| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| #include "dm_services.h" |
| #include "bw_fixed.h" |
| |
| #define BITS_PER_FRACTIONAL_PART 24 |
| |
| #define MIN_I32 \ |
| (int64_t)(-(1LL << (63 - BITS_PER_FRACTIONAL_PART))) |
| |
| #define MAX_I32 \ |
| (int64_t)((1ULL << (63 - BITS_PER_FRACTIONAL_PART)) - 1) |
| |
| #define MIN_I64 \ |
| (int64_t)(-(1LL << 63)) |
| |
| #define MAX_I64 \ |
| (int64_t)((1ULL << 63) - 1) |
| |
| #define FRACTIONAL_PART_MASK \ |
| ((1ULL << BITS_PER_FRACTIONAL_PART) - 1) |
| |
| #define GET_INTEGER_PART(x) \ |
| ((x) >> BITS_PER_FRACTIONAL_PART) |
| |
| #define GET_FRACTIONAL_PART(x) \ |
| (FRACTIONAL_PART_MASK & (x)) |
| |
| static uint64_t abs_i64(int64_t arg) |
| { |
| if (arg >= 0) |
| return (uint64_t)(arg); |
| else |
| return (uint64_t)(-arg); |
| } |
| |
| struct bw_fixed bw_min3(struct bw_fixed v1, struct bw_fixed v2, struct bw_fixed v3) |
| { |
| return bw_min2(bw_min2(v1, v2), v3); |
| } |
| |
| struct bw_fixed bw_max3(struct bw_fixed v1, struct bw_fixed v2, struct bw_fixed v3) |
| { |
| return bw_max2(bw_max2(v1, v2), v3); |
| } |
| |
| struct bw_fixed bw_int_to_fixed(int64_t value) |
| { |
| struct bw_fixed res; |
| ASSERT(value < MAX_I32 && value > MIN_I32); |
| res.value = value << BITS_PER_FRACTIONAL_PART; |
| return res; |
| } |
| |
| int32_t bw_fixed_to_int(struct bw_fixed value) |
| { |
| return GET_INTEGER_PART(value.value); |
| } |
| |
| struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator) |
| { |
| struct bw_fixed res; |
| bool arg1_negative = numerator < 0; |
| bool arg2_negative = denominator < 0; |
| uint64_t arg1_value; |
| uint64_t arg2_value; |
| uint64_t remainder; |
| |
| /* determine integer part */ |
| uint64_t res_value; |
| |
| ASSERT(denominator != 0); |
| |
| arg1_value = abs_i64(numerator); |
| arg2_value = abs_i64(denominator); |
| res_value = div64_u64_rem(arg1_value, arg2_value, &remainder); |
| |
| ASSERT(res_value <= MAX_I32); |
| |
| /* determine fractional part */ |
| { |
| uint32_t i = BITS_PER_FRACTIONAL_PART; |
| |
| do |
| { |
| remainder <<= 1; |
| |
| res_value <<= 1; |
| |
| if (remainder >= arg2_value) |
| { |
| res_value |= 1; |
| remainder -= arg2_value; |
| } |
| } while (--i != 0); |
| } |
| |
| /* round up LSB */ |
| { |
| uint64_t summand = (remainder << 1) >= arg2_value; |
| |
| ASSERT(res_value <= MAX_I64 - summand); |
| |
| res_value += summand; |
| } |
| |
| res.value = (int64_t)(res_value); |
| |
| if (arg1_negative ^ arg2_negative) |
| res.value = -res.value; |
| return res; |
| } |
| |
| struct bw_fixed bw_min2(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return (arg1.value <= arg2.value) ? arg1 : arg2; |
| } |
| |
| struct bw_fixed bw_max2(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return (arg2.value <= arg1.value) ? arg1 : arg2; |
| } |
| |
| struct bw_fixed bw_floor2( |
| const struct bw_fixed arg, |
| const struct bw_fixed significance) |
| { |
| struct bw_fixed result; |
| int64_t multiplicand; |
| |
| multiplicand = div64_s64(arg.value, abs_i64(significance.value)); |
| result.value = abs_i64(significance.value) * multiplicand; |
| ASSERT(abs_i64(result.value) <= abs_i64(arg.value)); |
| return result; |
| } |
| |
| struct bw_fixed bw_ceil2( |
| const struct bw_fixed arg, |
| const struct bw_fixed significance) |
| { |
| struct bw_fixed result; |
| int64_t multiplicand; |
| |
| multiplicand = div64_s64(arg.value, abs_i64(significance.value)); |
| result.value = abs_i64(significance.value) * multiplicand; |
| if (abs_i64(result.value) < abs_i64(arg.value)) { |
| if (arg.value < 0) |
| result.value -= abs_i64(significance.value); |
| else |
| result.value += abs_i64(significance.value); |
| } |
| return result; |
| } |
| |
| struct bw_fixed bw_add(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| struct bw_fixed res; |
| |
| res.value = arg1.value + arg2.value; |
| |
| return res; |
| } |
| |
| struct bw_fixed bw_sub(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| struct bw_fixed res; |
| |
| res.value = arg1.value - arg2.value; |
| |
| return res; |
| } |
| |
| struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| struct bw_fixed res; |
| |
| bool arg1_negative = arg1.value < 0; |
| bool arg2_negative = arg2.value < 0; |
| |
| uint64_t arg1_value = abs_i64(arg1.value); |
| uint64_t arg2_value = abs_i64(arg2.value); |
| |
| uint64_t arg1_int = GET_INTEGER_PART(arg1_value); |
| uint64_t arg2_int = GET_INTEGER_PART(arg2_value); |
| |
| uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value); |
| uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value); |
| |
| uint64_t tmp; |
| |
| res.value = arg1_int * arg2_int; |
| |
| ASSERT(res.value <= MAX_I32); |
| |
| res.value <<= BITS_PER_FRACTIONAL_PART; |
| |
| tmp = arg1_int * arg2_fra; |
| |
| ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); |
| |
| res.value += tmp; |
| |
| tmp = arg2_int * arg1_fra; |
| |
| ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); |
| |
| res.value += tmp; |
| |
| tmp = arg1_fra * arg2_fra; |
| |
| tmp = (tmp >> BITS_PER_FRACTIONAL_PART) + |
| (tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value)); |
| |
| ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); |
| |
| res.value += tmp; |
| |
| if (arg1_negative ^ arg2_negative) |
| res.value = -res.value; |
| return res; |
| } |
| |
| struct bw_fixed bw_div(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| struct bw_fixed res = bw_frc_to_fixed(arg1.value, arg2.value); |
| return res; |
| } |
| |
| struct bw_fixed bw_mod(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| struct bw_fixed res; |
| div64_u64_rem(arg1.value, arg2.value, &res.value); |
| return res; |
| } |
| struct bw_fixed fixed31_32_to_bw_fixed(int64_t raw) |
| { |
| struct bw_fixed result = { 0 }; |
| |
| if (raw < 0) { |
| raw = -raw; |
| result.value = -(raw >> (32 - BITS_PER_FRACTIONAL_PART)); |
| } else { |
| result.value = raw >> (32 - BITS_PER_FRACTIONAL_PART); |
| } |
| |
| return result; |
| } |
| |
| bool bw_equ(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value == arg2.value; |
| } |
| |
| bool bw_neq(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value != arg2.value; |
| } |
| |
| bool bw_leq(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value <= arg2.value; |
| } |
| |
| bool bw_meq(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value >= arg2.value; |
| } |
| |
| bool bw_ltn(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value < arg2.value; |
| } |
| |
| bool bw_mtn(const struct bw_fixed arg1, const struct bw_fixed arg2) |
| { |
| return arg1.value > arg2.value; |
| } |