|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /** | 
|  | * Routines supporting the Power 7+ Nest Accelerators driver | 
|  | * | 
|  | * Copyright (C) 2011-2012 International Business Machines Inc. | 
|  | * | 
|  | * Author: Kent Yoder <[email protected]> | 
|  | */ | 
|  |  | 
|  | #include <crypto/internal/aead.h> | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/of.h> | 
|  | #include <asm/hvcall.h> | 
|  | #include <asm/vio.h> | 
|  |  | 
|  | #include "nx_csbcpb.h" | 
|  | #include "nx.h" | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure | 
|  | * | 
|  | * @nx_ctx: the crypto context handle | 
|  | * @op: PFO operation struct to pass in | 
|  | * @may_sleep: flag indicating the request can sleep | 
|  | * | 
|  | * Make the hcall, retrying while the hardware is busy. If we cannot yield | 
|  | * the thread, limit the number of retries to 10 here. | 
|  | */ | 
|  | int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, | 
|  | struct vio_pfo_op    *op, | 
|  | u32                   may_sleep) | 
|  | { | 
|  | int rc, retries = 10; | 
|  | struct vio_dev *viodev = nx_driver.viodev; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->sync_ops)); | 
|  |  | 
|  | do { | 
|  | rc = vio_h_cop_sync(viodev, op); | 
|  | } while (rc == -EBUSY && !may_sleep && retries--); | 
|  |  | 
|  | if (rc) { | 
|  | dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " | 
|  | "hcall rc: %ld\n", rc, op->hcall_err); | 
|  | atomic_inc(&(nx_ctx->stats->errors)); | 
|  | atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); | 
|  | atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_build_sg_list - build an NX scatter list describing a single  buffer | 
|  | * | 
|  | * @sg_head: pointer to the first scatter list element to build | 
|  | * @start_addr: pointer to the linear buffer | 
|  | * @len: length of the data at @start_addr | 
|  | * @sgmax: the largest number of scatter list elements we're allowed to create | 
|  | * | 
|  | * This function will start writing nx_sg elements at @sg_head and keep | 
|  | * writing them until all of the data from @start_addr is described or | 
|  | * until sgmax elements have been written. Scatter list elements will be | 
|  | * created such that none of the elements describes a buffer that crosses a 4K | 
|  | * boundary. | 
|  | */ | 
|  | struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, | 
|  | u8           *start_addr, | 
|  | unsigned int *len, | 
|  | u32           sgmax) | 
|  | { | 
|  | unsigned int sg_len = 0; | 
|  | struct nx_sg *sg; | 
|  | u64 sg_addr = (u64)start_addr; | 
|  | u64 end_addr; | 
|  |  | 
|  | /* determine the start and end for this address range - slightly | 
|  | * different if this is in VMALLOC_REGION */ | 
|  | if (is_vmalloc_addr(start_addr)) | 
|  | sg_addr = page_to_phys(vmalloc_to_page(start_addr)) | 
|  | + offset_in_page(sg_addr); | 
|  | else | 
|  | sg_addr = __pa(sg_addr); | 
|  |  | 
|  | end_addr = sg_addr + *len; | 
|  |  | 
|  | /* each iteration will write one struct nx_sg element and add the | 
|  | * length of data described by that element to sg_len. Once @len bytes | 
|  | * have been described (or @sgmax elements have been written), the | 
|  | * loop ends. min_t is used to ensure @end_addr falls on the same page | 
|  | * as sg_addr, if not, we need to create another nx_sg element for the | 
|  | * data on the next page. | 
|  | * | 
|  | * Also when using vmalloc'ed data, every time that a system page | 
|  | * boundary is crossed the physical address needs to be re-calculated. | 
|  | */ | 
|  | for (sg = sg_head; sg_len < *len; sg++) { | 
|  | u64 next_page; | 
|  |  | 
|  | sg->addr = sg_addr; | 
|  | sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), | 
|  | end_addr); | 
|  |  | 
|  | next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; | 
