * Setting, clearing, and testing PG_buddy is serialized by zone->lock. | 
 |  * | 
 |  * For recording page's order, we use page_private(page). | 
 |  */ | 
 | static inline int page_is_buddy(struct page *page, struct page *buddy, | 
 | 								int order) | 
 | { | 
 | #ifdef CONFIG_HOLES_IN_ZONE | 
 | 	if (!pfn_valid(page_to_pfn(buddy))) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	if (page_zone_id(page) != page_zone_id(buddy)) | 
 | 		return 0; | 
 |  | 
 | 	if (PageBuddy(buddy) && page_order(buddy) == order) { | 
 | 		BUG_ON(page_count(buddy) != 0); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Freeing function for a buddy system allocator. | 
 |  * | 
 |  * The concept of a buddy system is to maintain direct-mapped table | 
 |  * (containing bit values) for memory blocks of various "orders". | 
 |  * The bottom level table contains the map for the smallest allocatable | 
 |  * units of memory (here, pages), and each level above it describes | 
 |  * pairs of units from the levels below, hence, "buddies". | 
 |  * At a high level, all that happens here is marking the table entry | 
 |  * at the bottom level available, and propagating the changes upward | 
 |  * as necessary, plus some accounting needed to play nicely with other | 
 |  * parts of the VM system. | 
 |  * At each level, we keep a list of pages, which are heads of continuous | 
 |  * free pages of length of (1 << order) and marked with PG_buddy. Page's | 
 |  * order is recorded in page_private(page) field. | 
 |  * So when we are allocating or freeing one, we can derive the state of the | 
 |  * other.  That is, if we allocate a small block, and both were    | 
 |  * free, the remainder of the region must be split into blocks.    | 
 |  * If a block is freed, and its buddy is also free, then this | 
 |  * triggers coalescing into a block of larger size.             | 
 |  * | 
 |  * -- wli | 
 |  */ | 
 |  | 
 | static inline void __free_one_page(struct page *page, | 
 | 		struct zone *zone, unsigned int order) | 
 | { | 
 | 	unsigned long page_idx; | 
 | 	int order_size = 1 << order; | 
 |  | 
 | 	if (unlikely(PageCompound(page))) | 
 | 		destroy_compound_page(page, order); | 
 |  | 
 | 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | 
 |  | 
 | 	BUG_ON(page_idx & (order_size - 1)); | 
 | 	BUG_ON(bad_range(zone, page)); | 
 |  | 
 | 	zone->free_pages += order_size; | 
 | 	while (order < MAX_ORDER-1) { | 
 | 		unsigned long combined_idx; | 
 | 		struct free_area *area; | 
 | 		struct page *buddy; | 
 |  | 
 | 		buddy = __page_find_buddy(page, page_idx, order); | 
 | 		if (!page_is_buddy(page, buddy, order)) | 
 | 			break;		/* Move the buddy up one level. */ | 
 |  | 
 | 		list_del(&buddy->lru); | 
 | 		area = zone->free_area + order; | 
 | 		area->nr_free--; | 
 | 		rmv_page_order(buddy); | 
 | 		combined_idx = __find_combined_index(page_idx, order); | 
 | 		page = page + (combined_idx - page_idx); | 
 | 		page_idx = combined_idx; | 
 | 		order++; | 
 | 	} | 
 | 	set_page_order(page, order); | 
 | 	list_add(&page->lru, &zone->free_area[order].free_list); | 
 | 	zone->free_area[order].nr_free++; | 
 | } | 
 |  | 
 | static inline int free_pages_check(struct page *page) | 
 | { | 
 | 	if (unlikely(page_mapcount(page) | | 
 | 		(page->mapping != NULL)  | | 
 | 		(page_count(page) != 0)  | | 
 | 		(page->flags & ( | 
 | 			1 << PG_lru	| | 
 | 			1 << PG_private | | 
 | 			1 << PG_locked	| | 
 | 			1 << PG_active	| | 
 | 			1 << PG_reclaim	| | 
 | 			1 << PG_slab	| | 
 | 			1 << PG_swapcache | | 
 | 			1 << PG_writeback | | 
 | 			1 << PG_reserved | | 
 | 			1 << PG_buddy )))) | 
 | 		bad_page(page); | 
 | 	if (PageDirty(page)) | 
 | 		__ClearPageDirty(page); | 
 | 	/* | 
 | 	 * For now, we report if PG_reserved was found set, but do not | 
 | 	 * clear it, and do not free the page.  But we shall soon need | 
 | 	 * to do more, for when the ZERO_PAGE count wraps negative. | 
 | 	 */ | 
 | 	return PageReserved(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Frees a list of pages.  | 
 |  * Assumes all pages on list are in same zone, and of same order. | 
 |  * count is the number of pages to free. | 
 |  * | 
 |  * If the zone was previously in an "all pages pinned" state then look to | 
 |  * see if this freeing clears that state. | 
 |  * | 
 |  * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
 |  * pinned" detection logic. | 
 |  */ | 
 | static void free_pages_bulk(struct zone *zone, int count, | 
 | 					struct list_head *list, int order) | 
 | { | 
 | 	spin_lock(&zone->lock); | 
 | 	zone->all_unreclaimable = 0; | 
 | 	zone->pages_scanned = 0; | 
 | 	while (count--) { | 
 | 		struct page *page; | 
 |  | 
 | 		BUG_ON(list_empty(list)); | 
 | 		page = list_entry(list->prev, struct page, lru); | 
 | 		/* have to delete it as __free_one_page list manipulates */ | 
 | 		list_del(&page->lru); | 
 | 		__free_one_page(page, zone, order); | 
 | 	} | 
 | 	spin_unlock(&zone->lock); | 
 | } | 
 |  | 
 | static void free_one_page(struct zone *zone, struct page *page, int order) | 
 | { | 
 | 	LIST_HEAD(list); | 
 | 	list_add(&page->lru, &list); | 
 | 	free_pages_bulk(zone, 1, &list, order); | 
 | } | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i; | 
 | 	int reserved = 0; | 
 |  | 
 | 	arch_free_page(page, order); | 
 | 	if (!PageHighMem(page)) | 
 | 		debug_check_no_locks_freed(page_address(page), | 
 | 					   PAGE_SIZE<<order); | 
 |  | 
 | 	for (i = 0 ; i < (1 << order) ; ++i) | 
 | 		reserved += free_pages_check(page + i); | 
 | 	if (reserved) | 
 | 		return; | 
 |  | 
 | 	kernel_map_pages(page, 1 << order, 0); | 
 | 	local_irq_save(flags); | 
 | 	__count_vm_events(PGFREE, 1 << order); | 
 | 	free_one_page(page_zone(page), page, order); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * permit the bootmem allocator to evade page validation on high-order frees | 
 |  */ | 
 | void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) | 
 | { | 
 | 	if (order == 0) { | 
 | 		__ClearPageReserved(page); | 
 | 		set_page_count(page, 0); | 
 | 		set_page_refcounted(page); | 
 | 		__free_page(page); | 
 | 	} else { | 
 | 		int loop; | 
 |  | 
 | 		prefetchw(page); | 
 | 		for (loop = 0; loop < BITS_PER_LONG; loop++) { | 
 | 			struct page *p = &page[loop]; | 
 |  | 
 | 			if (loop + 1 < BITS_PER_LONG) | 
 | 				prefetchw(p + 1); | 
 | 			__ClearPageReserved(p); | 
 | 			set_page_count(p, 0); | 
 | 		} | 
 |  | 
 | 		set_page_refcounted(page); | 
 | 		__free_pages(page, order); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The order of subdivision here is critical for the IO subsystem. | 
 |  * Please do not alter this order without good reasons and regression | 
 |  * testing. Specifically, as large blocks of memory are subdivided, | 
 |  * the order in which smaller blocks are delivered depends on the order | 
 |  * they're subdivided in this function. This is the primary factor | 
 |  * influencing the order in which pages are delivered to the IO | 
 |  * subsystem according to empirical testing, and this is also justified | 
 |  * by considering the behavior of a buddy system containing a single | 
 |  * large block of memory acted on by a series of small allocations. | 
 |  * This behavior is a critical factor in sglist merging's success. | 
 |  * | 
 |  * -- wli | 
 |  */ | 
 | static inline void expand(struct zone *zone, struct page *page, | 
 |  	int low, int high, struct free_area *area) | 
 | { | 
 | 	unsigned long size = 1 << high; | 
 |  | 
 | 	while (high > low) { | 
 | 		area--; | 
 | 		high--; | 
 | 		size >>= 1; | 
 | 		BUG_ON(bad_range(zone, &page[size])); | 
 | 		list_add(&page[size].lru, &area->free_list); | 
 | 		area->nr_free++; | 
 | 		set_page_order(&page[size], high); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This page is about to be returned from the page allocator | 
 |  */ | 
 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | 
 | { | 
 | 	if (unlikely(page_mapcount(page) | | 
 | 		(page->mapping != NULL)  | | 
 | 		(page_count(page) != 0)  | | 
 | 		(page->flags & ( | 
 | 			1 << PG_lru	| | 
 | 			1 << PG_private	| | 
 | 			1 << PG_locked	| | 
 | 			1 << PG_active	| | 
