|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* Network filesystem high-level read support. | 
|  | * | 
|  | * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells ([email protected]) | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Clear the unread part of an I/O request. | 
|  | */ | 
|  | static void netfs_clear_unread(struct netfs_io_subrequest *subreq) | 
|  | { | 
|  | struct iov_iter iter; | 
|  |  | 
|  | iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages, | 
|  | subreq->start + subreq->transferred, | 
|  | subreq->len   - subreq->transferred); | 
|  | iov_iter_zero(iov_iter_count(&iter), &iter); | 
|  | } | 
|  |  | 
|  | static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, | 
|  | bool was_async) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq = priv; | 
|  |  | 
|  | netfs_subreq_terminated(subreq, transferred_or_error, was_async); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issue a read against the cache. | 
|  | * - Eats the caller's ref on subreq. | 
|  | */ | 
|  | static void netfs_read_from_cache(struct netfs_io_request *rreq, | 
|  | struct netfs_io_subrequest *subreq, | 
|  | enum netfs_read_from_hole read_hole) | 
|  | { | 
|  | struct netfs_cache_resources *cres = &rreq->cache_resources; | 
|  | struct iov_iter iter; | 
|  |  | 
|  | netfs_stat(&netfs_n_rh_read); | 
|  | iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, | 
|  | subreq->start + subreq->transferred, | 
|  | subreq->len   - subreq->transferred); | 
|  |  | 
|  | cres->ops->read(cres, subreq->start, &iter, read_hole, | 
|  | netfs_cache_read_terminated, subreq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill a subrequest region with zeroes. | 
|  | */ | 
|  | static void netfs_fill_with_zeroes(struct netfs_io_request *rreq, | 
|  | struct netfs_io_subrequest *subreq) | 
|  | { | 
|  | netfs_stat(&netfs_n_rh_zero); | 
|  | __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); | 
|  | netfs_subreq_terminated(subreq, 0, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ask the netfs to issue a read request to the server for us. | 
|  | * | 
|  | * The netfs is expected to read from subreq->pos + subreq->transferred to | 
|  | * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the | 
|  | * buffer prior to the transferred point as it might clobber dirty data | 
|  | * obtained from the cache. | 
|  | * | 
|  | * Alternatively, the netfs is allowed to indicate one of two things: | 
|  | * | 
|  | * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and | 
|  | *   make progress. | 
|  | * | 
|  | * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be | 
|  | *   cleared. | 
|  | */ | 
|  | static void netfs_read_from_server(struct netfs_io_request *rreq, | 
|  | struct netfs_io_subrequest *subreq) | 
|  | { | 
|  | netfs_stat(&netfs_n_rh_download); | 
|  | rreq->netfs_ops->issue_read(subreq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release those waiting. | 
|  | */ | 
|  | static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async) | 
|  | { | 
|  | trace_netfs_rreq(rreq, netfs_rreq_trace_done); | 
|  | netfs_clear_subrequests(rreq, was_async); | 
|  | netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deal with the completion of writing the data to the cache.  We have to clear | 
|  | * the PG_fscache bits on the folios involved and release the caller's ref. | 
|  | * | 
|  | * May be called in softirq mode and we inherit a ref from the caller. | 
|  | */ | 
|  | static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq, | 
|  | bool was_async) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq; | 
|  | struct folio *folio; | 
|  | pgoff_t unlocked = 0; | 
|  | bool have_unlocked = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { | 
|  | XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); | 
|  |  | 
|  | xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) { | 
|  | /* We might have multiple writes from the same huge | 
|  | * folio, but we mustn't unlock a folio more than once. | 
|  | */ | 
|  | if (have_unlocked && folio_index(folio) <= unlocked) | 
|  | continue; | 
|  | unlocked = folio_index(folio); | 
|  | folio_end_fscache(folio); | 
|  | have_unlocked = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | netfs_rreq_completed(rreq, was_async); | 
|  | } | 
|  |  | 
|  | static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, | 
|  | bool was_async) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq = priv; | 
|  | struct netfs_io_request *rreq = subreq->rreq; | 
|  |  | 
|  | if (IS_ERR_VALUE(transferred_or_error)) { | 
|  | netfs_stat(&netfs_n_rh_write_failed); | 
|  | trace_netfs_failure(rreq, subreq, transferred_or_error, | 
|  | netfs_fail_copy_to_cache); | 
|  | } else { | 
|  | netfs_stat(&netfs_n_rh_write_done); | 
|  | } | 
|  |  | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); | 
|  |  | 
|  | /* If we decrement nr_copy_ops to 0, the ref belongs to us. */ | 
|  | if (atomic_dec_and_test(&rreq->nr_copy_ops)) | 
|  | netfs_rreq_unmark_after_write(rreq, was_async); | 
|  |  | 
|  | netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform any outstanding writes to the cache.  We inherit a ref from the | 
|  | * caller. | 
|  | */ | 
|  | static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq) | 
|  | { | 
|  | struct netfs_cache_resources *cres = &rreq->cache_resources; | 
|  | struct netfs_io_subrequest *subreq, *next, *p; | 
|  | struct iov_iter iter; | 
|  | int ret; | 
|  |  | 
|  | trace_netfs_rreq(rreq, netfs_rreq_trace_copy); | 
|  |  | 
|  | /* We don't want terminating writes trying to wake us up whilst we're | 
|  | * still going through the list. | 
|  | */ | 
|  | atomic_inc(&rreq->nr_copy_ops); | 
|  |  | 
|  | list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { | 
|  | if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) { | 
|  | list_del_init(&subreq->rreq_link); | 
|  | netfs_put_subrequest(subreq, false, | 
|  | netfs_sreq_trace_put_no_copy); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { | 
|  | /* Amalgamate adjacent writes */ | 
|  | while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { | 
|  | next = list_next_entry(subreq, rreq_link); | 
|  | if (next->start != subreq->start + subreq->len) | 
|  | break; | 
|  | subreq->len += next->len; | 
|  | list_del_init(&next->rreq_link); | 
|  | netfs_put_subrequest(next, false, | 
|  | netfs_sreq_trace_put_merged); | 
|  | } | 
|  |  | 
|  | ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, | 
|  | rreq->i_size, true); | 
|  | if (ret < 0) { | 
|  | trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages, | 
|  | subreq->start, subreq->len); | 
|  |  | 
|  | atomic_inc(&rreq->nr_copy_ops); | 
|  | netfs_stat(&netfs_n_rh_write); | 
|  | netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache); | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_write); | 
|  | cres->ops->write(cres, subreq->start, &iter, | 
|  | netfs_rreq_copy_terminated, subreq); | 
|  | } | 
|  |  | 
|  | /* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */ | 
|  | if (atomic_dec_and_test(&rreq->nr_copy_ops)) | 
|  | netfs_rreq_unmark_after_write(rreq, false); | 
|  | } | 
|  |  | 
|  | static void netfs_rreq_write_to_cache_work(struct work_struct *work) | 
|  | { | 
|  | struct netfs_io_request *rreq = | 
|  | container_of(work, struct netfs_io_request, work); | 
|  |  | 
|  | netfs_rreq_do_write_to_cache(rreq); | 
|  | } | 
|  |  | 
|  | static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) | 
|  | { | 
|  | rreq->work.func = netfs_rreq_write_to_cache_work; | 
|  | if (!queue_work(system_unbound_wq, &rreq->work)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a short read. | 
|  | */ | 
|  | static void netfs_rreq_short_read(struct netfs_io_request *rreq, | 
|  | struct netfs_io_subrequest *subreq) | 
|  | { | 
|  | __clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); | 
|  | __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); | 
|  |  | 
|  | netfs_stat(&netfs_n_rh_short_read); | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); | 
|  |  | 
|  | netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read); | 
|  | atomic_inc(&rreq->nr_outstanding); | 
|  | if (subreq->source == NETFS_READ_FROM_CACHE) | 
|  | netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR); | 
|  | else | 
|  | netfs_read_from_server(rreq, subreq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resubmit any short or failed operations.  Returns true if we got the rreq | 
|  | * ref back. | 
|  | */ | 
|  | static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq; | 
|  |  | 
|  | WARN_ON(in_interrupt()); | 
|  |  | 
|  | trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); | 
|  |  | 
|  | /* We don't want terminating submissions trying to wake us up whilst | 
|  | * we're still going through the list. | 
|  | */ | 
|  | atomic_inc(&rreq->nr_outstanding); | 
|  |  | 
|  | __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); | 
|  | list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { | 
|  | if (subreq->error) { | 
|  | if (subreq->source != NETFS_READ_FROM_CACHE) | 
|  | break; | 
|  | subreq->source = NETFS_DOWNLOAD_FROM_SERVER; | 
|  | subreq->error = 0; | 
|  | netfs_stat(&netfs_n_rh_download_instead); | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); | 
|  | netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); | 
|  | atomic_inc(&rreq->nr_outstanding); | 
|  | netfs_read_from_server(rreq, subreq); | 
|  | } else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) { | 
|  | netfs_rreq_short_read(rreq, subreq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we decrement nr_outstanding to 0, the usage ref belongs to us. */ | 
|  | if (atomic_dec_and_test(&rreq->nr_outstanding)) | 
|  | return true; | 
|  |  | 
|  | wake_up_var(&rreq->nr_outstanding); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if the data read is still valid. | 
|  | */ | 
|  | static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq; | 
|  |  | 
|  | if (!rreq->netfs_ops->is_still_valid || | 
|  | rreq->netfs_ops->is_still_valid(rreq)) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { | 
|  | if (subreq->source == NETFS_READ_FROM_CACHE) { | 
|  | subreq->error = -ESTALE; | 
|  | __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assess the state of a read request and decide what to do next. | 
|  | * | 
|  | * Note that we could be in an ordinary kernel thread, on a workqueue or in | 
|  | * softirq context at this point.  We inherit a ref from the caller. | 
|  | */ | 
|  | static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async) | 
|  | { | 
|  | trace_netfs_rreq(rreq, netfs_rreq_trace_assess); | 
|  |  | 
|  | again: | 
|  | netfs_rreq_is_still_valid(rreq); | 
|  |  | 
|  | if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && | 
|  | test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { | 
|  | if (netfs_rreq_perform_resubmissions(rreq)) | 
|  | goto again; | 
|  | return; | 
|  | } | 
|  |  | 
|  | netfs_rreq_unlock_folios(rreq); | 
|  |  | 
|  | clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); | 
|  | wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); | 
|  |  | 
|  | if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags)) | 
|  | return netfs_rreq_write_to_cache(rreq); | 
|  |  | 
|  | netfs_rreq_completed(rreq, was_async); | 
|  | } | 
|  |  | 
|  | static void netfs_rreq_work(struct work_struct *work) | 
|  | { | 
|  | struct netfs_io_request *rreq = | 
|  | container_of(work, struct netfs_io_request, work); | 
|  | netfs_rreq_assess(rreq, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the completion of all outstanding I/O operations on a read request. | 
|  | * We inherit a ref from the caller. | 
|  | */ | 
|  | static void netfs_rreq_terminated(struct netfs_io_request *rreq, | 
|  | bool was_async) | 
|  | { | 
|  | if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && | 
|  | was_async) { | 
|  | if (!queue_work(system_unbound_wq, &rreq->work)) | 
|  | BUG(); | 
|  | } else { | 
|  | netfs_rreq_assess(rreq, was_async); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * netfs_subreq_terminated - Note the termination of an I/O operation. | 
|  | * @subreq: The I/O request that has terminated. | 
|  | * @transferred_or_error: The amount of data transferred or an error code. | 
|  | * @was_async: The termination was asynchronous | 
|  | * | 
|  | * This tells the read helper that a contributory I/O operation has terminated, | 
|  | * one way or another, and that it should integrate the results. | 
|  | * | 
|  | * The caller indicates in @transferred_or_error the outcome of the operation, | 
|  | * supplying a positive value to indicate the number of bytes transferred, 0 to | 
|  | * indicate a failure to transfer anything that should be retried or a negative | 
|  | * error code.  The helper will look after reissuing I/O operations as | 
|  | * appropriate and writing downloaded data to the cache. | 
|  | * | 
|  | * If @was_async is true, the caller might be running in softirq or interrupt | 
|  | * context and we can't sleep. | 
|  | */ | 
|  | void netfs_subreq_terminated(struct netfs_io_subrequest *subreq, | 
|  | ssize_t transferred_or_error, | 
|  | bool was_async) | 
|  | { | 
|  | struct netfs_io_request *rreq = subreq->rreq; | 
|  | int u; | 
|  |  | 
|  | _enter("[%u]{%llx,%lx},%zd", | 
|  | subreq->debug_index, subreq->start, subreq->flags, | 
|  | transferred_or_error); | 
|  |  | 
|  | switch (subreq->source) { | 
|  | case NETFS_READ_FROM_CACHE: | 
|  | netfs_stat(&netfs_n_rh_read_done); | 
|  | break; | 
|  | case NETFS_DOWNLOAD_FROM_SERVER: | 
|  | netfs_stat(&netfs_n_rh_download_done); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IS_ERR_VALUE(transferred_or_error)) { | 
|  | subreq->error = transferred_or_error; | 
|  | trace_netfs_failure(rreq, subreq, transferred_or_error, | 
|  | netfs_fail_read); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (WARN(transferred_or_error > subreq->len - subreq->transferred, | 
|  | "Subreq overread: R%x[%x] %zd > %zu - %zu", | 
|  | rreq->debug_id, subreq->debug_index, | 
|  | transferred_or_error, subreq->len, subreq->transferred)) | 
|  | transferred_or_error = subreq->len - subreq->transferred; | 
|  |  | 
|  | subreq->error = 0; | 
|  | subreq->transferred += transferred_or_error; | 
|  | if (subreq->transferred < subreq->len) | 
|  | goto incomplete; | 
|  |  | 
|  | complete: | 
|  | __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); | 
|  | if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) | 
|  | set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags); | 
|  |  | 
|  | out: | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); | 
|  |  | 
|  | /* If we decrement nr_outstanding to 0, the ref belongs to us. */ | 
|  | u = atomic_dec_return(&rreq->nr_outstanding); | 
|  | if (u == 0) | 
|  | netfs_rreq_terminated(rreq, was_async); | 
|  | else if (u == 1) | 
|  | wake_up_var(&rreq->nr_outstanding); | 
|  |  | 
|  | netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); | 
|  | return; | 
|  |  | 
|  | incomplete: | 
|  | if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { | 
|  | netfs_clear_unread(subreq); | 
|  | subreq->transferred = subreq->len; | 
|  | goto complete; | 
|  | } | 
|  |  | 
|  | if (transferred_or_error == 0) { | 
|  | if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { | 
|  | subreq->error = -ENODATA; | 
|  | goto failed; | 
|  | } | 
|  | } else { | 
|  | __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); | 
|  | } | 
|  |  | 
|  | __set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); | 
|  | set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); | 
|  | goto out; | 
|  |  | 
|  | failed: | 
|  | if (subreq->source == NETFS_READ_FROM_CACHE) { | 
|  | netfs_stat(&netfs_n_rh_read_failed); | 
|  | set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); | 
|  | } else { | 
|  | netfs_stat(&netfs_n_rh_download_failed); | 
|  | set_bit(NETFS_RREQ_FAILED, &rreq->flags); | 
|  | rreq->error = subreq->error; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(netfs_subreq_terminated); | 
|  |  | 
|  | static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq, | 
|  | loff_t i_size) | 
|  | { | 
|  | struct netfs_io_request *rreq = subreq->rreq; | 
|  | struct netfs_cache_resources *cres = &rreq->cache_resources; | 
|  |  | 
|  | if (cres->ops) | 
|  | return cres->ops->prepare_read(subreq, i_size); | 
|  | if (subreq->start >= rreq->i_size) | 
|  | return NETFS_FILL_WITH_ZEROES; | 
|  | return NETFS_DOWNLOAD_FROM_SERVER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work out what sort of subrequest the next one will be. | 
|  | */ | 
|  | static enum netfs_io_source | 
|  | netfs_rreq_prepare_read(struct netfs_io_request *rreq, | 
|  | struct netfs_io_subrequest *subreq) | 
|  | { | 
|  | enum netfs_io_source source; | 
|  |  | 
|  | _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); | 
|  |  | 
|  | source = netfs_cache_prepare_read(subreq, rreq->i_size); | 
|  | if (source == NETFS_INVALID_READ) | 
|  | goto out; | 
|  |  | 
|  | if (source == NETFS_DOWNLOAD_FROM_SERVER) { | 
|  | /* Call out to the netfs to let it shrink the request to fit | 
|  | * its own I/O sizes and boundaries.  If it shinks it here, it | 
|  | * will be called again to make simultaneous calls; if it wants | 
|  | * to make serial calls, it can indicate a short read and then | 
|  | * we will call it again. | 
|  | */ | 
|  | if (subreq->len > rreq->i_size - subreq->start) | 
|  | subreq->len = rreq->i_size - subreq->start; | 
|  |  | 
|  | if (rreq->netfs_ops->clamp_length && | 
|  | !rreq->netfs_ops->clamp_length(subreq)) { | 
|  | source = NETFS_INVALID_READ; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (WARN_ON(subreq->len == 0)) | 
|  | source = NETFS_INVALID_READ; | 
|  |  | 
|  | out: | 
|  | subreq->source = source; | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); | 
|  | return source; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slice off a piece of a read request and submit an I/O request for it. | 
|  | */ | 
|  | static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq, | 
|  | unsigned int *_debug_index) | 
|  | { | 
|  | struct netfs_io_subrequest *subreq; | 
|  | enum netfs_io_source source; | 
|  |  | 
|  | subreq = netfs_alloc_subrequest(rreq); | 
|  | if (!subreq) | 
|  | return false; | 
|  |  | 
|  | subreq->debug_index	= (*_debug_index)++; | 
|  | subreq->start		= rreq->start + rreq->submitted; | 
|  | subreq->len		= rreq->len   - rreq->submitted; | 
|  |  | 
|  | _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted); | 
|  | list_add_tail(&subreq->rreq_link, &rreq->subrequests); | 
|  |  | 
|  | /* Call out to the cache to find out what it can do with the remaining | 
|  | * subset.  It tells us in subreq->flags what it decided should be done | 
|  | * and adjusts subreq->len down if the subset crosses a cache boundary. | 
|  | * | 
|  | * Then when we hand the subset, it can choose to take a subset of that | 
|  | * (the starts must coincide), in which case, we go around the loop | 
|  | * again and ask it to download the next piece. | 
|  | */ | 
|  | source = netfs_rreq_prepare_read(rreq, subreq); | 
|  | if (source == NETFS_INVALID_READ) | 
|  | goto subreq_failed; | 
|  |  | 
|  | atomic_inc(&rreq->nr_outstanding); | 
|  |  | 
|  | rreq->submitted += subreq->len; | 
|  |  | 
|  | trace_netfs_sreq(subreq, netfs_sreq_trace_submit); | 
|  | switch (source) { | 
|  | case NETFS_FILL_WITH_ZEROES: | 
|  | netfs_fill_with_zeroes(rreq, subreq); | 
|  | break; | 
|  | case NETFS_DOWNLOAD_FROM_SERVER: | 
|  | netfs_read_from_server(rreq, subreq); | 
|  | break; | 
|  | case NETFS_READ_FROM_CACHE: | 
|  | netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | subreq_failed: | 
|  | rreq->error = subreq->error; | 
|  | netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Begin the process of reading in a chunk of data, where that data may be | 
|  | * stitched together from multiple sources, including multiple servers and the | 
|  | * local cache. | 
|  | */ | 
|  | int netfs_begin_read(struct netfs_io_request *rreq, bool sync) | 
|  | { | 
|  | unsigned int debug_index = 0; | 
|  | int ret; | 
|  |  | 
|  | _enter("R=%x %llx-%llx", | 
|  | rreq->debug_id, rreq->start, rreq->start + rreq->len - 1); | 
|  |  | 
|  | if (rreq->len == 0) { | 
|  | pr_err("Zero-sized read [R=%x]\n", rreq->debug_id); | 
|  | netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&rreq->work, netfs_rreq_work); | 
|  |  | 
|  | if (sync) | 
|  | netfs_get_request(rreq, netfs_rreq_trace_get_hold); | 
|  |  | 
|  | /* Chop the read into slices according to what the cache and the netfs | 
|  | * want and submit each one. | 
|  | */ | 
|  | atomic_set(&rreq->nr_outstanding, 1); | 
|  | do { | 
|  | if (!netfs_rreq_submit_slice(rreq, &debug_index)) | 
|  | break; | 
|  |  | 
|  | } while (rreq->submitted < rreq->len); | 
|  |  | 
|  | if (sync) { | 
|  | /* Keep nr_outstanding incremented so that the ref always belongs to | 
|  | * us, and the service code isn't punted off to a random thread pool to | 
|  | * process. | 
|  | */ | 
|  | for (;;) { | 
|  | wait_var_event(&rreq->nr_outstanding, | 
|  | atomic_read(&rreq->nr_outstanding) == 1); | 
|  | netfs_rreq_assess(rreq, false); | 
|  | if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | ret = rreq->error; | 
|  | if (ret == 0 && rreq->submitted < rreq->len) { | 
|  | trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read); | 
|  | ret = -EIO; | 
|  | } | 
|  | netfs_put_request(rreq, false, netfs_rreq_trace_put_hold); | 
|  | } else { | 
|  | /* If we decrement nr_outstanding to 0, the ref belongs to us. */ | 
|  | if (atomic_dec_and_test(&rreq->nr_outstanding)) | 
|  | netfs_rreq_assess(rreq, false); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } |