|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Windfarm PowerMac thermal control. | 
|  | * Control loops for RackMack3,1 (Xserve G5) | 
|  | * | 
|  | * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/smu.h> | 
|  |  | 
|  | #include "windfarm.h" | 
|  | #include "windfarm_pid.h" | 
|  | #include "windfarm_mpu.h" | 
|  |  | 
|  | #define VERSION "1.0" | 
|  |  | 
|  | #undef DEBUG | 
|  | #undef LOTSA_DEBUG | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DBG(args...)	printk(args) | 
|  | #else | 
|  | #define DBG(args...)	do { } while(0) | 
|  | #endif | 
|  |  | 
|  | #ifdef LOTSA_DEBUG | 
|  | #define DBG_LOTS(args...)	printk(args) | 
|  | #else | 
|  | #define DBG_LOTS(args...)	do { } while(0) | 
|  | #endif | 
|  |  | 
|  | /* define this to force CPU overtemp to 60 degree, useful for testing | 
|  | * the overtemp code | 
|  | */ | 
|  | #undef HACKED_OVERTEMP | 
|  |  | 
|  | /* We currently only handle 2 chips */ | 
|  | #define NR_CHIPS	2 | 
|  | #define NR_CPU_FANS	3 * NR_CHIPS | 
|  |  | 
|  | /* Controls and sensors */ | 
|  | static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; | 
|  | static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; | 
|  | static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; | 
|  | static struct wf_sensor *backside_temp; | 
|  | static struct wf_sensor *slots_temp; | 
|  | static struct wf_sensor *dimms_temp; | 
|  |  | 
|  | static struct wf_control *cpu_fans[NR_CHIPS][3]; | 
|  | static struct wf_control *backside_fan; | 
|  | static struct wf_control *slots_fan; | 
|  | static struct wf_control *cpufreq_clamp; | 
|  |  | 
|  | /* We keep a temperature history for average calculation of 180s */ | 
|  | #define CPU_TEMP_HIST_SIZE	180 | 
|  |  | 
|  | /* PID loop state */ | 
|  | static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; | 
|  | static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; | 
|  | static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; | 
|  | static int cpu_thist_pt; | 
|  | static s64 cpu_thist_total; | 
|  | static s32 cpu_all_tmax = 100 << 16; | 
|  | static struct wf_pid_state backside_pid; | 
|  | static int backside_tick; | 
|  | static struct wf_pid_state slots_pid; | 
|  | static int slots_tick; | 
|  | static int slots_speed; | 
|  | static struct wf_pid_state dimms_pid; | 
|  | static int dimms_output_clamp; | 
|  |  | 
|  | static int nr_chips; | 
|  | static bool have_all_controls; | 
|  | static bool have_all_sensors; | 
|  | static bool started; | 
|  |  | 
|  | static int failure_state; | 
|  | #define FAILURE_SENSOR		1 | 
|  | #define FAILURE_FAN		2 | 
|  | #define FAILURE_PERM		4 | 
|  | #define FAILURE_LOW_OVERTEMP	8 | 
|  | #define FAILURE_HIGH_OVERTEMP	16 | 
|  |  | 
|  | /* Overtemp values */ | 
|  | #define LOW_OVER_AVERAGE	0 | 
|  | #define LOW_OVER_IMMEDIATE	(10 << 16) | 
|  | #define LOW_OVER_CLEAR		((-10) << 16) | 
|  | #define HIGH_OVER_IMMEDIATE	(14 << 16) | 
|  | #define HIGH_OVER_AVERAGE	(10 << 16) | 
|  | #define HIGH_OVER_IMMEDIATE	(14 << 16) | 
|  |  | 
|  |  | 
|  | static void cpu_max_all_fans(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* We max all CPU fans in case of a sensor error. We also do the | 
|  | * cpufreq clamping now, even if it's supposedly done later by the | 