 | 			1 << PG_dirty	| | 
 | 			1 << PG_reclaim	| | 
 | 			1 << PG_slab    | | 
 | 			1 << PG_swapcache | | 
 | 			1 << PG_writeback | | 
 | 			1 << PG_reserved | | 
 | 			1 << PG_buddy )))) | 
 | 		bad_page(page); | 
 |  | 
 | 	/* | 
 | 	 * For now, we report if PG_reserved was found set, but do not | 
 | 	 * clear it, and do not allocate the page: as a safety net. | 
 | 	 */ | 
 | 	if (PageReserved(page)) | 
 | 		return 1; | 
 |  | 
 | 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | 
 | 			1 << PG_referenced | 1 << PG_arch_1 | | 
 | 			1 << PG_checked | 1 << PG_mappedtodisk); | 
 | 	set_page_private(page, 0); | 
 | 	set_page_refcounted(page); | 
 | 	kernel_map_pages(page, 1 << order, 1); | 
 |  | 
 | 	if (gfp_flags & __GFP_ZERO) | 
 | 		prep_zero_page(page, order, gfp_flags); | 
 |  | 
 | 	if (order && (gfp_flags & __GFP_COMP)) | 
 | 		prep_compound_page(page, order); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*  | 
 |  * Do the hard work of removing an element from the buddy allocator. | 
 |  * Call me with the zone->lock already held. | 
 |  */ | 
 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | 
 | { | 
 | 	struct free_area * area; | 
 | 	unsigned int current_order; | 
 | 	struct page *page; | 
 |  | 
 | 	for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
 | 		area = zone->free_area + current_order; | 
 | 		if (list_empty(&area->free_list)) | 
 | 			continue; | 
 |  | 
 | 		page = list_entry(area->free_list.next, struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		rmv_page_order(page); | 
 | 		area->nr_free--; | 
 | 		zone->free_pages -= 1UL << order; | 
 | 		expand(zone, page, order, current_order, area); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*  | 
 |  * Obtain a specified number of elements from the buddy allocator, all under | 
 |  * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
 |  * Returns the number of new pages which were placed at *list. | 
 |  */ | 
 | static int rmqueue_bulk(struct zone *zone, unsigned int order,  | 
 | 			unsigned long count, struct list_head *list) | 
 | { | 
 | 	int i; | 
 | 	 | 
 | 	spin_lock(&zone->lock); | 
 | 	for (i = 0; i < count; ++i) { | 
 | 		struct page *page = __rmqueue(zone, order); | 
 | 		if (unlikely(page == NULL)) | 
 | 			break; | 
 | 		list_add_tail(&page->lru, list); | 
 | 	} | 
 | 	spin_unlock(&zone->lock); | 
 | 	return i; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Called from the slab reaper to drain pagesets on a particular node that | 
 |  * belong to the currently executing processor. | 
 |  * Note that this function must be called with the thread pinned to | 
 |  * a single processor. | 
 |  */ | 
 | void drain_node_pages(int nodeid) | 
 | { | 
 | 	int i, z; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for (z = 0; z < MAX_NR_ZONES; z++) { | 
 | 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z; | 
 | 		struct per_cpu_pageset *pset; | 
 |  | 
 | 		pset = zone_pcp(zone, smp_processor_id()); | 
 | 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 
 | 			struct per_cpu_pages *pcp; | 
 |  | 
 | 			pcp = &pset->pcp[i]; | 
 | 			if (pcp->count) { | 
 | 				local_irq_save(flags); | 
 | 				free_pages_bulk(zone, pcp->count, &pcp->list, 0); | 
 | 				pcp->count = 0; | 
 | 				local_irq_restore(flags); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | 
 | static void __drain_pages(unsigned int cpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct zone *zone; | 
 | 	int i; | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		struct per_cpu_pageset *pset; | 
 |  | 
 | 		pset = zone_pcp(zone, cpu); | 
 | 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 
 | 			struct per_cpu_pages *pcp; | 
 |  | 
 | 			pcp = &pset->pcp[i]; | 
 | 			local_irq_save(flags); | 
 | 			free_pages_bulk(zone, pcp->count, &pcp->list, 0); | 
 | 			pcp->count = 0; | 
 | 			local_irq_restore(flags); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | #ifdef CONFIG_PM | 
 |  | 
 | void mark_free_pages(struct zone *zone) | 
 | { | 
 | 	unsigned long zone_pfn, flags; | 
 | 	int order; | 
 | 	struct list_head *curr; | 
 |  | 
 | 	if (!zone->spanned_pages) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | 
 | 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | 
 |  | 
 | 	for (order = MAX_ORDER - 1; order >= 0; --order) | 
 | 		list_for_each(curr, &zone->free_area[order].free_list) { | 
 | 			unsigned long start_pfn, i; | 
 |  | 
 | 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 
 |  | 
 | 			for (i=0; i < (1<<order); i++) | 
 | 				SetPageNosaveFree(pfn_to_page(start_pfn+i)); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
 |  */ | 
 | void drain_local_pages(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags);	 | 
 | 	__drain_pages(smp_processor_id()); | 
 | 	local_irq_restore(flags);	 | 
 | } | 
 | #endif /* CONFIG_PM */ | 
 |  | 
 | /* | 
 |  * Free a 0-order page | 
 |  */ | 
 | static void fastcall free_hot_cold_page(struct page *page, int cold) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct per_cpu_pages *pcp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	arch_free_page(page, 0); | 
 |  | 
 | 	if (PageAnon(page)) | 
 | 		page->mapping = NULL; | 
 | 	if (free_pages_check(page)) | 
 | 		return; | 
 |  | 
 | 	kernel_map_pages(page, 1, 0); | 
 |  | 
 | 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; | 
 | 	local_irq_save(flags); | 
 | 	__count_vm_event(PGFREE); | 
 | 	list_add(&page->lru, &pcp->list); | 
 | 	pcp->count++; | 
 | 	if (pcp->count >= pcp->high) { | 
 | 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | 
 | 		pcp->count -= pcp->batch; | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void fastcall free_hot_page(struct page *page) | 
 | { | 
 | 	free_hot_cold_page(page, 0); | 
 | } | 
 | 	 | 
 | void fastcall free_cold_page(struct page *page) | 
 | { | 
 | 	free_hot_cold_page(page, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * split_page takes a non-compound higher-order page, and splits it into | 
 |  * n (1<<order) sub-pages: page[0..n] | 
 |  * Each sub-page must be freed individually. | 
 |  * | 
 |  * Note: this is probably too low level an operation for use in drivers. | 
 |  * Please consult with lkml before using this in your driver. | 
 |  */ | 
 | void split_page(struct page *page, unsigned int order) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(PageCompound(page)); | 
 | 	BUG_ON(!page_count(page)); | 
 | 	for (i = 1; i < (1 << order); i++) | 
 | 		set_page_refcounted(page + i); | 
 | } | 
 |  | 
 | /* | 
 |  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But | 
 |  * we cheat by calling it from here, in the order > 0 path.  Saves a branch | 
 |  * or two. | 
 |  */ | 
 | static struct page *buffered_rmqueue(struct zonelist *zonelist, | 
 | 			struct zone *zone, int order, gfp_t gfp_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page; | 
 | 	int cold = !!(gfp_flags & __GFP_COLD); | 
 | 	int cpu; | 
 |  | 
 | again: | 
 | 	cpu  = get_cpu(); | 
 | 	if (likely(order == 0)) { | 
 | 		struct per_cpu_pages *pcp; | 
 |  | 
 | 		pcp = &zone_pcp(zone, cpu)->pcp[cold]; | 
 | 		local_irq_save(flags); | 
 | 		if (!pcp->count) { | 
 | 			pcp->count += rmqueue_bulk(zone, 0, | 
 | 						pcp->batch, &pcp->list); | 
 | 			if (unlikely(!pcp->count)) | 
 | 				goto failed; | 
 | 		} | 
 | 		page = list_entry(pcp->list.next, struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		pcp->count--; | 
 | 	} else { | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		page = __rmqueue(zone, order); | 
 | 		spin_unlock(&zone->lock); | 
 | 		if (!page) | 
 | 			goto failed; | 
 | 	} | 
 |  | 
 | 	__count_zone_vm_events(PGALLOC, zone, 1 << order); | 
 | 	zone_statistics(zonelist, zone); | 
 | 	local_irq_restore(flags); | 
 | 	put_cpu(); | 
 |  | 
 | 	BUG_ON(bad_range(zone, page)); | 
 | 	if (prep_new_page(page, order, gfp_flags)) | 
 | 		goto again; | 
 | 	return page; | 
 |  | 
 | failed: | 
 | 	local_irq_restore(flags); | 
 | 	put_cpu(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */ | 
 | #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */ | 
 | #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */ | 