|  | sg->len = min_t(u64, sg_addr, next_page) - sg->addr; | 
|  | sg_len += sg->len; | 
|  |  | 
|  | if (sg_addr >= next_page && | 
|  | is_vmalloc_addr(start_addr + sg_len)) { | 
|  | sg_addr = page_to_phys(vmalloc_to_page( | 
|  | start_addr + sg_len)); | 
|  | end_addr = sg_addr + *len - sg_len; | 
|  | } | 
|  |  | 
|  | if ((sg - sg_head) == sgmax) { | 
|  | pr_err("nx: scatter/gather list overflow, pid: %d\n", | 
|  | current->pid); | 
|  | sg++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | *len = sg_len; | 
|  |  | 
|  | /* return the moved sg_head pointer */ | 
|  | return sg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist | 
|  | * | 
|  | * @nx_dst: pointer to the first nx_sg element to write | 
|  | * @sglen: max number of nx_sg entries we're allowed to write | 
|  | * @sg_src: pointer to the source linux scatterlist to walk | 
|  | * @start: number of bytes to fast-forward past at the beginning of @sg_src | 
|  | * @src_len: number of bytes to walk in @sg_src | 
|  | */ | 
|  | struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst, | 
|  | unsigned int        sglen, | 
|  | struct scatterlist *sg_src, | 
|  | unsigned int        start, | 
|  | unsigned int       *src_len) | 
|  | { | 
|  | struct scatter_walk walk; | 
|  | struct nx_sg *nx_sg = nx_dst; | 
|  | unsigned int n, offset = 0, len = *src_len; | 
|  | char *dst; | 
|  |  | 
|  | /* we need to fast forward through @start bytes first */ | 
|  | for (;;) { | 
|  | scatterwalk_start(&walk, sg_src); | 
|  |  | 
|  | if (start < offset + sg_src->length) | 
|  | break; | 
|  |  | 
|  | offset += sg_src->length; | 
|  | sg_src = sg_next(sg_src); | 
|  | } | 
|  |  | 
|  | /* start - offset is the number of bytes to advance in the scatterlist | 
|  | * element we're currently looking at */ | 
|  | scatterwalk_advance(&walk, start - offset); | 
|  |  | 
|  | while (len && (nx_sg - nx_dst) < sglen) { | 
|  | n = scatterwalk_clamp(&walk, len); | 
|  | if (!n) { | 
|  | /* In cases where we have scatterlist chain sg_next | 
|  | * handles with it properly */ | 
|  | scatterwalk_start(&walk, sg_next(walk.sg)); | 
|  | n = scatterwalk_clamp(&walk, len); | 
|  | } | 
|  | dst = scatterwalk_map(&walk); | 
|  |  | 
|  | nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); | 
|  | len -= n; | 
|  |  | 
|  | scatterwalk_unmap(dst); | 
|  | scatterwalk_advance(&walk, n); | 
|  | scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); | 
|  | } | 
|  | /* update to_process */ | 
|  | *src_len -= len; | 
|  |  | 
|  | /* return the moved destination pointer */ | 
|  | return nx_sg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * trim_sg_list - ensures the bound in sg list. | 
|  | * @sg: sg list head | 
|  | * @end: sg lisg end | 
|  | * @delta:  is the amount we need to crop in order to bound the list. | 
|  | * | 
|  | */ | 
|  | static long int trim_sg_list(struct nx_sg *sg, | 
|  | struct nx_sg *end, | 
|  | unsigned int delta, | 
|  | unsigned int *nbytes) | 
|  | { | 
|  | long int oplen; | 
|  | long int data_back; | 
|  | unsigned int is_delta = delta; | 
|  |  | 
|  | while (delta && end > sg) { | 
|  | struct nx_sg *last = end - 1; | 
|  |  | 
|  | if (last->len > delta) { | 
|  | last->len -= delta; | 
|  | delta = 0; | 
|  | } else { | 
|  | end--; | 
|  | delta -= last->len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* There are cases where we need to crop list in order to make it | 
|  | * a block size multiple, but we also need to align data. In order to | 
|  | * that we need to calculate how much we need to put back to be | 
|  | * processed | 
|  | */ | 
|  | oplen = (sg - end) * sizeof(struct nx_sg); | 
|  | if (is_delta) { | 
|  | data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len; | 
|  | data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1)); | 
