|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef _TOOLS_LINUX_COMPILER_H_ | 
|  | #define _TOOLS_LINUX_COMPILER_H_ | 
|  |  | 
|  | #ifdef __GNUC__ | 
|  | #include <linux/compiler-gcc.h> | 
|  | #endif | 
|  |  | 
|  | #ifndef __compiletime_error | 
|  | # define __compiletime_error(message) | 
|  | #endif | 
|  |  | 
|  | /* Optimization barrier */ | 
|  | /* The "volatile" is due to gcc bugs */ | 
|  | #define barrier() __asm__ __volatile__("": : :"memory") | 
|  |  | 
|  | #ifndef __always_inline | 
|  | # define __always_inline	inline __attribute__((always_inline)) | 
|  | #endif | 
|  |  | 
|  | #ifndef noinline | 
|  | #define noinline | 
|  | #endif | 
|  |  | 
|  | /* Are two types/vars the same type (ignoring qualifiers)? */ | 
|  | #ifndef __same_type | 
|  | # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) | 
|  | #endif | 
|  |  | 
|  | #ifdef __ANDROID__ | 
|  | /* | 
|  | * FIXME: Big hammer to get rid of tons of: | 
|  | *   "warning: always_inline function might not be inlinable" | 
|  | * | 
|  | * At least on android-ndk-r12/platforms/android-24/arch-arm | 
|  | */ | 
|  | #undef __always_inline | 
|  | #define __always_inline	inline | 
|  | #endif | 
|  |  | 
|  | #define __user | 
|  | #define __rcu | 
|  | #define __read_mostly | 
|  |  | 
|  | #ifndef __attribute_const__ | 
|  | # define __attribute_const__ | 
|  | #endif | 
|  |  | 
|  | #ifndef __maybe_unused | 
|  | # define __maybe_unused		__attribute__((unused)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __used | 
|  | # define __used		__attribute__((__unused__)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __packed | 
|  | # define __packed		__attribute__((__packed__)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __force | 
|  | # define __force | 
|  | #endif | 
|  |  | 
|  | #ifndef __weak | 
|  | # define __weak			__attribute__((weak)) | 
|  | #endif | 
|  |  | 
|  | #ifndef likely | 
|  | # define likely(x)		__builtin_expect(!!(x), 1) | 
|  | #endif | 
|  |  | 
|  | #ifndef unlikely | 
|  | # define unlikely(x)		__builtin_expect(!!(x), 0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __init | 
|  | # define __init | 
|  | #endif | 
|  |  | 
|  | #ifndef noinline | 
|  | # define noinline | 
|  | #endif | 
|  |  | 
|  | #define uninitialized_var(x) x = *(&(x)) | 
|  |  | 
|  | #include <linux/types.h> | 
|  |  | 
|  | /* | 
|  | * Following functions are taken from kernel sources and | 
|  | * break aliasing rules in their original form. | 
|  | * | 
|  | * While kernel is compiled with -fno-strict-aliasing, | 
|  | * perf uses -Wstrict-aliasing=3 which makes build fail | 
|  | * under gcc 4.4. | 
|  | * | 
|  | * Using extra __may_alias__ type to allow aliasing | 
|  | * in this case. | 
|  | */ | 
|  | typedef __u8  __attribute__((__may_alias__))  __u8_alias_t; | 
|  | typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; | 
|  | typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; | 
|  | typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; | 
|  |  | 
|  | static __always_inline void __read_once_size(const volatile void *p, void *res, int size) | 
|  | { | 
|  | switch (size) { | 
|  | case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break; | 
|  | case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; | 
|  | case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; | 
|  | case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; | 
|  | default: | 
|  | barrier(); | 
|  | __builtin_memcpy((void *)res, (const void *)p, size); | 
|  | barrier(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static __always_inline void __write_once_size(volatile void *p, void *res, int size) | 
|  | { | 
|  | switch (size) { | 
|  | case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break; | 
|  | case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; | 
|  | case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; | 
|  | case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; | 
|  | default: | 
|  | barrier(); | 
|  | __builtin_memcpy((void *)p, (const void *)res, size); | 
|  | barrier(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent the compiler from merging or refetching reads or writes. The | 
|  | * compiler is also forbidden from reordering successive instances of | 
|  | * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some | 
|  | * particular ordering. One way to make the compiler aware of ordering is to | 
|  | * put the two invocations of READ_ONCE or WRITE_ONCE in different C | 
|  | * statements. | 
|  | * | 
|  | * These two macros will also work on aggregate data types like structs or | 
|  | * unions. If the size of the accessed data type exceeds the word size of | 
|  | * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will | 
|  | * fall back to memcpy and print a compile-time warning. | 
|  | * | 
|  | * Their two major use cases are: (1) Mediating communication between | 
|  | * process-level code and irq/NMI handlers, all running on the same CPU, | 
|  | * and (2) Ensuring that the compiler does not fold, spindle, or otherwise | 
|  | * mutilate accesses that either do not require ordering or that interact | 
|  | * with an explicit memory barrier or atomic instruction that provides the | 
|  | * required ordering. | 
|  | */ | 
|  |  | 
|  | #define READ_ONCE(x)					\ | 
|  | ({							\ | 
|  | union { typeof(x) __val; char __c[1]; } __u =	\ | 
|  | { .__c = { 0 } };			\ | 
|  | __read_once_size(&(x), __u.__c, sizeof(x));	\ | 
|  | __u.__val;					\ | 
|  | }) | 
|  |  | 
|  | #define WRITE_ONCE(x, val)				\ | 
|  | ({							\ | 
|  | union { typeof(x) __val; char __c[1]; } __u =	\ | 
|  | { .__val = (val) }; 			\ | 
|  | __write_once_size(&(x), __u.__c, sizeof(x));	\ | 
|  | __u.__val;					\ | 
|  | }) | 
|  |  | 
|  |  | 
|  | #ifndef __fallthrough | 
|  | # define __fallthrough | 
|  | #endif | 
|  |  | 
|  | #endif /* _TOOLS_LINUX_COMPILER_H */ |