 | #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */ | 
 | #define ALLOC_HARDER		0x10 /* try to alloc harder */ | 
 | #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */ | 
 | #define ALLOC_CPUSET		0x40 /* check for correct cpuset */ | 
 |  | 
 | /* | 
 |  * Return 1 if free pages are above 'mark'. This takes into account the order | 
 |  * of the allocation. | 
 |  */ | 
 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
 | 		      int classzone_idx, int alloc_flags) | 
 | { | 
 | 	/* free_pages my go negative - that's OK */ | 
 | 	long min = mark, free_pages = z->free_pages - (1 << order) + 1; | 
 | 	int o; | 
 |  | 
 | 	if (alloc_flags & ALLOC_HIGH) | 
 | 		min -= min / 2; | 
 | 	if (alloc_flags & ALLOC_HARDER) | 
 | 		min -= min / 4; | 
 |  | 
 | 	if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | 
 | 		return 0; | 
 | 	for (o = 0; o < order; o++) { | 
 | 		/* At the next order, this order's pages become unavailable */ | 
 | 		free_pages -= z->free_area[o].nr_free << o; | 
 |  | 
 | 		/* Require fewer higher order pages to be free */ | 
 | 		min >>= 1; | 
 |  | 
 | 		if (free_pages <= min) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * get_page_from_freeliest goes through the zonelist trying to allocate | 
 |  * a page. | 
 |  */ | 
 | static struct page * | 
 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, | 
 | 		struct zonelist *zonelist, int alloc_flags) | 
 | { | 
 | 	struct zone **z = zonelist->zones; | 
 | 	struct page *page = NULL; | 
 | 	int classzone_idx = zone_idx(*z); | 
 |  | 
 | 	/* | 
 | 	 * Go through the zonelist once, looking for a zone with enough free. | 
 | 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
 | 	 */ | 
 | 	do { | 
 | 		if ((alloc_flags & ALLOC_CPUSET) && | 
 | 				!cpuset_zone_allowed(*z, gfp_mask)) | 
 | 			continue; | 
 |  | 
 | 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { | 
 | 			unsigned long mark; | 
 | 			if (alloc_flags & ALLOC_WMARK_MIN) | 
 | 				mark = (*z)->pages_min; | 
 | 			else if (alloc_flags & ALLOC_WMARK_LOW) | 
 | 				mark = (*z)->pages_low; | 
 | 			else | 
 | 				mark = (*z)->pages_high; | 
 | 			if (!zone_watermark_ok(*z, order, mark, | 
 | 				    classzone_idx, alloc_flags)) | 
 | 				if (!zone_reclaim_mode || | 
 | 				    !zone_reclaim(*z, gfp_mask, order)) | 
 | 					continue; | 
 | 		} | 
 |  | 
 | 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask); | 
 | 		if (page) { | 
 | 			break; | 
 | 		} | 
 | 	} while (*(++z) != NULL); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the 'heart' of the zoned buddy allocator. | 
 |  */ | 
 | struct page * fastcall | 
 | __alloc_pages(gfp_t gfp_mask, unsigned int order, | 
 | 		struct zonelist *zonelist) | 
 | { | 
 | 	const gfp_t wait = gfp_mask & __GFP_WAIT; | 
 | 	struct zone **z; | 
 | 	struct page *page; | 
 | 	struct reclaim_state reclaim_state; | 
 | 	struct task_struct *p = current; | 
 | 	int do_retry; | 
 | 	int alloc_flags; | 
 | 	int did_some_progress; | 
 |  | 
 | 	might_sleep_if(wait); | 
 |  | 
 | restart: | 
 | 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */ | 
 |  | 
 | 	if (unlikely(*z == NULL)) { | 
 | 		/* Should this ever happen?? */ | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 
 | 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	do { | 
 | 		wakeup_kswapd(*z, order); | 
 | 	} while (*(++z)); | 
 |  | 
 | 	/* | 
 | 	 * OK, we're below the kswapd watermark and have kicked background | 
 | 	 * reclaim. Now things get more complex, so set up alloc_flags according | 
 | 	 * to how we want to proceed. | 
 | 	 * | 
 | 	 * The caller may dip into page reserves a bit more if the caller | 
 | 	 * cannot run direct reclaim, or if the caller has realtime scheduling | 
 | 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
 | 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | 
 | 	 */ | 
 | 	alloc_flags = ALLOC_WMARK_MIN; | 
 | 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) | 
 | 		alloc_flags |= ALLOC_HARDER; | 
 | 	if (gfp_mask & __GFP_HIGH) | 
 | 		alloc_flags |= ALLOC_HIGH; | 
 | 	if (wait) | 
 | 		alloc_flags |= ALLOC_CPUSET; | 
 |  | 
 | 	/* | 
 | 	 * Go through the zonelist again. Let __GFP_HIGH and allocations | 
 | 	 * coming from realtime tasks go deeper into reserves. | 
 | 	 * | 
 | 	 * This is the last chance, in general, before the goto nopage. | 
 | 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | 
 | 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
 | 	 */ | 
 | 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* This allocation should allow future memory freeing. */ | 
 |  | 
 | 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) | 
 | 			&& !in_interrupt()) { | 
 | 		if (!(gfp_mask & __GFP_NOMEMALLOC)) { | 
 | nofail_alloc: | 
 | 			/* go through the zonelist yet again, ignoring mins */ | 
 | 			page = get_page_from_freelist(gfp_mask, order, | 
 | 				zonelist, ALLOC_NO_WATERMARKS); | 
 | 			if (page) | 
 | 				goto got_pg; | 
 | 			if (gfp_mask & __GFP_NOFAIL) { | 
 | 				blk_congestion_wait(WRITE, HZ/50); | 
 | 				goto nofail_alloc; | 
 | 			} | 
 | 		} | 
 | 		goto nopage; | 
 | 	} | 
 |  | 
 | 	/* Atomic allocations - we can't balance anything */ | 
 | 	if (!wait) | 
 | 		goto nopage; | 
 |  | 
 | rebalance: | 
 | 	cond_resched(); | 
 |  | 
 | 	/* We now go into synchronous reclaim */ | 
 | 	cpuset_memory_pressure_bump(); | 
 | 	p->flags |= PF_MEMALLOC; | 
 | 	reclaim_state.reclaimed_slab = 0; | 
 | 	p->reclaim_state = &reclaim_state; | 
 |  | 
 | 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); | 
 |  | 
 | 	p->reclaim_state = NULL; | 
 | 	p->flags &= ~PF_MEMALLOC; | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	if (likely(did_some_progress)) { | 
 | 		page = get_page_from_freelist(gfp_mask, order, | 
 | 						zonelist, alloc_flags); | 
 | 		if (page) | 
 | 			goto got_pg; | 
 | 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | 
 | 		/* | 
 | 		 * Go through the zonelist yet one more time, keep | 
 | 		 * very high watermark here, this is only to catch | 
 | 		 * a parallel oom killing, we must fail if we're still | 
 | 		 * under heavy pressure. | 
 | 		 */ | 
 | 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 
 | 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); | 
 | 		if (page) | 
 | 			goto got_pg; | 
 |  | 
 | 		out_of_memory(zonelist, gfp_mask, order); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Don't let big-order allocations loop unless the caller explicitly | 
 | 	 * requests that.  Wait for some write requests to complete then retry. | 
 | 	 * | 
 | 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | 
 | 	 * <= 3, but that may not be true in other implementations. | 
 | 	 */ | 
 | 	do_retry = 0; | 
 | 	if (!(gfp_mask & __GFP_NORETRY)) { | 
 | 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | 
 | 			do_retry = 1; | 
 | 		if (gfp_mask & __GFP_NOFAIL) | 
 | 			do_retry = 1; | 
 | 	} | 
 | 	if (do_retry) { | 
 | 		blk_congestion_wait(WRITE, HZ/50); | 
 | 		goto rebalance; | 
 | 	} | 
 |  | 
 | nopage: | 
 | 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | 
 | 		printk(KERN_WARNING "%s: page allocation failure." | 
 | 			" order:%d, mode:0x%x\n", | 
 | 			p->comm, order, gfp_mask); | 
 | 		dump_stack(); | 
 | 		show_mem(); | 
 | 	} | 
 | got_pg: | 
 | 	return page; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__alloc_pages); | 
 |  | 
 | /* | 
 |  * Common helper functions. | 
 |  */ | 
 | fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page * page; | 
 | 	page = alloc_pages(gfp_mask, order); | 
 | 	if (!page) | 
 | 		return 0; | 
 | 	return (unsigned long) page_address(page); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__get_free_pages); | 
 |  | 
 | fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) | 
 | { | 
 | 	struct page * page; | 
 |  | 
 | 	/* | 
 | 	 * get_zeroed_page() returns a 32-bit address, which cannot represent | 
 | 	 * a highmem page | 
 | 	 */ | 
 | 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | 
 |  | 
 | 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | 
 | 	if (page) | 
 | 		return (unsigned long) page_address(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(get_zeroed_page); | 
 |  | 
 | void __pagevec_free(struct pagevec *pvec) | 
 | { | 
 | 	int i = pagevec_count(pvec); | 
 |  | 
 | 	while (--i >= 0) | 
 | 		free_hot_cold_page(pvec->pages[i], pvec->cold); | 
 | } | 
 |  | 
 | fastcall void __free_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (put_page_testzero(page)) { | 
 | 		if (order == 0) | 
 | 			free_hot_page(page); | 
 | 		else | 
 | 			__free_pages_ok(page, order); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__free_pages); | 
 |  | 
 | fastcall void free_pages(unsigned long addr, unsigned int order) | 
 | { | 
 | 	if (addr != 0) { | 
 | 		BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 		__free_pages(virt_to_page((void *)addr), order); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(free_pages); | 
 |  | 
 | /* | 
 |  * Total amount of free (allocatable) RAM: | 
 |  */ | 
 | unsigned int nr_free_pages(void) | 
 | { | 
 | 	unsigned int sum = 0; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		sum += zone->free_pages; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(nr_free_pages); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | 
 | { | 
 | 	unsigned int i, sum = 0; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		sum += pgdat->node_zones[i].free_pages; | 
 |  | 
 | 	return sum; | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned int nr_free_zone_pages(int offset) | 
 | { | 
 | 	/* Just pick one node, since fallback list is circular */ | 
 | 	pg_data_t *pgdat = NODE_DATA(numa_node_id()); | 
 | 	unsigned int sum = 0; | 
 |  | 
 | 	struct zonelist *zonelist = pgdat->node_zonelists + offset; | 
 | 	struct zone **zonep = zonelist->zones; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for (zone = *zonep++; zone; zone = *zonep++) { | 
 | 		unsigned long size = zone->present_pages; | 
 | 		unsigned long high = zone->pages_high; | 
 | 		if (size > high) | 
 | 			sum += size - high; | 
 | 	} | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | /* | 
 |  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | 
 |  */ | 
 | unsigned int nr_free_buffer_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
 | } | 
 |  | 
 | /* | 
 |  * Amount of free RAM allocatable within all zones | 
 |  */ | 
 | unsigned int nr_free_pagecache_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | unsigned int nr_free_highpages (void) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	unsigned int pages = 0; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
 |  | 
 | 	return pages; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static void show_node(struct zone *zone) | 
 | { | 
 | 	printk("Node %d ", zone->zone_pgdat->node_id); | 
 | } | 
 | #else | 
 | #define show_node(zone)	do { } while (0) | 
 | #endif | 
 |  | 
 | void si_meminfo(struct sysinfo *val) | 
 | { | 
 | 	val->totalram = totalram_pages; | 
 | 	val->sharedram = 0; | 
 | 	val->freeram = nr_free_pages(); | 
 | 	val->bufferram = nr_blockdev_pages(); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	val->totalhigh = totalhigh_pages; | 
 | 	val->freehigh = nr_free_highpages(); | 
 | #else | 
 | 	val->totalhigh = 0; | 
 | 	val->freehigh = 0; | 
 | #endif | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(si_meminfo); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void si_meminfo_node(struct sysinfo *val, int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	val->totalram = pgdat->node_present_pages; | 
 | 	val->freeram = nr_free_pages_pgdat(pgdat); | 
 | 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 
 | 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 |  | 
 | /* | 
 |  * Show free area list (used inside shift_scroll-lock stuff) | 
 |  * We also calculate the percentage fragmentation. We do this by counting the | 
 |  * memory on each free list with the exception of the first item on the list. | 
 |  */ | 
 | void show_free_areas(void) | 
 | { | 
 | 	int cpu, temperature; | 
 | 	unsigned long active; | 
 | 	unsigned long inactive; | 
 | 	unsigned long free; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		show_node(zone); | 
 | 		printk("%s per-cpu:", zone->name); | 
 |  | 
 | 		if (!populated_zone(zone)) { | 
 | 			printk(" empty\n"); | 
 | 			continue; | 
 | 		} else | 
 | 			printk("\n"); | 
 |  | 
 | 		for_each_online_cpu(cpu) { | 
 | 			struct per_cpu_pageset *pageset; | 
 |  | 
 | 			pageset = zone_pcp(zone, cpu); | 
 |  | 
 | 			for (temperature = 0; temperature < 2; temperature++) | 
 | 				printk("cpu %d %s: high %d, batch %d used:%d\n", | 
 | 					cpu, | 
 | 					temperature ? "cold" : "hot", | 
 | 					pageset->pcp[temperature].high, | 
 | 					pageset->pcp[temperature].batch, | 
 | 					pageset->pcp[temperature].count); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	get_zone_counts(&active, &inactive, &free); | 
 |  | 
 | 	printk("Free pages: %11ukB (%ukB HighMem)\n", | 
 | 		K(nr_free_pages()), | 
 | 		K(nr_free_highpages())); | 
 |  | 
 | 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | 
 | 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | 
 | 		active, | 
 | 		inactive, | 
 | 		global_page_state(NR_FILE_DIRTY), | 
 | 		global_page_state(NR_WRITEBACK), | 
 | 		global_page_state(NR_UNSTABLE_NFS), | 
 | 		nr_free_pages(), | 
 | 		global_page_state(NR_SLAB), | 
 | 		global_page_state(NR_FILE_MAPPED), | 
 | 		global_page_state(NR_PAGETABLE)); | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		int i; | 
 |  | 
 | 		show_node(zone); | 
 | 		printk("%s" | 
 | 			" free:%lukB" | 
 | 			" min:%lukB" | 
 | 			" low:%lukB" | 
 | 			" high:%lukB" | 
 | 			" active:%lukB" | 
 | 			" inactive:%lukB" | 
 | 			" present:%lukB" | 
 | 			" pages_scanned:%lu" | 
 | 			" all_unreclaimable? %s" | 
 | 			"\n", | 
 | 			zone->name, | 
 | 			K(zone->free_pages), | 
 | 			K(zone->pages_min), | 
 | 			K(zone->pages_low), | 
 | 			K(zone->pages_high), | 
 | 			K(zone->nr_active), | 
 | 			K(zone->nr_inactive), | 
 | 			K(zone->present_pages), | 
 | 			zone->pages_scanned, | 
 | 			(zone->all_unreclaimable ? "yes" : "no") | 
 | 			); | 
 | 		printk("lowmem_reserve[]:"); | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 			printk(" %lu", zone->lowmem_reserve[i]); | 
 | 		printk("\n"); | 
 | 	} | 
 |  | 
 | 	for_each_zone(zone) { | 
 |  		unsigned long nr[MAX_ORDER], flags, order, total = 0; | 
 |  | 
 | 		show_node(zone); | 
 | 		printk("%s: ", zone->name); | 
 | 		if (!populated_zone(zone)) { | 
 | 			printk("empty\n"); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			nr[order] = zone->free_area[order].nr_free; | 
 | 			total += nr[order] << order; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) | 
 | 			printk("%lu*%lukB ", nr[order], K(1UL) << order); | 
 | 		printk("= %lukB\n", K(total)); | 
 | 	} | 
 |  | 
 | 	show_swap_cache_info(); | 
 | } | 
 |  | 
 | /* | 
 |  * Builds allocation fallback zone lists. | 
 |  * | 
 |  * Add all populated zones of a node to the zonelist. | 
 |  */ | 
 | static int __meminit build_zonelists_node(pg_data_t *pgdat, | 
 | 			struct zonelist *zonelist, int nr_zones, int zone_type) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	BUG_ON(zone_type > ZONE_HIGHMEM); | 
 |  | 
 | 	do { | 
 | 		zone = pgdat->node_zones + zone_type; | 
 | 		if (populated_zone(zone)) { | 
 | #ifndef CONFIG_HIGHMEM | 
 | 			BUG_ON(zone_type > ZONE_NORMAL); | 
 | #endif | 
 | 			zonelist->zones[nr_zones++] = zone; | 
 | 			check_highest_zone(zone_type); | 
 | 		} | 
 | 		zone_type--; | 
 |  | 
 | 	} while (zone_type >= 0); | 
 | 	return nr_zones; | 
 | } | 
 |  | 
 | static inline int highest_zone(int zone_bits) | 
 | { | 
 | 	int res = ZONE_NORMAL; | 
 | 	if (zone_bits & (__force int)__GFP_HIGHMEM) | 
 | 		res = ZONE_HIGHMEM; | 
 | 	if (zone_bits & (__force int)__GFP_DMA32) | 
 | 		res = ZONE_DMA32; | 
 | 	if (zone_bits & (__force int)__GFP_DMA) | 
 | 		res = ZONE_DMA; | 
 | 	return res; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | #define MAX_NODE_LOAD (num_online_nodes()) | 
 | static int __meminitdata node_load[MAX_NUMNODES]; | 
 | /** | 
 |  * find_next_best_node - find the next node that should appear in a given node's fallback list | 
 |  * @node: node whose fallback list we're appending | 
 |  * @used_node_mask: nodemask_t of already used nodes | 
 |  * | 
 |  * We use a number of factors to determine which is the next node that should | 
 |  * appear on a given node's fallback list.  The node should not have appeared | 
 |  * already in @node's fallback list, and it should be the next closest node | 
 |  * according to the distance array (which contains arbitrary distance values | 
 |  * from each node to each node in the system), and should also prefer nodes | 
 |  * with no CPUs, since presumably they'll have very little allocation pressure | 
 |  * on them otherwise. | 
 |  * It returns -1 if no node is found. | 
 |  */ | 
 | static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) | 
 | { | 
 | 	int n, val; | 
 | 	int min_val = INT_MAX; | 
 | 	int best_node = -1; | 
 |  | 
 | 	/* Use the local node if we haven't already */ | 
 | 	if (!node_isset(node, *used_node_mask)) { | 
 | 		node_set(node, *used_node_mask); | 
 | 		return node; | 
 | 	} | 
 |  | 
 | 	for_each_online_node(n) { | 
 | 		cpumask_t tmp; | 
 |  | 
 | 		/* Don't want a node to appear more than once */ | 
 | 		if (node_isset(n, *used_node_mask)) | 
 | 			continue; | 
 |  | 
 | 		/* Use the distance array to find the distance */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		/* Penalize nodes under us ("prefer the next node") */ | 
 | 		val += (n < node); | 
 |  | 
 | 		/* Give preference to headless and unused nodes */ | 
 | 		tmp = node_to_cpumask(n); | 
 | 		if (!cpus_empty(tmp)) | 
 | 			val += PENALTY_FOR_NODE_WITH_CPUS; | 
 |  | 
 | 		/* Slight preference for less loaded node */ | 
 | 		val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
 | 		val += node_load[n]; | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (best_node >= 0) | 
 | 		node_set(best_node, *used_node_mask); | 
 |  | 
 | 	return best_node; | 
 | } | 
 |  | 
 | static void __meminit build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int i, j, k, node, local_node; | 
 | 	int prev_node, load; | 
 | 	struct zonelist *zonelist; | 
 | 	nodemask_t used_mask; | 
 |  | 
 | 	/* initialize zonelists */ | 
 | 	for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 		zonelist = pgdat->node_zonelists + i; | 
 | 		zonelist->zones[0] = NULL; | 
 | 	} | 
 |  | 
 | 	/* NUMA-aware ordering of nodes */ | 
 | 	local_node = pgdat->node_id; | 
 | 	load = num_online_nodes(); | 
 | 	prev_node = local_node; | 
 | 	nodes_clear(used_mask); | 
 | 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
 | 		int distance = node_distance(local_node, node); | 
 |  | 
 | 		/* | 
 | 		 * If another node is sufficiently far away then it is better | 
 | 		 * to reclaim pages in a zone before going off node. | 
 | 		 */ | 
 | 		if (distance > RECLAIM_DISTANCE) | 
 | 			zone_reclaim_mode = 1; | 
 |  | 
 | 		/* | 
 | 		 * We don't want to pressure a particular node. | 
 | 		 * So adding penalty to the first node in same | 
 | 		 * distance group to make it round-robin. | 
 | 		 */ | 
 |  | 
 | 		if (distance != node_distance(local_node, prev_node)) | 
 | 			node_load[node] += load; | 
 | 		prev_node = node; | 
 | 		load--; | 
 | 		for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 			zonelist = pgdat->node_zonelists + i; | 
 | 			for (j = 0; zonelist->zones[j] != NULL; j++); | 
 |  | 
 | 			k = highest_zone(i); | 
 |  | 
 | 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 			zonelist->zones[j] = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* CONFIG_NUMA */ | 
 |  | 
 | static void __meminit build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int i, j, k, node, local_node; | 
 |  | 
 | 	local_node = pgdat->node_id; | 
 | 	for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 		struct zonelist *zonelist; | 
 |  | 
 | 		zonelist = pgdat->node_zonelists + i; | 
 |  | 
 | 		j = 0; | 
 | 		k = highest_zone(i); | 
 |  		j = build_zonelists_node(pgdat, zonelist, j, k); | 
 |  		/* | 
 |  		 * Now we build the zonelist so that it contains the zones | 
 |  		 * of all the other nodes. | 
 |  		 * We don't want to pressure a particular node, so when | 
 |  		 * building the zones for node N, we make sure that the | 
 |  		 * zones coming right after the local ones are those from | 
 |  		 * node N+1 (modulo N) | 
 |  		 */ | 
 | 		for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
 | 			if (!node_online(node)) | 
 | 				continue; | 
 | 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 		} | 
 | 		for (node = 0; node < local_node; node++) { | 
 | 			if (!node_online(node)) | 
 | 				continue; | 
 | 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 		} | 
 |  | 
 | 		zonelist->zones[j] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | /* return values int ....just for stop_machine_run() */ | 
 | static int __meminit __build_all_zonelists(void *dummy) | 
 | { | 
 | 	int nid; | 
 | 	for_each_online_node(nid) | 
 | 		build_zonelists(NODE_DATA(nid)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __meminit build_all_zonelists(void) | 
 | { | 
 | 	if (system_state == SYSTEM_BOOTING) { | 
 | 		__build_all_zonelists(0); | 
 | 		cpuset_init_current_mems_allowed(); | 
 | 	} else { | 
 | 		/* we have to stop all cpus to guaranntee there is no user | 
 | 		   of zonelist */ | 
 | 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); | 
 | 		/* cpuset refresh routine should be here */ | 
 | 	} | 
 | 	vm_total_pages = nr_free_pagecache_pages(); | 
 | 	printk("Built %i zonelists.  Total pages: %ld\n", | 
 | 			num_online_nodes(), vm_total_pages); | 
 | } | 
 |  | 
 | /* | 
 |  * Helper functions to size the waitqueue hash table. | 
 |  * Essentially these want to choose hash table sizes sufficiently | 
 |  * large so that collisions trying to wait on pages are rare. | 
 |  * But in fact, the number of active page waitqueues on typical | 
 |  * systems is ridiculously low, less than 200. So this is even | 
 |  * conservative, even though it seems large. | 
 |  * | 
 |  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 
 |  * waitqueues, i.e. the size of the waitq table given the number of pages. | 
 |  */ | 
 | #define PAGES_PER_WAITQUEUE	256 | 
 |  | 
 | #ifndef CONFIG_MEMORY_HOTPLUG | 
 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
 | { | 
 | 	unsigned long size = 1; | 
 |  | 
 | 	pages /= PAGES_PER_WAITQUEUE; | 
 |  | 
 | 	while (size < pages) | 
 | 		size <<= 1; | 
 |  | 
 | 	/* | 
 | 	 * Once we have dozens or even hundreds of threads sleeping | 
 | 	 * on IO we've got bigger problems than wait queue collision. | 
 | 	 * Limit the size of the wait table to a reasonable size. | 
 | 	 */ | 
 | 	size = min(size, 4096UL); | 
 |  | 
 | 	return max(size, 4UL); | 
 | } | 
 | #else | 
 | /* | 
 |  * A zone's size might be changed by hot-add, so it is not possible to determine | 
 |  * a suitable size for its wait_table.  So we use the maximum size now. | 
 |  * | 
 |  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie: | 
 |  * | 
 |  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte. | 
 |  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | 
 |  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte. | 
 |  * | 
 |  * The maximum entries are prepared when a zone's memory is (512K + 256) pages | 
 |  * or more by the traditional way. (See above).  It equals: | 
 |  * | 
 |  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte. | 
 |  *    ia64(16K page size)                 : =  ( 8G + 4M)byte. | 
 |  *    powerpc (64K page size)             : =  (32G +16M)byte. | 
 |  */ | 
 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
 | { | 
 | 	return 4096UL; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This is an integer logarithm so that shifts can be used later | 
 |  * to extract the more random high bits from the multiplicative | 
 |  * hash function before the remainder is taken. | 
 |  */ | 
 | static inline unsigned long wait_table_bits(unsigned long size) | 
 | { | 
 | 	return ffz(~size); | 
 | } | 
 |  | 
 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | 
 |  | 
 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | 