|  | *nbytes -= data_back; | 
|  | } | 
|  |  | 
|  | return oplen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_build_sg_lists - walk the input scatterlists and build arrays of NX | 
|  | *                     scatterlists based on them. | 
|  | * | 
|  | * @nx_ctx: NX crypto context for the lists we're building | 
|  | * @desc: the block cipher descriptor for the operation | 
|  | * @dst: destination scatterlist | 
|  | * @src: source scatterlist | 
|  | * @nbytes: length of data described in the scatterlists | 
|  | * @offset: number of bytes to fast-forward past at the beginning of | 
|  | *          scatterlists. | 
|  | * @iv: destination for the iv data, if the algorithm requires it | 
|  | * | 
|  | * This is common code shared by all the AES algorithms. It uses the block | 
|  | * cipher walk routines to traverse input and output scatterlists, building | 
|  | * corresponding NX scatterlists | 
|  | */ | 
|  | int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx, | 
|  | struct blkcipher_desc *desc, | 
|  | struct scatterlist    *dst, | 
|  | struct scatterlist    *src, | 
|  | unsigned int          *nbytes, | 
|  | unsigned int           offset, | 
|  | u8                    *iv) | 
|  | { | 
|  | unsigned int delta = 0; | 
|  | unsigned int total = *nbytes; | 
|  | struct nx_sg *nx_insg = nx_ctx->in_sg; | 
|  | struct nx_sg *nx_outsg = nx_ctx->out_sg; | 
|  | unsigned int max_sg_len; | 
|  |  | 
|  | max_sg_len = min_t(u64, nx_ctx->ap->sglen, | 
|  | nx_driver.of.max_sg_len/sizeof(struct nx_sg)); | 
|  | max_sg_len = min_t(u64, max_sg_len, | 
|  | nx_ctx->ap->databytelen/NX_PAGE_SIZE); | 
|  |  | 
|  | if (iv) | 
|  | memcpy(iv, desc->info, AES_BLOCK_SIZE); | 
|  |  | 
|  | *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); | 
|  |  | 
|  | nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, | 
|  | offset, nbytes); | 
|  | nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, | 
|  | offset, nbytes); | 
|  |  | 
|  | if (*nbytes < total) | 
|  | delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); | 
|  |  | 
|  | /* these lengths should be negative, which will indicate to phyp that | 
|  | * the input and output parameters are scatterlists, not linear | 
|  | * buffers */ | 
|  | nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes); | 
|  | nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct | 
|  | * | 
|  | * @nx_ctx: the nx context to initialize | 
|  | * @function: the function code for the op | 
|  | */ | 
|  | void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) | 
|  | { | 
|  | spin_lock_init(&nx_ctx->lock); | 
|  | memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); | 
|  | nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; | 
|  |  | 
|  | nx_ctx->op.flags = function; | 
|  | nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); | 
|  | nx_ctx->op.in = __pa(nx_ctx->in_sg); | 
|  | nx_ctx->op.out = __pa(nx_ctx->out_sg); | 
|  |  | 
|  | if (nx_ctx->csbcpb_aead) { | 
|  | nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; | 
|  |  | 
|  | nx_ctx->op_aead.flags = function; | 
|  | nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); | 
|  | nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); | 
|  | nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nx_of_update_status(struct device   *dev, | 
|  | struct property *p, | 
|  | struct nx_of    *props) | 
|  | { | 
|  | if (!strncmp(p->value, "okay", p->length)) { | 
|  | props->status = NX_WAITING; | 
|  | props->flags |= NX_OF_FLAG_STATUS_SET; | 
|  | } else { | 
|  | dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, | 
|  | (char *)p->value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nx_of_update_sglen(struct device   *dev, | 
|  | struct property *p, | 
|  | struct nx_of    *props) | 
|  | { | 
|  | if (p->length != sizeof(props->max_sg_len)) { | 
|  | dev_err(dev, "%s: unexpected format for " | 
|  | "ibm,max-sg-len property\n", __func__); | 
|  | dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " | 
|  | "long, expected %zd bytes\n", __func__, | 
|  | p->length, sizeof(props->max_sg_len)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | props->max_sg_len = *(u32 *)p->value; | 
|  | props->flags |= NX_OF_FLAG_MAXSGLEN_SET; | 
|  | } | 
|  |  | 
|  | static void nx_of_update_msc(struct device   *dev, | 
|  | struct property *p, | 
|  | struct nx_of    *props) | 
|  | { | 
|  | struct msc_triplet *trip; | 
|  | struct max_sync_cop *msc; | 
|  | unsigned int bytes_so_far, i, lenp; | 
|  |  | 
|  | msc = (struct max_sync_cop *)p->value; | 
|  | lenp = p->length; | 
|  |  | 
|  | /* You can't tell if the data read in for this property is sane by its | 
|  | * size alone. This is because there are sizes embedded in the data | 
|  | * structure. The best we can do is check lengths as we parse and bail | 
|  | * as soon as a length error is detected. */ | 
|  | bytes_so_far = 0; | 
|  |  | 
|  | while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { | 
|  | bytes_so_far += sizeof(struct max_sync_cop); | 
|  |  | 
|  | trip = msc->trip; | 
|  |  | 
|  | for (i = 0; | 
|  | ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && | 
|  | i < msc->triplets; | 
|  | i++) { | 
|  | if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) { | 
|  | dev_err(dev, "unknown function code/mode " | 
|  | "combo: %d/%d (ignored)\n", msc->fc, | 
|  | msc->mode); | 
|  | goto next_loop; | 
|  | } | 
|  |  | 
|  | if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) { | 
|  | dev_warn(dev, "bogus sglen/databytelen: " | 
|  | "%u/%u (ignored)\n", trip->sglen, | 
|  | trip->databytelen); | 
|  | goto next_loop; | 
|  | } | 
|  |  | 
|  | switch (trip->keybitlen) { | 
|  | case 128: | 
|  | case 160: | 
|  | props->ap[msc->fc][msc->mode][0].databytelen = | 
|  | trip->databytelen; | 
|  | props->ap[msc->fc][msc->mode][0].sglen = | 
|  | trip->sglen; | 
|  | break; | 
|  | case 192: | 
|  | props->ap[msc->fc][msc->mode][1].databytelen = | 
|  | trip->databytelen; | 
|  | props->ap[msc->fc][msc->mode][1].sglen = | 
|  | trip->sglen; | 
|  | break; | 
|  | case 256: | 
|  | if (msc->fc == NX_FC_AES) { | 
|  | props->ap[msc->fc][msc->mode][2]. | 
|  | databytelen = trip->databytelen; | 
|  | props->ap[msc->fc][msc->mode][2].sglen = | 
|  | trip->sglen; | 
|  | } else if (msc->fc == NX_FC_AES_HMAC || | 
|  | msc->fc == NX_FC_SHA) { | 
|  | props->ap[msc->fc][msc->mode][1]. | 
|  | databytelen = trip->databytelen; | 
|  | props->ap[msc->fc][msc->mode][1].sglen = | 
|  | trip->sglen; | 
|  | } else { | 
|  | dev_warn(dev, "unknown function " | 
|  | "code/key bit len combo" | 
|  | ": (%u/256)\n", msc->fc); | 
|  | } | 
|  | break; | 
|  | case 512: | 
|  | props->ap[msc->fc][msc->mode][2].databytelen = | 
|  | trip->databytelen; | 
|  | props->ap[msc->fc][msc->mode][2].sglen = | 
|  | trip->sglen; | 
|  | break; | 
|  | default: | 
|  | dev_warn(dev, "unknown function code/key bit " | 
|  | "len combo: (%u/%u)\n", msc->fc, | 
|  | trip->keybitlen); | 
|  | break; | 
|  | } | 
|  | next_loop: | 
|  | bytes_so_far += sizeof(struct msc_triplet); | 
|  | trip++; | 
|  | } | 
|  |  | 
|  | msc = (struct max_sync_cop *)trip; | 
|  | } | 
|  |  | 
|  | props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_of_init - read openFirmware values from the device tree | 
|  | * | 
|  | * @dev: device handle | 
|  | * @props: pointer to struct to hold the properties values | 
|  | * | 
|  | * Called once at driver probe time, this function will read out the | 
|  | * openFirmware properties we use at runtime. If all the OF properties are | 
|  | * acceptable, when we exit this function props->flags will indicate that | 