|  | * generic code anyway, we do it earlier here to react faster | 
|  | */ | 
|  | if (cpufreq_clamp) | 
|  | wf_control_set_max(cpufreq_clamp); | 
|  | for (i = 0; i < nr_chips; i++) { | 
|  | if (cpu_fans[i][0]) | 
|  | wf_control_set_max(cpu_fans[i][0]); | 
|  | if (cpu_fans[i][1]) | 
|  | wf_control_set_max(cpu_fans[i][1]); | 
|  | if (cpu_fans[i][2]) | 
|  | wf_control_set_max(cpu_fans[i][2]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpu_check_overtemp(s32 temp) | 
|  | { | 
|  | int new_state = 0; | 
|  | s32 t_avg, t_old; | 
|  | static bool first = true; | 
|  |  | 
|  | /* First check for immediate overtemps */ | 
|  | if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { | 
|  | new_state |= FAILURE_LOW_OVERTEMP; | 
|  | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) | 
|  | printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" | 
|  | " temperature !\n"); | 
|  | } | 
|  | if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { | 
|  | new_state |= FAILURE_HIGH_OVERTEMP; | 
|  | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) | 
|  | printk(KERN_ERR "windfarm: Critical overtemp due to" | 
|  | " immediate CPU temperature !\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first time around, initialize the array with the first | 
|  | * temperature reading | 
|  | */ | 
|  | if (first) { | 
|  | int i; | 
|  |  | 
|  | cpu_thist_total = 0; | 
|  | for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { | 
|  | cpu_thist[i] = temp; | 
|  | cpu_thist_total += temp; | 
|  | } | 
|  | first = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate a history of max temperatures and use that for the | 
|  | * overtemp management | 
|  | */ | 
|  | t_old = cpu_thist[cpu_thist_pt]; | 
|  | cpu_thist[cpu_thist_pt] = temp; | 
|  | cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; | 
|  | cpu_thist_total -= t_old; | 
|  | cpu_thist_total += temp; | 
|  | t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; | 
|  |  | 
|  | DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", | 
|  | FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); | 
|  |  | 
|  | /* Now check for average overtemps */ | 
|  | if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { | 
|  | new_state |= FAILURE_LOW_OVERTEMP; | 
|  | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) | 
|  | printk(KERN_ERR "windfarm: Overtemp due to average CPU" | 
|  | " temperature !\n"); | 
|  | } | 
|  | if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { | 
|  | new_state |= FAILURE_HIGH_OVERTEMP; | 
|  | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) | 
|  | printk(KERN_ERR "windfarm: Critical overtemp due to" | 
|  | " average CPU temperature !\n"); | 
|  | } | 
|  |  | 
|  | /* Now handle overtemp conditions. We don't currently use the windfarm | 
|  | * overtemp handling core as it's not fully suited to the needs of those | 
|  | * new machine. This will be fixed later. | 
|  | */ | 
|  | if (new_state) { | 
|  | /* High overtemp -> immediate shutdown */ | 
|  | if (new_state & FAILURE_HIGH_OVERTEMP) | 
|  | machine_power_off(); | 
|  | if ((failure_state & new_state) != new_state) | 
|  | cpu_max_all_fans(); | 
|  | failure_state |= new_state; | 