 | 		unsigned long *zones_size, unsigned long *zholes_size) | 
 | { | 
 | 	unsigned long realtotalpages, totalpages = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		totalpages += zones_size[i]; | 
 | 	pgdat->node_spanned_pages = totalpages; | 
 |  | 
 | 	realtotalpages = totalpages; | 
 | 	if (zholes_size) | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 			realtotalpages -= zholes_size[i]; | 
 | 	pgdat->node_present_pages = realtotalpages; | 
 | 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Initially all pages are reserved - free ones are freed | 
 |  * up by free_all_bootmem() once the early boot process is | 
 |  * done. Non-atomic initialization, single-pass. | 
 |  */ | 
 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
 | 		unsigned long start_pfn) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long end_pfn = start_pfn + size; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 		if (!early_pfn_valid(pfn)) | 
 | 			continue; | 
 | 		page = pfn_to_page(pfn); | 
 | 		set_page_links(page, zone, nid, pfn); | 
 | 		init_page_count(page); | 
 | 		reset_page_mapcount(page); | 
 | 		SetPageReserved(page); | 
 | 		INIT_LIST_HEAD(&page->lru); | 
 | #ifdef WANT_PAGE_VIRTUAL | 
 | 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
 | 		if (!is_highmem_idx(zone)) | 
 | 			set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | 
 | 				unsigned long size) | 
 | { | 
 | 	int order; | 
 | 	for (order = 0; order < MAX_ORDER ; order++) { | 
 | 		INIT_LIST_HEAD(&zone->free_area[order].free_list); | 
 | 		zone->free_area[order].nr_free = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr) | 
 | void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, | 
 | 		unsigned long size) | 
 | { | 
 | 	unsigned long snum = pfn_to_section_nr(pfn); | 
 | 	unsigned long end = pfn_to_section_nr(pfn + size); | 
 |  | 
 | 	if (FLAGS_HAS_NODE) | 
 | 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone; | 
 | 	else | 
 | 		for (; snum <= end; snum++) | 
 | 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone; | 
 | } | 
 |  | 
 | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
 | #define memmap_init(size, nid, zone, start_pfn) \ | 
 | 	memmap_init_zone((size), (nid), (zone), (start_pfn)) | 
 | #endif | 
 |  | 
 | static int __cpuinit zone_batchsize(struct zone *zone) | 
 | { | 
 | 	int batch; | 
 |  | 
 | 	/* | 
 | 	 * The per-cpu-pages pools are set to around 1000th of the | 
 | 	 * size of the zone.  But no more than 1/2 of a meg. | 
 | 	 * | 
 | 	 * OK, so we don't know how big the cache is.  So guess. | 
 | 	 */ | 
 | 	batch = zone->present_pages / 1024; | 
 | 	if (batch * PAGE_SIZE > 512 * 1024) | 
 | 		batch = (512 * 1024) / PAGE_SIZE; | 
 | 	batch /= 4;		/* We effectively *= 4 below */ | 
 | 	if (batch < 1) | 
 | 		batch = 1; | 
 |  | 
 | 	/* | 
 | 	 * Clamp the batch to a 2^n - 1 value. Having a power | 
 | 	 * of 2 value was found to be more likely to have | 
 | 	 * suboptimal cache aliasing properties in some cases. | 
 | 	 * | 
 | 	 * For example if 2 tasks are alternately allocating | 
 | 	 * batches of pages, one task can end up with a lot | 
 | 	 * of pages of one half of the possible page colors | 
 | 	 * and the other with pages of the other colors. | 
 | 	 */ | 
 | 	batch = (1 << (fls(batch + batch/2)-1)) - 1; | 
 |  | 
 | 	return batch; | 
 | } | 
 |  | 
 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
 | { | 
 | 	struct per_cpu_pages *pcp; | 
 |  | 
 | 	memset(p, 0, sizeof(*p)); | 
 |  | 
 | 	pcp = &p->pcp[0];		/* hot */ | 
 | 	pcp->count = 0; | 
 | 	pcp->high = 6 * batch; | 
 | 	pcp->batch = max(1UL, 1 * batch); | 
 | 	INIT_LIST_HEAD(&pcp->list); | 
 |  | 
 | 	pcp = &p->pcp[1];		/* cold*/ | 
 | 	pcp->count = 0; | 
 | 	pcp->high = 2 * batch; | 
 | 	pcp->batch = max(1UL, batch/2); | 
 | 	INIT_LIST_HEAD(&pcp->list); | 
 | } | 
 |  | 
 | /* | 
 |  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | 
 |  * to the value high for the pageset p. | 
 |  */ | 
 |  | 
 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | 
 | 				unsigned long high) | 
 | { | 
 | 	struct per_cpu_pages *pcp; | 
 |  | 
 | 	pcp = &p->pcp[0]; /* hot list */ | 
 | 	pcp->high = high; | 
 | 	pcp->batch = max(1UL, high/4); | 
 | 	if ((high/4) > (PAGE_SHIFT * 8)) | 
 | 		pcp->batch = PAGE_SHIFT * 8; | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Boot pageset table. One per cpu which is going to be used for all | 
 |  * zones and all nodes. The parameters will be set in such a way | 
 |  * that an item put on a list will immediately be handed over to | 
 |  * the buddy list. This is safe since pageset manipulation is done | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * Some NUMA counter updates may also be caught by the boot pagesets. | 
 |  * | 
 |  * The boot_pagesets must be kept even after bootup is complete for | 
 |  * unused processors and/or zones. They do play a role for bootstrapping | 
 |  * hotplugged processors. | 
 |  * | 
 |  * zoneinfo_show() and maybe other functions do | 
 |  * not check if the processor is online before following the pageset pointer. | 
 |  * Other parts of the kernel may not check if the zone is available. | 
 |  */ | 
 | static struct per_cpu_pageset boot_pageset[NR_CPUS]; | 
 |  | 
 | /* | 
 |  * Dynamically allocate memory for the | 
 |  * per cpu pageset array in struct zone. | 
 |  */ | 
 | static int __cpuinit process_zones(int cpu) | 
 | { | 
 | 	struct zone *zone, *dzone; | 
 |  | 
 | 	for_each_zone(zone) { | 
 |  | 
 | 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), | 
 | 					 GFP_KERNEL, cpu_to_node(cpu)); | 
 | 		if (!zone_pcp(zone, cpu)) | 
 | 			goto bad; | 
 |  | 
 | 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); | 
 |  | 
 | 		if (percpu_pagelist_fraction) | 
 | 			setup_pagelist_highmark(zone_pcp(zone, cpu), | 
 | 			 	(zone->present_pages / percpu_pagelist_fraction)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | bad: | 
 | 	for_each_zone(dzone) { | 
 | 		if (dzone == zone) | 
 | 			break; | 
 | 		kfree(zone_pcp(dzone, cpu)); | 
 | 		zone_pcp(dzone, cpu) = NULL; | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static inline void free_zone_pagesets(int cpu) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu); | 
 |  | 
 | 		zone_pcp(zone, cpu) = NULL; | 
 | 		kfree(pset); | 
 | 	} | 
 | } | 
 |  | 
 | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, | 
 | 		unsigned long action, | 
 | 		void *hcpu) | 
 | { | 
 | 	int cpu = (long)hcpu; | 
 | 	int ret = NOTIFY_OK; | 
 |  | 
 | 	switch (action) { | 
 | 		case CPU_UP_PREPARE: | 
 | 			if (process_zones(cpu)) | 
 | 				ret = NOTIFY_BAD; | 
 | 			break; | 
 | 		case CPU_UP_CANCELED: | 
 | 		case CPU_DEAD: | 
 | 			free_zone_pagesets(cpu); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata pageset_notifier = | 
 | 	{ &pageset_cpuup_callback, NULL, 0 }; | 
 |  | 
 | void __init setup_per_cpu_pageset(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* Initialize per_cpu_pageset for cpu 0. | 
 | 	 * A cpuup callback will do this for every cpu | 
 | 	 * as it comes online | 
 | 	 */ | 
 | 	err = process_zones(smp_processor_id()); | 
 | 	BUG_ON(err); | 
 | 	register_cpu_notifier(&pageset_notifier); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static __meminit | 
 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) | 
 | { | 
 | 	int i; | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	size_t alloc_size; | 
 |  | 
 | 	/* | 
 | 	 * The per-page waitqueue mechanism uses hashed waitqueues | 
 | 	 * per zone. | 
 | 	 */ | 
 | 	zone->wait_table_hash_nr_entries = | 
 | 		 wait_table_hash_nr_entries(zone_size_pages); | 
 | 	zone->wait_table_bits = | 
 | 		wait_table_bits(zone->wait_table_hash_nr_entries); | 
 | 	alloc_size = zone->wait_table_hash_nr_entries | 
 | 					* sizeof(wait_queue_head_t); | 
 |  | 
 |  	if (system_state == SYSTEM_BOOTING) { | 
 | 		zone->wait_table = (wait_queue_head_t *) | 
 | 			alloc_bootmem_node(pgdat, alloc_size); | 
 | 	} else { | 
 | 		/* | 
 | 		 * This case means that a zone whose size was 0 gets new memory | 
 | 		 * via memory hot-add. | 
 | 		 * But it may be the case that a new node was hot-added.  In | 
 | 		 * this case vmalloc() will not be able to use this new node's | 
 | 		 * memory - this wait_table must be initialized to use this new | 
 | 		 * node itself as well. | 
 | 		 * To use this new node's memory, further consideration will be | 
 | 		 * necessary. | 
 | 		 */ | 
 | 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); | 
 | 	} | 
 | 	if (!zone->wait_table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) | 
 | 		init_waitqueue_head(zone->wait_table + i); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __meminit void zone_pcp_init(struct zone *zone) | 
 | { | 
 | 	int cpu; | 
 | 	unsigned long batch = zone_batchsize(zone); | 
 |  | 
 | 	for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | #ifdef CONFIG_NUMA | 
 | 		/* Early boot. Slab allocator not functional yet */ | 
 | 		zone_pcp(zone, cpu) = &boot_pageset[cpu]; | 
 | 		setup_pageset(&boot_pageset[cpu],0); | 
 | #else | 
 | 		setup_pageset(zone_pcp(zone,cpu), batch); | 
 | #endif | 
 | 	} | 
 | 	if (zone->present_pages) | 
 | 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n", | 
 | 			zone->name, zone->present_pages, batch); | 
 | } | 
 |  | 
 | __meminit int init_currently_empty_zone(struct zone *zone, | 
 | 					unsigned long zone_start_pfn, | 
 | 					unsigned long size) | 
 | { | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	int ret; | 
 | 	ret = zone_wait_table_init(zone, size); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	pgdat->nr_zones = zone_idx(zone) + 1; | 
 |  | 
 | 	zone->zone_start_pfn = zone_start_pfn; | 
 |  | 
 | 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); | 
 |  | 
 | 	zone_init_free_lists(pgdat, zone, zone->spanned_pages); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the zone data structures: | 
 |  *   - mark all pages reserved | 
 |  *   - mark all memory queues empty | 
 |  *   - clear the memory bitmaps | 
 |  */ | 
 | static void __meminit free_area_init_core(struct pglist_data *pgdat, | 
 | 		unsigned long *zones_size, unsigned long *zholes_size) | 
 | { | 
 | 	unsigned long j; | 
 | 	int nid = pgdat->node_id; | 
 | 	unsigned long zone_start_pfn = pgdat->node_start_pfn; | 
 | 	int ret; | 
 |  | 
 | 	pgdat_resize_init(pgdat); | 
 | 	pgdat->nr_zones = 0; | 
 | 	init_waitqueue_head(&pgdat->kswapd_wait); | 
 | 	pgdat->kswapd_max_order = 0; | 
 | 	 | 
 | 	for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 		struct zone *zone = pgdat->node_zones + j; | 
 | 		unsigned long size, realsize; | 
 |  | 
 | 		realsize = size = zones_size[j]; | 
 | 		if (zholes_size) | 
 | 			realsize -= zholes_size[j]; | 
 |  | 
 | 		if (j < ZONE_HIGHMEM) | 
 | 			nr_kernel_pages += realsize; | 
 | 		nr_all_pages += realsize; | 
 |  | 
 | 		zone->spanned_pages = size; | 
 | 		zone->present_pages = realsize; | 
 | #ifdef CONFIG_NUMA | 
 | 		zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio) | 
 | 						/ 100; | 
 | #endif | 
 | 		zone->name = zone_names[j]; | 
 | 		spin_lock_init(&zone->lock); | 
 | 		spin_lock_init(&zone->lru_lock); | 
 | 		zone_seqlock_init(zone); | 
 | 		zone->zone_pgdat = pgdat; | 
 | 		zone->free_pages = 0; | 
 |  | 
 | 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | 
 |  | 
 | 		zone_pcp_init(zone); | 
 | 		INIT_LIST_HEAD(&zone->active_list); | 
 | 		INIT_LIST_HEAD(&zone->inactive_list); | 
 | 		zone->nr_scan_active = 0; | 
 | 		zone->nr_scan_inactive = 0; | 
 | 		zone->nr_active = 0; | 
 | 		zone->nr_inactive = 0; | 
 | 		zap_zone_vm_stats(zone); | 
 | 		atomic_set(&zone->reclaim_in_progress, 0); | 
 | 		if (!size) | 
 | 			continue; | 
 |  | 
 | 		zonetable_add(zone, nid, j, zone_start_pfn, size); | 
 | 		ret = init_currently_empty_zone(zone, zone_start_pfn, size); | 
 | 		BUG_ON(ret); | 
 | 		zone_start_pfn += size; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 
 | { | 
 | 	/* Skip empty nodes */ | 
 | 	if (!pgdat->node_spanned_pages) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
 | 	/* ia64 gets its own node_mem_map, before this, without bootmem */ | 
 | 	if (!pgdat->node_mem_map) { | 
 | 		unsigned long size, start, end; | 
 | 		struct page *map; | 
 |  | 
 | 		/* | 
 | 		 * The zone's endpoints aren't required to be MAX_ORDER | 
 | 		 * aligned but the node_mem_map endpoints must be in order | 
 | 		 * for the buddy allocator to function correctly. | 
 | 		 */ | 
 | 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
 | 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | 
 | 		end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
 | 		size =  (end - start) * sizeof(struct page); | 
 | 		map = alloc_remap(pgdat->node_id, size); | 
 | 		if (!map) | 
 | 			map = alloc_bootmem_node(pgdat, size); | 
 | 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); | 
 | 	} | 
 | #ifdef CONFIG_FLATMEM | 
 | 	/* | 
 | 	 * With no DISCONTIG, the global mem_map is just set as node 0's | 
 | 	 */ | 
 | 	if (pgdat == NODE_DATA(0)) | 
 | 		mem_map = NODE_DATA(0)->node_mem_map; | 
 | #endif | 
 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
 | } | 
 |  | 
 | void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, | 
 | 		unsigned long *zones_size, unsigned long node_start_pfn, | 
 | 		unsigned long *zholes_size) | 
 | { | 
 | 	pgdat->node_id = nid; | 
 | 	pgdat->node_start_pfn = node_start_pfn; | 
 | 	calculate_zone_totalpages(pgdat, zones_size, zholes_size); | 
 |  | 
 | 	alloc_node_mem_map(pgdat); | 
 |  | 
 | 	free_area_init_core(pgdat, zones_size, zholes_size); | 
 | } | 
 |  | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | static bootmem_data_t contig_bootmem_data; | 
 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | 
 |  | 
 | EXPORT_SYMBOL(contig_page_data); | 
 | #endif | 
 |  | 
 | void __init free_area_init(unsigned long *zones_size) | 
 | { | 
 | 	free_area_init_node(0, NODE_DATA(0), zones_size, | 
 | 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static int page_alloc_cpu_notify(struct notifier_block *self, | 
 | 				 unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (unsigned long)hcpu; | 
 |  | 
 | 	if (action == CPU_DEAD) { | 
 | 		local_irq_disable(); | 
 | 		__drain_pages(cpu); | 
 | 		vm_events_fold_cpu(cpu); | 
 | 		local_irq_enable(); | 
 | 		refresh_cpu_vm_stats(cpu); | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | void __init page_alloc_init(void) | 
 | { | 
 | 	hotcpu_notifier(page_alloc_cpu_notify, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | 
 |  *	or min_free_kbytes changes. | 
 |  */ | 
 | static void calculate_totalreserve_pages(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	unsigned long reserve_pages = 0; | 
 | 	int i, j; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 			struct zone *zone = pgdat->node_zones + i; | 
 | 			unsigned long max = 0; | 
 |  | 
 | 			/* Find valid and maximum lowmem_reserve in the zone */ | 
 | 			for (j = i; j < MAX_NR_ZONES; j++) { | 
 | 				if (zone->lowmem_reserve[j] > max) | 
 | 					max = zone->lowmem_reserve[j]; | 
 | 			} | 
 |  | 
 | 			/* we treat pages_high as reserved pages. */ | 
 | 			max += zone->pages_high; | 
 |  | 
 | 			if (max > zone->present_pages) | 
 | 				max = zone->present_pages; | 
 | 			reserve_pages += max; | 
 | 		} | 
 | 	} | 
 | 	totalreserve_pages = reserve_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * setup_per_zone_lowmem_reserve - called whenever | 
 |  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone | 
 |  *	has a correct pages reserved value, so an adequate number of | 
 |  *	pages are left in the zone after a successful __alloc_pages(). | 
 |  */ | 
 | static void setup_per_zone_lowmem_reserve(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	int j, idx; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 			struct zone *zone = pgdat->node_zones + j; | 
 | 			unsigned long present_pages = zone->present_pages; | 
 |  | 
 | 			zone->lowmem_reserve[j] = 0; | 
 |  | 
 | 			for (idx = j-1; idx >= 0; idx--) { | 
 | 				struct zone *lower_zone; | 
 |  | 
 | 				if (sysctl_lowmem_reserve_ratio[idx] < 1) | 
 | 					sysctl_lowmem_reserve_ratio[idx] = 1; | 
 |  | 
 | 				lower_zone = pgdat->node_zones + idx; | 
 | 				lower_zone->lowmem_reserve[j] = present_pages / | 
 | 					sysctl_lowmem_reserve_ratio[idx]; | 
 | 				present_pages += lower_zone->present_pages; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | /* | 
 |  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures  | 
 |  *	that the pages_{min,low,high} values for each zone are set correctly  | 
 |  *	with respect to min_free_kbytes. | 
 |  */ | 
 | void setup_per_zone_pages_min(void) | 
 | { | 
 | 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
 | 	unsigned long lowmem_pages = 0; | 
 | 	struct zone *zone; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Calculate total number of !ZONE_HIGHMEM pages */ | 
 | 	for_each_zone(zone) { | 
 | 		if (!is_highmem(zone)) | 
 | 			lowmem_pages += zone->present_pages; | 
 | 	} | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		u64 tmp; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		tmp = (u64)pages_min * zone->present_pages; | 
 | 		do_div(tmp, lowmem_pages); | 
 | 		if (is_highmem(zone)) { | 
 | 			/* | 
 | 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
 | 			 * need highmem pages, so cap pages_min to a small | 
 | 			 * value here. | 
 | 			 * | 
 | 			 * The (pages_high-pages_low) and (pages_low-pages_min) | 
 | 			 * deltas controls asynch page reclaim, and so should | 
 | 			 * not be capped for highmem. | 
 | 			 */ | 
 | 			int min_pages; | 
 |  | 
 | 			min_pages = zone->present_pages / 1024; | 
 | 			if (min_pages < SWAP_CLUSTER_MAX) | 
 | 				min_pages = SWAP_CLUSTER_MAX; | 
 | 			if (min_pages > 128) | 
 | 				min_pages = 128; | 
 | 			zone->pages_min = min_pages; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If it's a lowmem zone, reserve a number of pages | 
 | 			 * proportionate to the zone's size. | 
 | 			 */ | 
 | 			zone->pages_min = tmp; | 
 | 		} | 
 |  | 
 | 		zone->pages_low   = zone->pages_min + (tmp >> 2); | 
 | 		zone->pages_high  = zone->pages_min + (tmp >> 1); | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise min_free_kbytes. | 
 |  * | 
 |  * For small machines we want it small (128k min).  For large machines | 
 |  * we want it large (64MB max).  But it is not linear, because network | 
 |  * bandwidth does not increase linearly with machine size.  We use | 
 |  * | 
 |  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
 |  *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
 |  * | 
 |  * which yields | 
 |  * | 
 |  * 16MB:	512k | 
 |  * 32MB:	724k | 
 |  * 64MB:	1024k | 
 |  * 128MB:	1448k | 
 |  * 256MB:	2048k | 
 |  * 512MB:	2896k | 
 |  * 1024MB:	4096k | 
 |  * 2048MB:	5792k | 
 |  * 4096MB:	8192k | 
 |  * 8192MB:	11584k | 
 |  * 16384MB:	16384k | 
 |  */ | 
 | static int __init init_per_zone_pages_min(void) | 
 | { | 
 | 	unsigned long lowmem_kbytes; | 
 |  | 
 | 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
 |  | 
 | 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
 | 	if (min_free_kbytes < 128) | 
 | 		min_free_kbytes = 128; | 
 | 	if (min_free_kbytes > 65536) | 
 | 		min_free_kbytes = 65536; | 
 | 	setup_per_zone_pages_min(); | 
 | 	setup_per_zone_lowmem_reserve(); | 
 | 	return 0; | 
 | } | 
 | module_init(init_per_zone_pages_min) | 
 |  | 
 | /* | 
 |  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so  | 
 |  *	that we can call two helper functions whenever min_free_kbytes | 
 |  *	changes. | 
 |  */ | 
 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write,  | 
 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec(table, write, file, buffer, length, ppos); | 
 | 	setup_per_zone_pages_min(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | 
 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		zone->min_unmapped_ratio = (zone->present_pages * | 
 | 				sysctl_min_unmapped_ratio) / 100; | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
 |  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
 |  *	whenever sysctl_lowmem_reserve_ratio changes. | 
 |  * | 
 |  * The reserve ratio obviously has absolutely no relation with the | 
 |  * pages_min watermarks. The lowmem reserve ratio can only make sense | 
 |  * if in function of the boot time zone sizes. | 
 |  */ | 
 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | 
 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
 | 	setup_per_zone_lowmem_reserve(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
 |  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist | 
 |  * can have before it gets flushed back to buddy allocator. | 
 |  */ | 
 |  | 
 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | 
 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned int cpu; | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
 | 	if (!write || (ret == -EINVAL)) | 
 | 		return ret; | 
 | 	for_each_zone(zone) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			unsigned long  high; | 
 | 			high = zone->present_pages / percpu_pagelist_fraction; | 
 | 			setup_pagelist_highmark(zone_pcp(zone, cpu), high); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initdata int hashdist = HASHDIST_DEFAULT; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int __init set_hashdist(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	hashdist = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("hashdist=", set_hashdist); | 
 | #endif | 
 |  | 
 | /* | 
 |  * allocate a large system hash table from bootmem | 
 |  * - it is assumed that the hash table must contain an exact power-of-2 | 
 |  *   quantity of entries | 
 |  * - limit is the number of hash buckets, not the total allocation size | 
 |  */ | 
 | void *__init alloc_large_system_hash(const char *tablename, | 
 | 				     unsigned long bucketsize, | 
 | 				     unsigned long numentries, | 
 | 				     int scale, | 
 | 				     int flags, | 
 | 				     unsigned int *_hash_shift, | 
 | 				     unsigned int *_hash_mask, | 
 | 				     unsigned long limit) | 
 | { | 
 | 	unsigned long long max = limit; | 
 | 	unsigned long log2qty, size; | 
 | 	void *table = NULL; | 
 |  | 
 | 	/* allow the kernel cmdline to have a say */ | 
 | 	if (!numentries) { | 
 | 		/* round applicable memory size up to nearest megabyte */ | 
 | 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | 
 | 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | 
 | 		numentries >>= 20 - PAGE_SHIFT; | 
 | 		numentries <<= 20 - PAGE_SHIFT; | 
 |  | 
 | 		/* limit to 1 bucket per 2^scale bytes of low memory */ | 
 | 		if (scale > PAGE_SHIFT) | 
 | 			numentries >>= (scale - PAGE_SHIFT); | 
 | 		else | 
 | 			numentries <<= (PAGE_SHIFT - scale); | 
 | 	} | 
 | 	numentries = roundup_pow_of_two(numentries); | 
 |  | 
 | 	/* limit allocation size to 1/16 total memory by default */ | 
 | 	if (max == 0) { | 
 | 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
 | 		do_div(max, bucketsize); | 
 | 	} | 
 |  | 
 | 	if (numentries > max) | 
 | 		numentries = max; | 
 |  | 
 | 	log2qty = long_log2(numentries); | 
 |  | 
 | 	do { | 
 | 		size = bucketsize << log2qty; | 
 | 		if (flags & HASH_EARLY) | 
 | 			table = alloc_bootmem(size); | 
 | 		else if (hashdist) | 
 | 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 
 | 		else { | 
 | 			unsigned long order; | 
 | 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | 
 | 				; | 
 | 			table = (void*) __get_free_pages(GFP_ATOMIC, order); | 
 | 		} | 
 | 	} while (!table && size > PAGE_SIZE && --log2qty); | 
 |  | 
 | 	if (!table) | 
 | 		panic("Failed to allocate %s hash table\n", tablename); | 
 |  | 
 | 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | 
 | 	       tablename, | 
 | 	       (1U << log2qty), | 
 | 	       long_log2(size) - PAGE_SHIFT, | 
 | 	       size); | 
 |  | 
 | 	if (_hash_shift) | 
 | 		*_hash_shift = log2qty; | 
 | 	if (_hash_mask) | 
 | 		*_hash_mask = (1 << log2qty) - 1; | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE | 
 | struct page *pfn_to_page(unsigned long pfn) | 
 | { | 
 | 	return __pfn_to_page(pfn); | 
 | } | 
 | unsigned long page_to_pfn(struct page *page) | 
 | { | 
 | 	return __page_to_pfn(page); | 
 | } | 
 | EXPORT_SYMBOL(pfn_to_page); | 
 | EXPORT_SYMBOL(page_to_pfn); | 
 | #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ |