|  | /* | 
|  | * xHCI host controller driver | 
|  | * | 
|  | * Copyright (C) 2008 Intel Corp. | 
|  | * | 
|  | * Author: Sarah Sharp | 
|  | * Some code borrowed from the Linux EHCI driver. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/usb.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/dmapool.h> | 
|  |  | 
|  | #include "xhci.h" | 
|  |  | 
|  | /* | 
|  | * Allocates a generic ring segment from the ring pool, sets the dma address, | 
|  | * initializes the segment to zero, and sets the private next pointer to NULL. | 
|  | * | 
|  | * Section 4.11.1.1: | 
|  | * "All components of all Command and Transfer TRBs shall be initialized to '0'" | 
|  | */ | 
|  | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | struct xhci_segment *seg; | 
|  | dma_addr_t	dma; | 
|  |  | 
|  | seg = kzalloc(sizeof *seg, flags); | 
|  | if (!seg) | 
|  | return 0; | 
|  | xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg); | 
|  |  | 
|  | seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); | 
|  | if (!seg->trbs) { | 
|  | kfree(seg); | 
|  | return 0; | 
|  | } | 
|  | xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n", | 
|  | seg->trbs, (unsigned long long)dma); | 
|  |  | 
|  | memset(seg->trbs, 0, SEGMENT_SIZE); | 
|  | seg->dma = dma; | 
|  | seg->next = NULL; | 
|  |  | 
|  | return seg; | 
|  | } | 
|  |  | 
|  | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) | 
|  | { | 
|  | if (!seg) | 
|  | return; | 
|  | if (seg->trbs) { | 
|  | xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n", | 
|  | seg->trbs, (unsigned long long)seg->dma); | 
|  | dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); | 
|  | seg->trbs = NULL; | 
|  | } | 
|  | xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg); | 
|  | kfree(seg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make the prev segment point to the next segment. | 
|  | * | 
|  | * Change the last TRB in the prev segment to be a Link TRB which points to the | 
|  | * DMA address of the next segment.  The caller needs to set any Link TRB | 
|  | * related flags, such as End TRB, Toggle Cycle, and no snoop. | 
|  | */ | 
|  | static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, | 
|  | struct xhci_segment *next, bool link_trbs) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (!prev || !next) | 
|  | return; | 
|  | prev->next = next; | 
|  | if (link_trbs) { | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma; | 
|  |  | 
|  | /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ | 
|  | val = prev->trbs[TRBS_PER_SEGMENT-1].link.control; | 
|  | val &= ~TRB_TYPE_BITMASK; | 
|  | val |= TRB_TYPE(TRB_LINK); | 
|  | /* Always set the chain bit with 0.95 hardware */ | 
|  | if (xhci_link_trb_quirk(xhci)) | 
|  | val |= TRB_CHAIN; | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.control = val; | 
|  | } | 
|  | xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", | 
|  | (unsigned long long)prev->dma, | 
|  | (unsigned long long)next->dma); | 
|  | } | 
|  |  | 
|  | /* XXX: Do we need the hcd structure in all these functions? */ | 
|  | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
|  | { | 
|  | struct xhci_segment *seg; | 
|  | struct xhci_segment *first_seg; | 
|  |  | 
|  | if (!ring || !ring->first_seg) | 
|  | return; | 
|  | first_seg = ring->first_seg; | 
|  | seg = first_seg->next; | 
|  | xhci_dbg(xhci, "Freeing ring at %p\n", ring); | 
|  | while (seg != first_seg) { | 
|  | struct xhci_segment *next = seg->next; | 
|  | xhci_segment_free(xhci, seg); | 
|  | seg = next; | 
|  | } | 
|  | xhci_segment_free(xhci, first_seg); | 
|  | ring->first_seg = NULL; | 
|  | kfree(ring); | 
|  | } | 
|  |  | 
|  | static void xhci_initialize_ring_info(struct xhci_ring *ring) | 
|  | { | 
|  | /* The ring is empty, so the enqueue pointer == dequeue pointer */ | 
|  | ring->enqueue = ring->first_seg->trbs; | 
|  | ring->enq_seg = ring->first_seg; | 
|  | ring->dequeue = ring->enqueue; | 
|  | ring->deq_seg = ring->first_seg; | 
|  | /* The ring is initialized to 0. The producer must write 1 to the cycle | 
|  | * bit to handover ownership of the TRB, so PCS = 1.  The consumer must | 
|  | * compare CCS to the cycle bit to check ownership, so CCS = 1. | 
|  | */ | 
|  | ring->cycle_state = 1; | 
|  | /* Not necessary for new rings, but needed for re-initialized rings */ | 
|  | ring->enq_updates = 0; | 
|  | ring->deq_updates = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Create a new ring with zero or more segments. | 
|  | * | 
|  | * Link each segment together into a ring. | 
|  | * Set the end flag and the cycle toggle bit on the last segment. | 
|  | * See section 4.9.1 and figures 15 and 16. | 
|  | */ | 
|  | static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, | 
|  | unsigned int num_segs, bool link_trbs, gfp_t flags) | 
|  | { | 
|  | struct xhci_ring	*ring; | 
|  | struct xhci_segment	*prev; | 
|  |  | 
|  | ring = kzalloc(sizeof *(ring), flags); | 
|  | xhci_dbg(xhci, "Allocating ring at %p\n", ring); | 
|  | if (!ring) | 
|  | return 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&ring->td_list); | 
|  | if (num_segs == 0) | 
|  | return ring; | 
|  |  | 
|  | ring->first_seg = xhci_segment_alloc(xhci, flags); | 
|  | if (!ring->first_seg) | 
|  | goto fail; | 
|  | num_segs--; | 
|  |  | 
|  | prev = ring->first_seg; | 
|  | while (num_segs > 0) { | 
|  | struct xhci_segment	*next; | 
|  |  | 
|  | next = xhci_segment_alloc(xhci, flags); | 
|  | if (!next) | 
|  | goto fail; | 
|  | xhci_link_segments(xhci, prev, next, link_trbs); | 
|  |  | 
|  | prev = next; | 
|  | num_segs--; | 
|  | } | 
|  | xhci_link_segments(xhci, prev, ring->first_seg, link_trbs); | 
|  |  | 
|  | if (link_trbs) { | 
|  | /* See section 4.9.2.1 and 6.4.4.1 */ | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE); | 
|  | xhci_dbg(xhci, "Wrote link toggle flag to" | 
|  | " segment %p (virtual), 0x%llx (DMA)\n", | 
|  | prev, (unsigned long long)prev->dma); | 
|  | } | 
|  | xhci_initialize_ring_info(ring); | 
|  | return ring; | 
|  |  | 
|  | fail: | 
|  | xhci_ring_free(xhci, ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | int rings_cached; | 
|  |  | 
|  | rings_cached = virt_dev->num_rings_cached; | 
|  | if (rings_cached < XHCI_MAX_RINGS_CACHED) { | 
|  | virt_dev->num_rings_cached++; | 
|  | rings_cached = virt_dev->num_rings_cached; | 
|  | virt_dev->ring_cache[rings_cached] = | 
|  | virt_dev->eps[ep_index].ring; | 
|  | xhci_dbg(xhci, "Cached old ring, " | 
|  | "%d ring%s cached\n", | 
|  | rings_cached, | 
|  | (rings_cached > 1) ? "s" : ""); | 
|  | } else { | 
|  | xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); | 
|  | xhci_dbg(xhci, "Ring cache full (%d rings), " | 
|  | "freeing ring\n", | 
|  | virt_dev->num_rings_cached); | 
|  | } | 
|  | virt_dev->eps[ep_index].ring = NULL; | 
|  | } | 
|  |  | 
|  | /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue | 
|  | * pointers to the beginning of the ring. | 
|  | */ | 
|  | static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, | 
|  | struct xhci_ring *ring) | 
|  | { | 
|  | struct xhci_segment	*seg = ring->first_seg; | 
|  | do { | 
|  | memset(seg->trbs, 0, | 
|  | sizeof(union xhci_trb)*TRBS_PER_SEGMENT); | 
|  | /* All endpoint rings have link TRBs */ | 
|  | xhci_link_segments(xhci, seg, seg->next, 1); | 
|  | seg = seg->next; | 
|  | } while (seg != ring->first_seg); | 
|  | xhci_initialize_ring_info(ring); | 
|  | /* td list should be empty since all URBs have been cancelled, | 
|  | * but just in case... | 
|  | */ | 
|  | INIT_LIST_HEAD(&ring->td_list); | 
|  | } | 
|  |  | 
|  | #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) | 
|  |  | 
|  | struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, | 
|  | int type, gfp_t flags) | 
|  | { | 
|  | struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); | 
|  | ctx->type = type; | 
|  | ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; | 
|  | if (type == XHCI_CTX_TYPE_INPUT) | 
|  | ctx->size += CTX_SIZE(xhci->hcc_params); | 
|  |  | 
|  | ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); | 
|  | memset(ctx->bytes, 0, ctx->size); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | void xhci_free_container_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | if (!ctx) | 
|  | return; | 
|  | dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); | 
|  | return (struct xhci_input_control_ctx *)ctx->bytes; | 
|  | } | 
|  |  | 
|  | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | if (ctx->type == XHCI_CTX_TYPE_DEVICE) | 
|  | return (struct xhci_slot_ctx *)ctx->bytes; | 
|  |  | 
|  | return (struct xhci_slot_ctx *) | 
|  | (ctx->bytes + CTX_SIZE(xhci->hcc_params)); | 
|  | } | 
|  |  | 
|  | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | /* increment ep index by offset of start of ep ctx array */ | 
|  | ep_index++; | 
|  | if (ctx->type == XHCI_CTX_TYPE_INPUT) | 
|  | ep_index++; | 
|  |  | 
|  | return (struct xhci_ep_ctx *) | 
|  | (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); | 
|  | } | 
|  |  | 
|  | static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_ep *ep) | 
|  | { | 
|  | init_timer(&ep->stop_cmd_timer); | 
|  | ep->stop_cmd_timer.data = (unsigned long) ep; | 
|  | ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; | 
|  | ep->xhci = xhci; | 
|  | } | 
|  |  | 
|  | /* All the xhci_tds in the ring's TD list should be freed at this point */ | 
|  | void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | int i; | 
|  |  | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (slot_id == 0 || !xhci->devs[slot_id]) | 
|  | return; | 
|  |  | 
|  | dev = xhci->devs[slot_id]; | 
|  | xhci->dcbaa->dev_context_ptrs[slot_id] = 0; | 
|  | if (!dev) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 31; ++i) | 
|  | if (dev->eps[i].ring) | 
|  | xhci_ring_free(xhci, dev->eps[i].ring); | 
|  |  | 
|  | if (dev->ring_cache) { | 
|  | for (i = 0; i < dev->num_rings_cached; i++) | 
|  | xhci_ring_free(xhci, dev->ring_cache[i]); | 
|  | kfree(dev->ring_cache); | 
|  | } | 
|  |  | 
|  | if (dev->in_ctx) | 
|  | xhci_free_container_ctx(xhci, dev->in_ctx); | 
|  | if (dev->out_ctx) | 
|  | xhci_free_container_ctx(xhci, dev->out_ctx); | 
|  |  | 
|  | kfree(xhci->devs[slot_id]); | 
|  | xhci->devs[slot_id] = 0; | 
|  | } | 
|  |  | 
|  | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, | 
|  | struct usb_device *udev, gfp_t flags) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | int i; | 
|  |  | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (slot_id == 0 || xhci->devs[slot_id]) { | 
|  | xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); | 
|  | if (!xhci->devs[slot_id]) | 
|  | return 0; | 
|  | dev = xhci->devs[slot_id]; | 
|  |  | 
|  | /* Allocate the (output) device context that will be used in the HC. */ | 
|  | dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); | 
|  | if (!dev->out_ctx) | 
|  | goto fail; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, | 
|  | (unsigned long long)dev->out_ctx->dma); | 
|  |  | 
|  | /* Allocate the (input) device context for address device command */ | 
|  | dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); | 
|  | if (!dev->in_ctx) | 
|  | goto fail; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, | 
|  | (unsigned long long)dev->in_ctx->dma); | 
|  |  | 
|  | /* Initialize the cancellation list and watchdog timers for each ep */ | 
|  | for (i = 0; i < 31; i++) { | 
|  | xhci_init_endpoint_timer(xhci, &dev->eps[i]); | 
|  | INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); | 
|  | } | 
|  |  | 
|  | /* Allocate endpoint 0 ring */ | 
|  | dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags); | 
|  | if (!dev->eps[0].ring) | 
|  | goto fail; | 
|  |  | 
|  | /* Allocate pointers to the ring cache */ | 
|  | dev->ring_cache = kzalloc( | 
|  | sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, | 
|  | flags); | 
|  | if (!dev->ring_cache) | 
|  | goto fail; | 
|  | dev->num_rings_cached = 0; | 
|  |  | 
|  | init_completion(&dev->cmd_completion); | 
|  | INIT_LIST_HEAD(&dev->cmd_list); | 
|  |  | 
|  | /* Point to output device context in dcbaa. */ | 
|  | xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma; | 
|  | xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", | 
|  | slot_id, | 
|  | &xhci->dcbaa->dev_context_ptrs[slot_id], | 
|  | (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]); | 
|  |  | 
|  | return 1; | 
|  | fail: | 
|  | xhci_free_virt_device(xhci, slot_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Setup an xHCI virtual device for a Set Address command */ | 
|  | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | struct xhci_ep_ctx	*ep0_ctx; | 
|  | struct usb_device	*top_dev; | 
|  | struct xhci_slot_ctx    *slot_ctx; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  |  | 
|  | dev = xhci->devs[udev->slot_id]; | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (udev->slot_id == 0 || !dev) { | 
|  | xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", | 
|  | udev->slot_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); | 
|  |  | 
|  | /* 2) New slot context and endpoint 0 context are valid*/ | 
|  | ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG; | 
|  |  | 
|  | /* 3) Only the control endpoint is valid - one endpoint context */ | 
|  | slot_ctx->dev_info |= LAST_CTX(1); | 
|  |  | 
|  | slot_ctx->dev_info |= (u32) udev->route; | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | slot_ctx->dev_info |= (u32) SLOT_SPEED_SS; | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | slot_ctx->dev_info |= (u32) SLOT_SPEED_HS; | 
|  | break; | 
|  | case USB_SPEED_FULL: | 
|  | slot_ctx->dev_info |= (u32) SLOT_SPEED_FS; | 
|  | break; | 
|  | case USB_SPEED_LOW: | 
|  | slot_ctx->dev_info |= (u32) SLOT_SPEED_LS; | 
|  | break; | 
|  | case USB_SPEED_WIRELESS: | 
|  | xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | /* Speed was set earlier, this shouldn't happen. */ | 
|  | BUG(); | 
|  | } | 
|  | /* Find the root hub port this device is under */ | 
|  | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
|  | top_dev = top_dev->parent) | 
|  | /* Found device below root hub */; | 
|  | slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum); | 
|  | xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum); | 
|  |  | 
|  | /* Is this a LS/FS device under a HS hub? */ | 
|  | if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) && | 
|  | udev->tt) { | 
|  | slot_ctx->tt_info = udev->tt->hub->slot_id; | 
|  | slot_ctx->tt_info |= udev->ttport << 8; | 
|  | if (udev->tt->multi) | 
|  | slot_ctx->dev_info |= DEV_MTT; | 
|  | } | 
|  | xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); | 
|  | xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); | 
|  |  | 
|  | /* Step 4 - ring already allocated */ | 
|  | /* Step 5 */ | 
|  | ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP); | 
|  | /* | 
|  | * XXX: Not sure about wireless USB devices. | 
|  | */ | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | ep0_ctx->ep_info2 |= MAX_PACKET(512); | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | /* USB core guesses at a 64-byte max packet first for FS devices */ | 
|  | case USB_SPEED_FULL: | 
|  | ep0_ctx->ep_info2 |= MAX_PACKET(64); | 
|  | break; | 
|  | case USB_SPEED_LOW: | 
|  | ep0_ctx->ep_info2 |= MAX_PACKET(8); | 
|  | break; | 
|  | case USB_SPEED_WIRELESS: | 
|  | xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | /* New speed? */ | 
|  | BUG(); | 
|  | } | 
|  | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ | 
|  | ep0_ctx->ep_info2 |= MAX_BURST(0); | 
|  | ep0_ctx->ep_info2 |= ERROR_COUNT(3); | 
|  |  | 
|  | ep0_ctx->deq = | 
|  | dev->eps[0].ring->first_seg->dma; | 
|  | ep0_ctx->deq |= dev->eps[0].ring->cycle_state; | 
|  |  | 
|  | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the polling or NAK interval. | 
|  | * | 
|  | * The polling interval is expressed in "microframes".  If xHCI's Interval field | 
|  | * is set to N, it will service the endpoint every 2^(Interval)*125us. | 
|  | * | 
|  | * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval | 
|  | * is set to 0. | 
|  | */ | 
|  | static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int interval = 0; | 
|  |  | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_HIGH: | 
|  | /* Max NAK rate */ | 
|  | if (usb_endpoint_xfer_control(&ep->desc) || | 
|  | usb_endpoint_xfer_bulk(&ep->desc)) | 
|  | interval = ep->desc.bInterval; | 
|  | /* Fall through - SS and HS isoc/int have same decoding */ | 
|  | case USB_SPEED_SUPER: | 
|  | if (usb_endpoint_xfer_int(&ep->desc) || | 
|  | usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | if (ep->desc.bInterval == 0) | 
|  | interval = 0; | 
|  | else | 
|  | interval = ep->desc.bInterval - 1; | 
|  | if (interval > 15) | 
|  | interval = 15; | 
|  | if (interval != ep->desc.bInterval + 1) | 
|  | dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", | 
|  | ep->desc.bEndpointAddress, 1 << interval); | 
|  | } | 
|  | break; | 
|  | /* Convert bInterval (in 1-255 frames) to microframes and round down to | 
|  | * nearest power of 2. | 
|  | */ | 
|  | case USB_SPEED_FULL: | 
|  | case USB_SPEED_LOW: | 
|  | if (usb_endpoint_xfer_int(&ep->desc) || | 
|  | usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | interval = fls(8*ep->desc.bInterval) - 1; | 
|  | if (interval > 10) | 
|  | interval = 10; | 
|  | if (interval < 3) | 
|  | interval = 3; | 
|  | if ((1 << interval) != 8*ep->desc.bInterval) | 
|  | dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", | 
|  | ep->desc.bEndpointAddress, 1 << interval); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return EP_INTERVAL(interval); | 
|  | } | 
|  |  | 
|  | static inline u32 xhci_get_endpoint_type(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | int in; | 
|  | u32 type; | 
|  |  | 
|  | in = usb_endpoint_dir_in(&ep->desc); | 
|  | if (usb_endpoint_xfer_control(&ep->desc)) { | 
|  | type = EP_TYPE(CTRL_EP); | 
|  | } else if (usb_endpoint_xfer_bulk(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(BULK_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(BULK_OUT_EP); | 
|  | } else if (usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(ISOC_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(ISOC_OUT_EP); | 
|  | } else if (usb_endpoint_xfer_int(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(INT_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(INT_OUT_EP); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | int xhci_endpoint_init(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int max_packet; | 
|  | unsigned int max_burst; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|  |  | 
|  | /* Set up the endpoint ring */ | 
|  | virt_dev->eps[ep_index].new_ring = | 
|  | xhci_ring_alloc(xhci, 1, true, mem_flags); | 
|  | if (!virt_dev->eps[ep_index].new_ring) { | 
|  | /* Attempt to use the ring cache */ | 
|  | if (virt_dev->num_rings_cached == 0) | 
|  | return -ENOMEM; | 
|  | virt_dev->eps[ep_index].new_ring = | 
|  | virt_dev->ring_cache[virt_dev->num_rings_cached]; | 
|  | virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; | 
|  | virt_dev->num_rings_cached--; | 
|  | xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring); | 
|  | } | 
|  | ep_ring = virt_dev->eps[ep_index].new_ring; | 
|  | ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state; | 
|  |  | 
|  | ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep); | 
|  |  | 
|  | /* FIXME dig Mult and streams info out of ep companion desc */ | 
|  |  | 
|  | /* Allow 3 retries for everything but isoc; | 
|  | * error count = 0 means infinite retries. | 
|  | */ | 
|  | if (!usb_endpoint_xfer_isoc(&ep->desc)) | 
|  | ep_ctx->ep_info2 = ERROR_COUNT(3); | 
|  | else | 
|  | ep_ctx->ep_info2 = ERROR_COUNT(1); | 
|  |  | 
|  | ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep); | 
|  |  | 
|  | /* Set the max packet size and max burst */ | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | max_packet = ep->desc.wMaxPacketSize; | 
|  | ep_ctx->ep_info2 |= MAX_PACKET(max_packet); | 
|  | /* dig out max burst from ep companion desc */ | 
|  | if (!ep->ss_ep_comp) { | 
|  | xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n"); | 
|  | max_packet = 0; | 
|  | } else { | 
|  | max_packet = ep->ss_ep_comp->desc.bMaxBurst; | 
|  | } | 
|  | ep_ctx->ep_info2 |= MAX_BURST(max_packet); | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | /* bits 11:12 specify the number of additional transaction | 
|  | * opportunities per microframe (USB 2.0, section 9.6.6) | 
|  | */ | 
|  | if (usb_endpoint_xfer_isoc(&ep->desc) || | 
|  | usb_endpoint_xfer_int(&ep->desc)) { | 
|  | max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; | 
|  | ep_ctx->ep_info2 |= MAX_BURST(max_burst); | 
|  | } | 
|  | /* Fall through */ | 
|  | case USB_SPEED_FULL: | 
|  | case USB_SPEED_LOW: | 
|  | max_packet = ep->desc.wMaxPacketSize & 0x3ff; | 
|  | ep_ctx->ep_info2 |= MAX_PACKET(max_packet); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | /* FIXME Debug endpoint context */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void xhci_endpoint_zero(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|  |  | 
|  | ep_ctx->ep_info = 0; | 
|  | ep_ctx->ep_info2 = 0; | 
|  | ep_ctx->deq = 0; | 
|  | ep_ctx->tx_info = 0; | 
|  | /* Don't free the endpoint ring until the set interface or configuration | 
|  | * request succeeds. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. | 
|  | * Useful when you want to change one particular aspect of the endpoint and then | 
|  | * issue a configure endpoint command. | 
|  | */ | 
|  | void xhci_endpoint_copy(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_container_ctx *out_ctx, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ep_ctx *out_ep_ctx; | 
|  | struct xhci_ep_ctx *in_ep_ctx; | 
|  |  | 
|  | out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|  | in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
|  |  | 
|  | in_ep_ctx->ep_info = out_ep_ctx->ep_info; | 
|  | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; | 
|  | in_ep_ctx->deq = out_ep_ctx->deq; | 
|  | in_ep_ctx->tx_info = out_ep_ctx->tx_info; | 
|  | } | 
|  |  | 
|  | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. | 
|  | * Useful when you want to change one particular aspect of the endpoint and then | 
|  | * issue a configure endpoint command.  Only the context entries field matters, | 
|  | * but we'll copy the whole thing anyway. | 
|  | */ | 
|  | void xhci_slot_copy(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_container_ctx *out_ctx) | 
|  | { | 
|  | struct xhci_slot_ctx *in_slot_ctx; | 
|  | struct xhci_slot_ctx *out_slot_ctx; | 
|  |  | 
|  | in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
|  | out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); | 
|  |  | 
|  | in_slot_ctx->dev_info = out_slot_ctx->dev_info; | 
|  | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; | 
|  | in_slot_ctx->tt_info = out_slot_ctx->tt_info; | 
|  | in_slot_ctx->dev_state = out_slot_ctx->dev_state; | 
|  | } | 
|  |  | 
|  | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ | 
|  | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | int i; | 
|  | struct device *dev = xhci_to_hcd(xhci)->self.controller; | 
|  | int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|  |  | 
|  | xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); | 
|  |  | 
|  | if (!num_sp) | 
|  | return 0; | 
|  |  | 
|  | xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); | 
|  | if (!xhci->scratchpad) | 
|  | goto fail_sp; | 
|  |  | 
|  | xhci->scratchpad->sp_array = | 
|  | pci_alloc_consistent(to_pci_dev(dev), | 
|  | num_sp * sizeof(u64), | 
|  | &xhci->scratchpad->sp_dma); | 
|  | if (!xhci->scratchpad->sp_array) | 
|  | goto fail_sp2; | 
|  |  | 
|  | xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); | 
|  | if (!xhci->scratchpad->sp_buffers) | 
|  | goto fail_sp3; | 
|  |  | 
|  | xhci->scratchpad->sp_dma_buffers = | 
|  | kzalloc(sizeof(dma_addr_t) * num_sp, flags); | 
|  |  | 
|  | if (!xhci->scratchpad->sp_dma_buffers) | 
|  | goto fail_sp4; | 
|  |  | 
|  | xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma; | 
|  | for (i = 0; i < num_sp; i++) { | 
|  | dma_addr_t dma; | 
|  | void *buf = pci_alloc_consistent(to_pci_dev(dev), | 
|  | xhci->page_size, &dma); | 
|  | if (!buf) | 
|  | goto fail_sp5; | 
|  |  | 
|  | xhci->scratchpad->sp_array[i] = dma; | 
|  | xhci->scratchpad->sp_buffers[i] = buf; | 
|  | xhci->scratchpad->sp_dma_buffers[i] = dma; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_sp5: | 
|  | for (i = i - 1; i >= 0; i--) { | 
|  | pci_free_consistent(to_pci_dev(dev), xhci->page_size, | 
|  | xhci->scratchpad->sp_buffers[i], | 
|  | xhci->scratchpad->sp_dma_buffers[i]); | 
|  | } | 
|  | kfree(xhci->scratchpad->sp_dma_buffers); | 
|  |  | 
|  | fail_sp4: | 
|  | kfree(xhci->scratchpad->sp_buffers); | 
|  |  | 
|  | fail_sp3: | 
|  | pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64), | 
|  | xhci->scratchpad->sp_array, | 
|  | xhci->scratchpad->sp_dma); | 
|  |  | 
|  | fail_sp2: | 
|  | kfree(xhci->scratchpad); | 
|  | xhci->scratchpad = NULL; | 
|  |  | 
|  | fail_sp: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void scratchpad_free(struct xhci_hcd *xhci) | 
|  | { | 
|  | int num_sp; | 
|  | int i; | 
|  | struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  |  | 
|  | if (!xhci->scratchpad) | 
|  | return; | 
|  |  | 
|  | num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|  |  | 
|  | for (i = 0; i < num_sp; i++) { | 
|  | pci_free_consistent(pdev, xhci->page_size, | 
|  | xhci->scratchpad->sp_buffers[i], | 
|  | xhci->scratchpad->sp_dma_buffers[i]); | 
|  | } | 
|  | kfree(xhci->scratchpad->sp_dma_buffers); | 
|  | kfree(xhci->scratchpad->sp_buffers); | 
|  | pci_free_consistent(pdev, num_sp * sizeof(u64), | 
|  | xhci->scratchpad->sp_array, | 
|  | xhci->scratchpad->sp_dma); | 
|  | kfree(xhci->scratchpad); | 
|  | xhci->scratchpad = NULL; | 
|  | } | 
|  |  | 
|  | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, | 
|  | bool allocate_in_ctx, bool allocate_completion, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_command *command; | 
|  |  | 
|  | command = kzalloc(sizeof(*command), mem_flags); | 
|  | if (!command) | 
|  | return NULL; | 
|  |  | 
|  | if (allocate_in_ctx) { | 
|  | command->in_ctx = | 
|  | xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, | 
|  | mem_flags); | 
|  | if (!command->in_ctx) { | 
|  | kfree(command); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allocate_completion) { | 
|  | command->completion = | 
|  | kzalloc(sizeof(struct completion), mem_flags); | 
|  | if (!command->completion) { | 
|  | xhci_free_container_ctx(xhci, command->in_ctx); | 
|  | kfree(command); | 
|  | return NULL; | 
|  | } | 
|  | init_completion(command->completion); | 
|  | } | 
|  |  | 
|  | command->status = 0; | 
|  | INIT_LIST_HEAD(&command->cmd_list); | 
|  | return command; | 
|  | } | 
|  |  | 
|  | void xhci_free_command(struct xhci_hcd *xhci, | 
|  | struct xhci_command *command) | 
|  | { | 
|  | xhci_free_container_ctx(xhci, | 
|  | command->in_ctx); | 
|  | kfree(command->completion); | 
|  | kfree(command); | 
|  | } | 
|  |  | 
|  | void xhci_mem_cleanup(struct xhci_hcd *xhci) | 
|  | { | 
|  | struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  | int size; | 
|  | int i; | 
|  |  | 
|  | /* Free the Event Ring Segment Table and the actual Event Ring */ | 
|  | if (xhci->ir_set) { | 
|  | xhci_writel(xhci, 0, &xhci->ir_set->erst_size); | 
|  | xhci_write_64(xhci, 0, &xhci->ir_set->erst_base); | 
|  | xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue); | 
|  | } | 
|  | size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); | 
|  | if (xhci->erst.entries) | 
|  | pci_free_consistent(pdev, size, | 
|  | xhci->erst.entries, xhci->erst.erst_dma_addr); | 
|  | xhci->erst.entries = NULL; | 
|  | xhci_dbg(xhci, "Freed ERST\n"); | 
|  | if (xhci->event_ring) | 
|  | xhci_ring_free(xhci, xhci->event_ring); | 
|  | xhci->event_ring = NULL; | 
|  | xhci_dbg(xhci, "Freed event ring\n"); | 
|  |  | 
|  | xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); | 
|  | if (xhci->cmd_ring) | 
|  | xhci_ring_free(xhci, xhci->cmd_ring); | 
|  | xhci->cmd_ring = NULL; | 
|  | xhci_dbg(xhci, "Freed command ring\n"); | 
|  |  | 
|  | for (i = 1; i < MAX_HC_SLOTS; ++i) | 
|  | xhci_free_virt_device(xhci, i); | 
|  |  | 
|  | if (xhci->segment_pool) | 
|  | dma_pool_destroy(xhci->segment_pool); | 
|  | xhci->segment_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed segment pool\n"); | 
|  |  | 
|  | if (xhci->device_pool) | 
|  | dma_pool_destroy(xhci->device_pool); | 
|  | xhci->device_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed device context pool\n"); | 
|  |  | 
|  | xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); | 
|  | if (xhci->dcbaa) | 
|  | pci_free_consistent(pdev, sizeof(*xhci->dcbaa), | 
|  | xhci->dcbaa, xhci->dcbaa->dma); | 
|  | xhci->dcbaa = NULL; | 
|  |  | 
|  | scratchpad_free(xhci); | 
|  | xhci->page_size = 0; | 
|  | xhci->page_shift = 0; | 
|  | } | 
|  |  | 
|  | static int xhci_test_trb_in_td(struct xhci_hcd *xhci, | 
|  | struct xhci_segment *input_seg, | 
|  | union xhci_trb *start_trb, | 
|  | union xhci_trb *end_trb, | 
|  | dma_addr_t input_dma, | 
|  | struct xhci_segment *result_seg, | 
|  | char *test_name, int test_number) | 
|  | { | 
|  | unsigned long long start_dma; | 
|  | unsigned long long end_dma; | 
|  | struct xhci_segment *seg; | 
|  |  | 
|  | start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); | 
|  | end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); | 
|  |  | 
|  | seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); | 
|  | if (seg != result_seg) { | 
|  | xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", | 
|  | test_name, test_number); | 
|  | xhci_warn(xhci, "Tested TRB math w/ seg %p and " | 
|  | "input DMA 0x%llx\n", | 
|  | input_seg, | 
|  | (unsigned long long) input_dma); | 
|  | xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " | 
|  | "ending TRB %p (0x%llx DMA)\n", | 
|  | start_trb, start_dma, | 
|  | end_trb, end_dma); | 
|  | xhci_warn(xhci, "Expected seg %p, got seg %p\n", | 
|  | result_seg, seg); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ | 
|  | static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) | 
|  | { | 
|  | struct { | 
|  | dma_addr_t		input_dma; | 
|  | struct xhci_segment	*result_seg; | 
|  | } simple_test_vector [] = { | 
|  | /* A zeroed DMA field should fail */ | 
|  | { 0, NULL }, | 
|  | /* One TRB before the ring start should fail */ | 
|  | { xhci->event_ring->first_seg->dma - 16, NULL }, | 
|  | /* One byte before the ring start should fail */ | 
|  | { xhci->event_ring->first_seg->dma - 1, NULL }, | 
|  | /* Starting TRB should succeed */ | 
|  | { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, | 
|  | /* Ending TRB should succeed */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, | 
|  | xhci->event_ring->first_seg }, | 
|  | /* One byte after the ring end should fail */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, | 
|  | /* One TRB after the ring end should fail */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, | 
|  | /* An address of all ones should fail */ | 
|  | { (dma_addr_t) (~0), NULL }, | 
|  | }; | 
|  | struct { | 
|  | struct xhci_segment	*input_seg; | 
|  | union xhci_trb		*start_trb; | 
|  | union xhci_trb		*end_trb; | 
|  | dma_addr_t		input_dma; | 
|  | struct xhci_segment	*result_seg; | 
|  | } complex_test_vector [] = { | 
|  | /* Test feeding a valid DMA address from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->event_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* Test feeding a valid end TRB from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->event_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* Test feeding a valid start and end TRB from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->cmd_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but after this TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[0], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[3], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 4*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but before this TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[6], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but after this wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but before this wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB not in this ring, and we have a wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | unsigned int num_tests; | 
|  | int i, ret; | 
|  |  | 
|  | num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]); | 
|  | for (i = 0; i < num_tests; i++) { | 
|  | ret = xhci_test_trb_in_td(xhci, | 
|  | xhci->event_ring->first_seg, | 
|  | xhci->event_ring->first_seg->trbs, | 
|  | &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | simple_test_vector[i].input_dma, | 
|  | simple_test_vector[i].result_seg, | 
|  | "Simple", i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]); | 
|  | for (i = 0; i < num_tests; i++) { | 
|  | ret = xhci_test_trb_in_td(xhci, | 
|  | complex_test_vector[i].input_seg, | 
|  | complex_test_vector[i].start_trb, | 
|  | complex_test_vector[i].end_trb, | 
|  | complex_test_vector[i].input_dma, | 
|  | complex_test_vector[i].result_seg, | 
|  | "Complex", i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | xhci_dbg(xhci, "TRB math tests passed.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | dma_addr_t	dma; | 
|  | struct device	*dev = xhci_to_hcd(xhci)->self.controller; | 
|  | unsigned int	val, val2; | 
|  | u64		val_64; | 
|  | struct xhci_segment	*seg; | 
|  | u32 page_size; | 
|  | int i; | 
|  |  | 
|  | page_size = xhci_readl(xhci, &xhci->op_regs->page_size); | 
|  | xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); | 
|  | for (i = 0; i < 16; i++) { | 
|  | if ((0x1 & page_size) != 0) | 
|  | break; | 
|  | page_size = page_size >> 1; | 
|  | } | 
|  | if (i < 16) | 
|  | xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); | 
|  | else | 
|  | xhci_warn(xhci, "WARN: no supported page size\n"); | 
|  | /* Use 4K pages, since that's common and the minimum the HC supports */ | 
|  | xhci->page_shift = 12; | 
|  | xhci->page_size = 1 << xhci->page_shift; | 
|  | xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); | 
|  |  | 
|  | /* | 
|  | * Program the Number of Device Slots Enabled field in the CONFIG | 
|  | * register with the max value of slots the HC can handle. | 
|  | */ | 
|  | val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); | 
|  | xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", | 
|  | (unsigned int) val); | 
|  | val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); | 
|  | val |= (val2 & ~HCS_SLOTS_MASK); | 
|  | xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", | 
|  | (unsigned int) val); | 
|  | xhci_writel(xhci, val, &xhci->op_regs->config_reg); | 
|  |  | 
|  | /* | 
|  | * Section 5.4.8 - doorbell array must be | 
|  | * "physically contiguous and 64-byte (cache line) aligned". | 
|  | */ | 
|  | xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev), | 
|  | sizeof(*xhci->dcbaa), &dma); | 
|  | if (!xhci->dcbaa) | 
|  | goto fail; | 
|  | memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); | 
|  | xhci->dcbaa->dma = dma; | 
|  | xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", | 
|  | (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); | 
|  | xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); | 
|  |  | 
|  | /* | 
|  | * Initialize the ring segment pool.  The ring must be a contiguous | 
|  | * structure comprised of TRBs.  The TRBs must be 16 byte aligned, | 
|  | * however, the command ring segment needs 64-byte aligned segments, | 
|  | * so we pick the greater alignment need. | 
|  | */ | 
|  | xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, | 
|  | SEGMENT_SIZE, 64, xhci->page_size); | 
|  |  | 
|  | /* See Table 46 and Note on Figure 55 */ | 
|  | xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, | 
|  | 2112, 64, xhci->page_size); | 
|  | if (!xhci->segment_pool || !xhci->device_pool) | 
|  | goto fail; | 
|  |  | 
|  | /* Set up the command ring to have one segments for now. */ | 
|  | xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags); | 
|  | if (!xhci->cmd_ring) | 
|  | goto fail; | 
|  | xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); | 
|  | xhci_dbg(xhci, "First segment DMA is 0x%llx\n", | 
|  | (unsigned long long)xhci->cmd_ring->first_seg->dma); | 
|  |  | 
|  | /* Set the address in the Command Ring Control register */ | 
|  | val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
|  | val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | | 
|  | (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | | 
|  | xhci->cmd_ring->cycle_state; | 
|  | xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); | 
|  | xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); | 
|  | xhci_dbg_cmd_ptrs(xhci); | 
|  |  | 
|  | val = xhci_readl(xhci, &xhci->cap_regs->db_off); | 
|  | val &= DBOFF_MASK; | 
|  | xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" | 
|  | " from cap regs base addr\n", val); | 
|  | xhci->dba = (void *) xhci->cap_regs + val; | 
|  | xhci_dbg_regs(xhci); | 
|  | xhci_print_run_regs(xhci); | 
|  | /* Set ir_set to interrupt register set 0 */ | 
|  | xhci->ir_set = (void *) xhci->run_regs->ir_set; | 
|  |  | 
|  | /* | 
|  | * Event ring setup: Allocate a normal ring, but also setup | 
|  | * the event ring segment table (ERST).  Section 4.9.3. | 
|  | */ | 
|  | xhci_dbg(xhci, "// Allocating event ring\n"); | 
|  | xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags); | 
|  | if (!xhci->event_ring) | 
|  | goto fail; | 
|  | if (xhci_check_trb_in_td_math(xhci, flags) < 0) | 
|  | goto fail; | 
|  |  | 
|  | xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev), | 
|  | sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma); | 
|  | if (!xhci->erst.entries) | 
|  | goto fail; | 
|  | xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", | 
|  | (unsigned long long)dma); | 
|  |  | 
|  | memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); | 
|  | xhci->erst.num_entries = ERST_NUM_SEGS; | 
|  | xhci->erst.erst_dma_addr = dma; | 
|  | xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", | 
|  | xhci->erst.num_entries, | 
|  | xhci->erst.entries, | 
|  | (unsigned long long)xhci->erst.erst_dma_addr); | 
|  |  | 
|  | /* set ring base address and size for each segment table entry */ | 
|  | for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { | 
|  | struct xhci_erst_entry *entry = &xhci->erst.entries[val]; | 
|  | entry->seg_addr = seg->dma; | 
|  | entry->seg_size = TRBS_PER_SEGMENT; | 
|  | entry->rsvd = 0; | 
|  | seg = seg->next; | 
|  | } | 
|  |  | 
|  | /* set ERST count with the number of entries in the segment table */ | 
|  | val = xhci_readl(xhci, &xhci->ir_set->erst_size); | 
|  | val &= ERST_SIZE_MASK; | 
|  | val |= ERST_NUM_SEGS; | 
|  | xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", | 
|  | val); | 
|  | xhci_writel(xhci, val, &xhci->ir_set->erst_size); | 
|  |  | 
|  | xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); | 
|  | /* set the segment table base address */ | 
|  | xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", | 
|  | (unsigned long long)xhci->erst.erst_dma_addr); | 
|  | val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); | 
|  | val_64 &= ERST_PTR_MASK; | 
|  | val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); | 
|  | xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); | 
|  |  | 
|  | /* Set the event ring dequeue address */ | 
|  | xhci_set_hc_event_deq(xhci); | 
|  | xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); | 
|  | xhci_print_ir_set(xhci, xhci->ir_set, 0); | 
|  |  | 
|  | /* | 
|  | * XXX: Might need to set the Interrupter Moderation Register to | 
|  | * something other than the default (~1ms minimum between interrupts). | 
|  | * See section 5.5.1.2. | 
|  | */ | 
|  | init_completion(&xhci->addr_dev); | 
|  | for (i = 0; i < MAX_HC_SLOTS; ++i) | 
|  | xhci->devs[i] = 0; | 
|  |  | 
|  | if (scratchpad_alloc(xhci, flags)) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | xhci_warn(xhci, "Couldn't initialize memory\n"); | 
|  | xhci_mem_cleanup(xhci); | 
|  | return -ENOMEM; | 
|  | } |