|  | } else if ((failure_state & FAILURE_LOW_OVERTEMP) && | 
|  | (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { | 
|  | printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); | 
|  | failure_state &= ~FAILURE_LOW_OVERTEMP; | 
|  | } | 
|  |  | 
|  | return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); | 
|  | } | 
|  |  | 
|  | static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) | 
|  | { | 
|  | s32 dtemp, volts, amps; | 
|  | int rc; | 
|  |  | 
|  | /* Get diode temperature */ | 
|  | rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); | 
|  | if (rc) { | 
|  | DBG("  CPU%d: temp reading error !\n", cpu); | 
|  | return -EIO; | 
|  | } | 
|  | DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); | 
|  | *temp = dtemp; | 
|  |  | 
|  | /* Get voltage */ | 
|  | rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); | 
|  | if (rc) { | 
|  | DBG("  CPU%d, volts reading error !\n", cpu); | 
|  | return -EIO; | 
|  | } | 
|  | DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts))); | 
|  |  | 
|  | /* Get current */ | 
|  | rc = wf_sensor_get(sens_cpu_amps[cpu], &s); | 
|  | if (rc) { | 
|  | DBG("  CPU%d, current reading error !\n", cpu); | 
|  | return -EIO; | 
|  | } | 
|  | DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps))); | 
|  |  | 
|  | /* Calculate power */ | 
|  |  | 
|  | /* Scale voltage and current raw sensor values according to fixed scales | 
|  | * obtained in Darwin and calculate power from I and V | 
|  | */ | 
|  | *power = (((u64)volts) * ((u64)amps)) >> 16; | 
|  |  | 
|  | DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power))); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void cpu_fans_tick(void) | 
|  | { | 
|  | int err, cpu, i; | 
|  | s32 speed, temp, power, t_max = 0; | 
|  |  | 
|  | DBG_LOTS("* cpu fans_tick_split()\n"); | 
|  |  | 
|  | for (cpu = 0; cpu < nr_chips; ++cpu) { | 
|  | struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; | 
|  |  | 
|  | /* Read current speed */ | 
|  | wf_control_get(cpu_fans[cpu][0], &sp->target); | 
|  |  | 
|  | err = read_one_cpu_vals(cpu, &temp, &power); | 
|  | if (err) { | 
|  | failure_state |= FAILURE_SENSOR; | 
|  | cpu_max_all_fans(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Keep track of highest temp */ | 
|  | t_max = max(t_max, temp); | 
|  |  | 
|  | /* Handle possible overtemps */ | 
|  | if (cpu_check_overtemp(t_max)) | 
|  | return; | 
|  |  | 
|  | /* Run PID */ | 
|  | wf_cpu_pid_run(sp, power, temp); | 
|  |  | 
|  | DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target); | 
|  |  | 
|  | /* Apply DIMMs clamp */ | 
|  | speed = max(sp->target, dimms_output_clamp); | 
|  |  | 
|  | /* Apply result to all cpu fans */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | err = wf_control_set(cpu_fans[cpu][i], speed); | 
|  | if (err) { | 
|  | pr_warn("wf_rm31: Fan %s reports error %d\n", | 
|  | cpu_fans[cpu][i]->name, err); | 
|  | failure_state |= FAILURE_FAN; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implementation... */ | 
|  | static int cpu_setup_pid(int cpu) | 
|  | { | 
|  | struct wf_cpu_pid_param pid; | 
|  | const struct mpu_data *mpu = cpu_mpu_data[cpu]; | 
|  | s32 tmax, ttarget, ptarget; | 
|  | int fmin, fmax, hsize; | 
|  |  | 
|  | /* Get PID params from the appropriate MPU EEPROM */ | 
|  | tmax = mpu->tmax << 16; | 
|  | ttarget = mpu->ttarget << 16; | 
|  | ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; | 
|  |  | 
|  | DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", | 
|  | cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); | 
|  |  | 
|  | /* We keep a global tmax for overtemp calculations */ | 
|  | if (tmax < cpu_all_tmax) | 
|  | cpu_all_tmax = tmax; | 
|  |  | 
|  | /* Set PID min/max by using the rear fan min/max */ | 
|  | fmin = wf_control_get_min(cpu_fans[cpu][0]); | 
|  | fmax = wf_control_get_max(cpu_fans[cpu][0]); | 
|  | DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); | 
|  |  | 
|  | /* History size */ | 
|  | hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); | 
|  | DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); | 
|  |  | 
|  | /* Initialize PID loop */ | 
|  | pid.interval	= 1;	/* seconds */ | 
|  | pid.history_len = hsize; | 
|  | pid.gd		= mpu->pid_gd; | 
|  | pid.gp		= mpu->pid_gp; | 
|  | pid.gr		= mpu->pid_gr; | 
|  | pid.tmax	= tmax; | 
|  | pid.ttarget	= ttarget; | 
|  | pid.pmaxadj	= ptarget; | 
|  | pid.min		= fmin; | 
|  | pid.max		= fmax; | 
|  |  | 
|  | wf_cpu_pid_init(&cpu_pid[cpu], &pid); | 
|  | cpu_pid[cpu].target = 4000; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Backside/U3 fan */ | 
|  | static const struct wf_pid_param backside_param = { | 
|  | .interval	= 1, | 
|  | .history_len	= 2, | 
|  | .gd		= 0x00500000, | 
|  | .gp		= 0x0004cccc, | 
|  | .gr		= 0, | 
|  | .itarget	= 70 << 16, | 
|  | .additive	= 0, | 
|  | .min		= 20, | 
|  | .max		= 100, | 
|  | }; | 
|  |  | 
|  | /* DIMMs temperature (clamp the backside fan) */ | 
|  | static const struct wf_pid_param dimms_param = { | 
|  | .interval	= 1, | 
|  | .history_len	= 20, | 
|  | .gd		= 0, | 
|  | .gp		= 0, | 
|  | .gr		= 0x06553600, | 
|  | .itarget	= 50 << 16, | 
|  | .additive	= 0, | 
|  | .min		= 4000, | 
|  | .max		= 14000, | 
|  | }; | 
|  |  | 
|  | static void backside_fan_tick(void) | 
|  | { | 
|  | s32 temp, dtemp; | 
|  | int speed, dspeed, fan_min; | 
|  | int err; | 
|  |  | 
|  | if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick) | 
|  | return; | 
|  | if (--backside_tick > 0) | 
|  | return; | 
|  | backside_tick = backside_pid.param.interval; | 
|  |  | 
|  | DBG_LOTS("* backside fans tick\n"); | 
|  |  | 
|  | /* Update fan speed from actual fans */ | 
|  | err = wf_control_get(backside_fan, &speed); | 
|  | if (!err) | 
|  | backside_pid.target = speed; | 
|  |  | 
|  | err = wf_sensor_get(backside_temp, &temp); | 
|  | if (err) { | 
|  | printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n", | 
|  | err); | 
|  | failure_state |= FAILURE_SENSOR; | 
|  | wf_control_set_max(backside_fan); | 
|  | return; | 
|  | } | 
|  | speed = wf_pid_run(&backside_pid, temp); | 
|  |  | 
|  | DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", | 
|  | FIX32TOPRINT(temp), speed); | 
|  |  | 
|  | err = wf_sensor_get(dimms_temp, &dtemp); | 
|  | if (err) { | 
|  | printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n", | 
|  | err); | 
|  | failure_state |= FAILURE_SENSOR; | 
|  | wf_control_set_max(backside_fan); | 
|  | return; | 
|  | } | 
|  | dspeed = wf_pid_run(&dimms_pid, dtemp); | 
|  | dimms_output_clamp = dspeed; | 
|  |  | 
|  | fan_min = (dspeed * 100) / 14000; | 
|  | fan_min = max(fan_min, backside_param.min); | 
|  | speed = max(speed, fan_min); | 
|  |  | 
|  | err = wf_control_set(backside_fan, speed); | 
|  | if (err) { | 
|  | printk(KERN_WARNING "windfarm: backside fan error %d\n", err); | 
|  | failure_state |= FAILURE_FAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void backside_setup_pid(void) | 
|  | { | 
|  | /* first time initialize things */ | 
|  | s32 fmin = wf_control_get_min(backside_fan); | 
|  | s32 fmax = wf_control_get_max(backside_fan); | 
|  | struct wf_pid_param param; | 
|  |  | 
|  | param = backside_param; | 
|  | param.min = max(param.min, fmin); | 
|  | param.max = min(param.max, fmax); | 
|  | wf_pid_init(&backside_pid, ¶m); | 
|  |  | 
|  | param = dimms_param; | 
|  | wf_pid_init(&dimms_pid, ¶m); | 
|  |  | 
|  | backside_tick = 1; | 
|  |  | 
|  | pr_info("wf_rm31: Backside control loop started.\n"); | 
|  | } | 
|  |  | 
|  | /* Slots fan */ | 
|  | static const struct wf_pid_param slots_param = { | 
|  | .interval	= 1, | 
|  | .history_len	= 20, | 
|  | .gd		= 0, | 
|  | .gp		= 0, | 
|  | .gr		= 0x00100000, | 
|  | .itarget	= 3200000, | 
|  | .additive	= 0, | 
|  | .min		= 20, | 
|  | .max		= 100, | 
|  | }; | 
|  |  | 
|  | static void slots_fan_tick(void) | 
|  | { | 
|  | s32 temp; | 
|  | int speed; | 
|  | int err; | 
|  |  | 
|  | if (!slots_fan || !slots_temp || !slots_tick) | 
|  | return; | 
|  | if (--slots_tick > 0) | 
|  | return; | 
|  | slots_tick = slots_pid.param.interval; | 
|  |  | 
|  | DBG_LOTS("* slots fans tick\n"); | 
|  |  | 
|  | err = wf_sensor_get(slots_temp, &temp); | 
|  | if (err) { | 
|  | pr_warn("wf_rm31: slots temp sensor error %d\n", err); | 
|  | failure_state |= FAILURE_SENSOR; | 
|  | wf_control_set_max(slots_fan); | 
|  | return; | 
|  | } | 
|  | speed = wf_pid_run(&slots_pid, temp); | 
|  |  | 
|  | DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n", | 
|  | FIX32TOPRINT(temp), speed); | 
|  |  | 
|  | slots_speed = speed; | 
|  | err = wf_control_set(slots_fan, speed); | 
|  | if (err) { | 
|  | printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err); | 
|  | failure_state |= FAILURE_FAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void slots_setup_pid(void) | 
|  | { | 
|  | /* first time initialize things */ | 
|  | s32 fmin = wf_control_get_min(slots_fan); | 
|  | s32 fmax = wf_control_get_max(slots_fan); | 
|  | struct wf_pid_param param = slots_param; | 
|  |  | 
|  | param.min = max(param.min, fmin); | 
|  | param.max = min(param.max, fmax); | 
|  | wf_pid_init(&slots_pid, ¶m); | 
|  | slots_tick = 1; | 
|  |  | 
|  | pr_info("wf_rm31: Slots control loop started.\n"); | 
|  | } | 
|  |  | 
|  | static void set_fail_state(void) | 
|  | { | 
|  | cpu_max_all_fans(); | 
|  |  | 
|  | if (backside_fan) | 
|  | wf_control_set_max(backside_fan); | 
|  | if (slots_fan) | 
|  | wf_control_set_max(slots_fan); | 
|  | } | 
|  |  | 
|  | static void rm31_tick(void) | 
|  | { | 
|  | int i, last_failure; | 
|  |  | 
|  | if (!started) { | 
|  | started = true; | 
|  | printk(KERN_INFO "windfarm: CPUs control loops started.\n"); | 
|  | for (i = 0; i < nr_chips; ++i) { | 
|  | if (cpu_setup_pid(i) < 0) { | 
|  | failure_state = FAILURE_PERM; | 
|  | set_fail_state(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); | 
|  |  | 
|  | backside_setup_pid(); | 
|  | slots_setup_pid(); | 
|  |  | 
|  | #ifdef HACKED_OVERTEMP | 
|  | cpu_all_tmax = 60 << 16; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Permanent failure, bail out */ | 
|  | if (failure_state & FAILURE_PERM) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Clear all failure bits except low overtemp which will be eventually | 
|  | * cleared by the control loop itself | 
|  | */ | 
|  | last_failure = failure_state; | 
|  | failure_state &= FAILURE_LOW_OVERTEMP; | 
|  | backside_fan_tick(); | 
|  | slots_fan_tick(); | 
|  |  | 
|  | /* We do CPUs last because they can be clamped high by | 
|  | * DIMM temperature | 
|  | */ | 
|  | cpu_fans_tick(); | 
|  |  | 
|  | DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n", | 
|  | last_failure, failure_state); | 
|  |  | 
|  | /* Check for failures. Any failure causes cpufreq clamping */ | 
|  | if (failure_state && last_failure == 0 && cpufreq_clamp) | 
|  | wf_control_set_max(cpufreq_clamp); | 
|  | if (failure_state == 0 && last_failure && cpufreq_clamp) | 
|  | wf_control_set_min(cpufreq_clamp); | 
|  |  | 
|  | /* That's it for now, we might want to deal with other failures | 
|  | * differently in the future though | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void rm31_new_control(struct wf_control *ct) | 
|  | { | 
|  | bool all_controls; | 
|  |  | 
|  | if (!strcmp(ct->name, "cpu-fan-a-0")) | 
|  | cpu_fans[0][0] = ct; | 
|  | else if (!strcmp(ct->name, "cpu-fan-b-0")) | 
|  | cpu_fans[0][1] = ct; | 
|  | else if (!strcmp(ct->name, "cpu-fan-c-0")) | 
|  | cpu_fans[0][2] = ct; | 
|  | else if (!strcmp(ct->name, "cpu-fan-a-1")) | 
|  | cpu_fans[1][0] = ct; | 
|  | else if (!strcmp(ct->name, "cpu-fan-b-1")) | 
|  | cpu_fans[1][1] = ct; | 
|  | else if (!strcmp(ct->name, "cpu-fan-c-1")) | 
|  | cpu_fans[1][2] = ct; | 
|  | else if (!strcmp(ct->name, "backside-fan")) | 
|  | backside_fan = ct; | 
|  | else if (!strcmp(ct->name, "slots-fan")) | 
|  | slots_fan = ct; | 
|  | else if (!strcmp(ct->name, "cpufreq-clamp")) | 
|  | cpufreq_clamp = ct; | 
|  |  | 
|  | all_controls = | 
|  | cpu_fans[0][0] && | 
|  | cpu_fans[0][1] && | 
|  | cpu_fans[0][2] && | 
|  | backside_fan && | 
|  | slots_fan; | 
|  | if (nr_chips > 1) | 
|  | all_controls &= | 
|  | cpu_fans[1][0] && | 
|  | cpu_fans[1][1] && | 
|  | cpu_fans[1][2]; | 
|  | have_all_controls = all_controls; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void rm31_new_sensor(struct wf_sensor *sr) | 
|  | { | 
|  | bool all_sensors; | 
|  |  | 
|  | if (!strcmp(sr->name, "cpu-diode-temp-0")) | 
|  | sens_cpu_temp[0] = sr; | 
|  | else if (!strcmp(sr->name, "cpu-diode-temp-1")) | 
|  | sens_cpu_temp[1] = sr; | 
|  | else if (!strcmp(sr->name, "cpu-voltage-0")) | 
|  | sens_cpu_volts[0] = sr; | 
|  | else if (!strcmp(sr->name, "cpu-voltage-1")) | 
|  | sens_cpu_volts[1] = sr; | 
|  | else if (!strcmp(sr->name, "cpu-current-0")) | 
|  | sens_cpu_amps[0] = sr; | 
|  | else if (!strcmp(sr->name, "cpu-current-1")) | 
|  | sens_cpu_amps[1] = sr; | 
|  | else if (!strcmp(sr->name, "backside-temp")) | 
|  | backside_temp = sr; | 
|  | else if (!strcmp(sr->name, "slots-temp")) | 
|  | slots_temp = sr; | 
|  | else if (!strcmp(sr->name, "dimms-temp")) | 
|  | dimms_temp = sr; | 
|  |  | 
|  | all_sensors = | 
|  | sens_cpu_temp[0] && | 
|  | sens_cpu_volts[0] && | 
|  | sens_cpu_amps[0] && | 
|  | backside_temp && | 
|  | slots_temp && | 
|  | dimms_temp; | 
|  | if (nr_chips > 1) | 
|  | all_sensors &= | 
|  | sens_cpu_temp[1] && | 
|  | sens_cpu_volts[1] && | 
|  | sens_cpu_amps[1]; | 
|  |  | 
|  | have_all_sensors = all_sensors; | 
|  | } | 
|  |  | 
|  | static int rm31_wf_notify(struct notifier_block *self, | 
|  | unsigned long event, void *data) | 
|  | { | 
|  | switch (event) { | 
|  | case WF_EVENT_NEW_SENSOR: | 
|  | rm31_new_sensor(data); | 
|  | break; | 
|  | case WF_EVENT_NEW_CONTROL: | 
|  | rm31_new_control(data); | 
|  | break; | 
|  | case WF_EVENT_TICK: | 
|  | if (have_all_controls && have_all_sensors) | 
|  | rm31_tick(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block rm31_events = { | 
|  | .notifier_call = rm31_wf_notify, | 
|  | }; | 
|  |  | 
|  | static int wf_rm31_probe(struct platform_device *dev) | 
|  | { | 
|  | wf_register_client(&rm31_events); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int wf_rm31_remove(struct platform_device *dev) | 
|  | { | 
|  | wf_unregister_client(&rm31_events); | 
|  |  | 
|  | /* should release all sensors and controls */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver wf_rm31_driver = { | 
|  | .probe	= wf_rm31_probe, | 
|  | .remove	= wf_rm31_remove, | 
|  | .driver	= { | 
|  | .name = "windfarm", | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init wf_rm31_init(void) | 
|  | { | 
|  | struct device_node *cpu; | 
|  | int i; | 
|  |  | 
|  | if (!of_machine_is_compatible("RackMac3,1")) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Count the number of CPU cores */ | 
|  | nr_chips = 0; | 
|  | for_each_node_by_type(cpu, "cpu") | 
|  | ++nr_chips; | 
|  | if (nr_chips > NR_CHIPS) | 
|  | nr_chips = NR_CHIPS; | 
|  |  | 
|  | pr_info("windfarm: Initializing for desktop G5 with %d chips\n", | 
|  | nr_chips); | 
|  |  | 
|  | /* Get MPU data for each CPU */ | 
|  | for (i = 0; i < nr_chips; i++) { | 
|  | cpu_mpu_data[i] = wf_get_mpu(i); | 
|  | if (!cpu_mpu_data[i]) { | 
|  | pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i); | 
|  | return -ENXIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef MODULE | 
|  | request_module("windfarm_fcu_controls"); | 
|  | request_module("windfarm_lm75_sensor"); | 
|  | request_module("windfarm_lm87_sensor"); | 
|  | request_module("windfarm_ad7417_sensor"); | 
|  | request_module("windfarm_max6690_sensor"); | 
|  | request_module("windfarm_cpufreq_clamp"); | 
|  | #endif /* MODULE */ | 
|  |  | 
|  | platform_driver_register(&wf_rm31_driver); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit wf_rm31_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&wf_rm31_driver); | 
|  | } | 
|  |  | 
|  | module_init(wf_rm31_init); | 
|  | module_exit(wf_rm31_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>"); | 
|  | MODULE_DESCRIPTION("Thermal control for Xserve G5"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:windfarm"); |