|  | * we're ready to register our crypto algorithms. | 
|  | */ | 
|  | static void nx_of_init(struct device *dev, struct nx_of *props) | 
|  | { | 
|  | struct device_node *base_node = dev->of_node; | 
|  | struct property *p; | 
|  |  | 
|  | p = of_find_property(base_node, "status", NULL); | 
|  | if (!p) | 
|  | dev_info(dev, "%s: property 'status' not found\n", __func__); | 
|  | else | 
|  | nx_of_update_status(dev, p, props); | 
|  |  | 
|  | p = of_find_property(base_node, "ibm,max-sg-len", NULL); | 
|  | if (!p) | 
|  | dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", | 
|  | __func__); | 
|  | else | 
|  | nx_of_update_sglen(dev, p, props); | 
|  |  | 
|  | p = of_find_property(base_node, "ibm,max-sync-cop", NULL); | 
|  | if (!p) | 
|  | dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", | 
|  | __func__); | 
|  | else | 
|  | nx_of_update_msc(dev, p, props); | 
|  | } | 
|  |  | 
|  | static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot) | 
|  | { | 
|  | struct alg_props *props = &nx_driver.of.ap[fc][mode][slot]; | 
|  |  | 
|  | if (!props->sglen || props->databytelen < NX_PAGE_SIZE) { | 
|  | if (dev) | 
|  | dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: " | 
|  | "%u/%u (ignored)\n", fc, mode, slot, | 
|  | props->sglen, props->databytelen); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool nx_check_props(struct device *dev, u32 fc, u32 mode) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | if (!nx_check_prop(dev, fc, mode, i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode) | 
|  | { | 
|  | return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? | 
|  | crypto_register_alg(alg) : 0; | 
|  | } | 
|  |  | 
|  | static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode) | 
|  | { | 
|  | return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? | 
|  | crypto_register_aead(alg) : 0; | 
|  | } | 
|  |  | 
|  | static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot) | 
|  | { | 
|  | return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev, | 
|  | fc, mode, slot) : | 
|  | nx_check_props(&nx_driver.viodev->dev, fc, mode)) ? | 
|  | crypto_register_shash(alg) : 0; | 
|  | } | 
|  |  | 
|  | static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode) | 
|  | { | 
|  | if (nx_check_props(NULL, fc, mode)) | 
|  | crypto_unregister_alg(alg); | 
|  | } | 
|  |  | 
|  | static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode) | 
|  | { | 
|  | if (nx_check_props(NULL, fc, mode)) | 
|  | crypto_unregister_aead(alg); | 
|  | } | 
|  |  | 
|  | static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode, | 
|  | int slot) | 
|  | { | 
|  | if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) : | 
|  | nx_check_props(NULL, fc, mode)) | 
|  | crypto_unregister_shash(alg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_register_algs - register algorithms with the crypto API | 
|  | * | 
|  | * Called from nx_probe() | 
|  | * | 
|  | * If all OF properties are in an acceptable state, the driver flags will | 
|  | * indicate that we're ready and we'll create our debugfs files and register | 
|  | * out crypto algorithms. | 
|  | */ | 
|  | static int nx_register_algs(void) | 
|  | { | 
|  | int rc = -1; | 
|  |  | 
|  | if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) | 
|  | goto out; | 
|  |  | 
|  | memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); | 
|  |  | 
|  | NX_DEBUGFS_INIT(&nx_driver); | 
|  |  | 
|  | nx_driver.of.status = NX_OKAY; | 
|  |  | 
|  | rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
|  | if (rc) | 
|  | goto out_unreg_ecb; | 
|  |  | 
|  | rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); | 
|  | if (rc) | 
|  | goto out_unreg_cbc; | 
|  |  | 
|  | rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
|  | if (rc) | 
|  | goto out_unreg_ctr3686; | 
|  |  | 
|  | rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
|  | if (rc) | 
|  | goto out_unreg_gcm; | 
|  |  | 
|  | rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
|  | if (rc) | 
|  | goto out_unreg_gcm4106; | 
|  |  | 
|  | rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
|  | if (rc) | 
|  | goto out_unreg_ccm; | 
|  |  | 
|  | rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, | 
|  | NX_PROPS_SHA256); | 
|  | if (rc) | 
|  | goto out_unreg_ccm4309; | 
|  |  | 
|  | rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, | 
|  | NX_PROPS_SHA512); | 
|  | if (rc) | 
|  | goto out_unreg_s256; | 
|  |  | 
|  | rc = nx_register_shash(&nx_shash_aes_xcbc_alg, | 
|  | NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); | 
|  | if (rc) | 
|  | goto out_unreg_s512; | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_unreg_s512: | 
|  | nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, | 
|  | NX_PROPS_SHA512); | 
|  | out_unreg_s256: | 
|  | nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, | 
|  | NX_PROPS_SHA256); | 
|  | out_unreg_ccm4309: | 
|  | nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
|  | out_unreg_ccm: | 
|  | nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
|  | out_unreg_gcm4106: | 
|  | nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
|  | out_unreg_gcm: | 
|  | nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
|  | out_unreg_ctr3686: | 
|  | nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); | 
|  | out_unreg_cbc: | 
|  | nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
|  | out_unreg_ecb: | 
|  | nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_crypto_ctx_init - create and initialize a crypto api context | 
|  | * | 
|  | * @nx_ctx: the crypto api context | 
|  | * @fc: function code for the context | 
|  | * @mode: the function code specific mode for this context | 
|  | */ | 
|  | static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) | 
|  | { | 
|  | if (nx_driver.of.status != NX_OKAY) { | 
|  | pr_err("Attempt to initialize NX crypto context while device " | 
|  | "is not available!\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* we need an extra page for csbcpb_aead for these modes */ | 
|  | if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) | 
|  | nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + | 
|  | sizeof(struct nx_csbcpb); | 
|  | else | 
|  | nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + | 
|  | sizeof(struct nx_csbcpb); | 
|  |  | 
|  | nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); | 
|  | if (!nx_ctx->kmem) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* the csbcpb and scatterlists must be 4K aligned pages */ | 
|  | nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, | 
|  | (u64)NX_PAGE_SIZE)); | 
|  | nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); | 
|  | nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); | 
|  |  | 
|  | if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) | 
|  | nx_ctx->csbcpb_aead = | 
|  | (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + | 
|  | NX_PAGE_SIZE); | 
|  |  | 
|  | /* give each context a pointer to global stats and their OF | 
|  | * properties */ | 
|  | nx_ctx->stats = &nx_driver.stats; | 
|  | memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], | 
|  | sizeof(struct alg_props) * 3); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* entry points from the crypto tfm initializers */ | 
|  | int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm) | 
|  | { | 
|  | crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx)); | 
|  | return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_CCM); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm) | 
|  | { | 
|  | crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx)); | 
|  | return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_GCM); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_CTR); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_CBC); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_ECB); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); | 
|  | } | 
|  |  | 
|  | int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
|  | NX_MODE_AES_XCBC_MAC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nx_crypto_ctx_exit - destroy a crypto api context | 
|  | * | 
|  | * @tfm: the crypto transform pointer for the context | 
|  | * | 
|  | * As crypto API contexts are destroyed, this exit hook is called to free the | 
|  | * memory associated with it. | 
|  | */ | 
|  | void nx_crypto_ctx_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | kzfree(nx_ctx->kmem); | 
|  | nx_ctx->csbcpb = NULL; | 
|  | nx_ctx->csbcpb_aead = NULL; | 
|  | nx_ctx->in_sg = NULL; | 
|  | nx_ctx->out_sg = NULL; | 
|  | } | 
|  |  | 
|  | void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm) | 
|  | { | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm); | 
|  |  | 
|  | kzfree(nx_ctx->kmem); | 
|  | } | 
|  |  | 
|  | static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) | 
|  | { | 
|  | dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", | 
|  | viodev->name, viodev->resource_id); | 
|  |  | 
|  | if (nx_driver.viodev) { | 
|  | dev_err(&viodev->dev, "%s: Attempt to register more than one " | 
|  | "instance of the hardware\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nx_driver.viodev = viodev; | 
|  |  | 
|  | nx_of_init(&viodev->dev, &nx_driver.of); | 
|  |  | 
|  | return nx_register_algs(); | 
|  | } | 
|  |  | 
|  | static int nx_remove(struct vio_dev *viodev) | 
|  | { | 
|  | dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", | 
|  | viodev->unit_address); | 
|  |  | 
|  | if (nx_driver.of.status == NX_OKAY) { | 
|  | NX_DEBUGFS_FINI(&nx_driver); | 
|  |  | 
|  | nx_unregister_shash(&nx_shash_aes_xcbc_alg, | 
|  | NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); | 
|  | nx_unregister_shash(&nx_shash_sha512_alg, | 
|  | NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256); | 
|  | nx_unregister_shash(&nx_shash_sha256_alg, | 
|  | NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512); | 
|  | nx_unregister_aead(&nx_ccm4309_aes_alg, | 
|  | NX_FC_AES, NX_MODE_AES_CCM); | 
|  | nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
|  | nx_unregister_aead(&nx_gcm4106_aes_alg, | 
|  | NX_FC_AES, NX_MODE_AES_GCM); | 
|  | nx_unregister_aead(&nx_gcm_aes_alg, | 
|  | NX_FC_AES, NX_MODE_AES_GCM); | 
|  | nx_unregister_alg(&nx_ctr3686_aes_alg, | 
|  | NX_FC_AES, NX_MODE_AES_CTR); | 
|  | nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
|  | nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* module wide initialization/cleanup */ | 
|  | static int __init nx_init(void) | 
|  | { | 
|  | return vio_register_driver(&nx_driver.viodriver); | 
|  | } | 
|  |  | 
|  | static void __exit nx_fini(void) | 
|  | { | 
|  | vio_unregister_driver(&nx_driver.viodriver); | 
|  | } | 
|  |  | 
|  | static const struct vio_device_id nx_crypto_driver_ids[] = { | 
|  | { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, | 
|  | { "", "" } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); | 
|  |  | 
|  | /* driver state structure */ | 
|  | struct nx_crypto_driver nx_driver = { | 
|  | .viodriver = { | 
|  | .id_table = nx_crypto_driver_ids, | 
|  | .probe = nx_probe, | 
|  | .remove = nx_remove, | 
|  | .name  = NX_NAME, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_init(nx_init); | 
|  | module_exit(nx_fini); | 
|  |  | 
|  | MODULE_AUTHOR("Kent Yoder <[email protected]>"); | 
|  | MODULE_DESCRIPTION(NX_STRING); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(NX_VERSION); |