|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Special handling for DW DMA core | 
|  | * | 
|  | * Copyright (c) 2009, 2014 Intel Corporation. | 
|  | */ | 
|  |  | 
|  | #include <linux/completion.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/irqreturn.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/platform_data/dma-dw.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include "spi-dw.h" | 
|  |  | 
|  | #define DW_SPI_RX_BUSY		0 | 
|  | #define DW_SPI_RX_BURST_LEVEL	16 | 
|  | #define DW_SPI_TX_BUSY		1 | 
|  | #define DW_SPI_TX_BURST_LEVEL	16 | 
|  |  | 
|  | static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param) | 
|  | { | 
|  | struct dw_dma_slave *s = param; | 
|  |  | 
|  | if (s->dma_dev != chan->device->dev) | 
|  | return false; | 
|  |  | 
|  | chan->private = s; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void dw_spi_dma_maxburst_init(struct dw_spi *dws) | 
|  | { | 
|  | struct dma_slave_caps caps; | 
|  | u32 max_burst, def_burst; | 
|  | int ret; | 
|  |  | 
|  | def_burst = dws->fifo_len / 2; | 
|  |  | 
|  | ret = dma_get_slave_caps(dws->rxchan, &caps); | 
|  | if (!ret && caps.max_burst) | 
|  | max_burst = caps.max_burst; | 
|  | else | 
|  | max_burst = DW_SPI_RX_BURST_LEVEL; | 
|  |  | 
|  | dws->rxburst = min(max_burst, def_burst); | 
|  | dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1); | 
|  |  | 
|  | ret = dma_get_slave_caps(dws->txchan, &caps); | 
|  | if (!ret && caps.max_burst) | 
|  | max_burst = caps.max_burst; | 
|  | else | 
|  | max_burst = DW_SPI_TX_BURST_LEVEL; | 
|  |  | 
|  | /* | 
|  | * Having a Rx DMA channel serviced with higher priority than a Tx DMA | 
|  | * channel might not be enough to provide a well balanced DMA-based | 
|  | * SPI transfer interface. There might still be moments when the Tx DMA | 
|  | * channel is occasionally handled faster than the Rx DMA channel. | 
|  | * That in its turn will eventually cause the SPI Rx FIFO overflow if | 
|  | * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's | 
|  | * cleared by the Rx DMA channel. In order to fix the problem the Tx | 
|  | * DMA activity is intentionally slowed down by limiting the SPI Tx | 
|  | * FIFO depth with a value twice bigger than the Tx burst length. | 
|  | */ | 
|  | dws->txburst = min(max_burst, def_burst); | 
|  | dw_writel(dws, DW_SPI_DMATDLR, dws->txburst); | 
|  | } | 
|  |  | 
|  | static void dw_spi_dma_sg_burst_init(struct dw_spi *dws) | 
|  | { | 
|  | struct dma_slave_caps tx = {0}, rx = {0}; | 
|  |  | 
|  | dma_get_slave_caps(dws->txchan, &tx); | 
|  | dma_get_slave_caps(dws->rxchan, &rx); | 
|  |  | 
|  | if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0) | 
|  | dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst); | 
|  | else if (tx.max_sg_burst > 0) | 
|  | dws->dma_sg_burst = tx.max_sg_burst; | 
|  | else if (rx.max_sg_burst > 0) | 
|  | dws->dma_sg_burst = rx.max_sg_burst; | 
|  | else | 
|  | dws->dma_sg_burst = 0; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws) | 
|  | { | 
|  | struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx; | 
|  | struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx; | 
|  | struct pci_dev *dma_dev; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | /* | 
|  | * Get pci device for DMA controller, currently it could only | 
|  | * be the DMA controller of Medfield | 
|  | */ | 
|  | dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); | 
|  | if (!dma_dev) | 
|  | return -ENODEV; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | /* 1. Init rx channel */ | 
|  | rx->dma_dev = &dma_dev->dev; | 
|  | dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx); | 
|  | if (!dws->rxchan) | 
|  | goto err_exit; | 
|  |  | 
|  | /* 2. Init tx channel */ | 
|  | tx->dma_dev = &dma_dev->dev; | 
|  | dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx); | 
|  | if (!dws->txchan) | 
|  | goto free_rxchan; | 
|  |  | 
|  | dws->master->dma_rx = dws->rxchan; | 
|  | dws->master->dma_tx = dws->txchan; | 
|  |  | 
|  | init_completion(&dws->dma_completion); | 
|  |  | 
|  | dw_spi_dma_maxburst_init(dws); | 
|  |  | 
|  | dw_spi_dma_sg_burst_init(dws); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_rxchan: | 
|  | dma_release_channel(dws->rxchan); | 
|  | dws->rxchan = NULL; | 
|  | err_exit: | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws) | 
|  | { | 
|  | dws->rxchan = dma_request_slave_channel(dev, "rx"); | 
|  | if (!dws->rxchan) | 
|  | return -ENODEV; | 
|  |  | 
|  | dws->txchan = dma_request_slave_channel(dev, "tx"); | 
|  | if (!dws->txchan) { | 
|  | dma_release_channel(dws->rxchan); | 
|  | dws->rxchan = NULL; | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dws->master->dma_rx = dws->rxchan; | 
|  | dws->master->dma_tx = dws->txchan; | 
|  |  | 
|  | init_completion(&dws->dma_completion); | 
|  |  | 
|  | dw_spi_dma_maxburst_init(dws); | 
|  |  | 
|  | dw_spi_dma_sg_burst_init(dws); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dw_spi_dma_exit(struct dw_spi *dws) | 
|  | { | 
|  | if (dws->txchan) { | 
|  | dmaengine_terminate_sync(dws->txchan); | 
|  | dma_release_channel(dws->txchan); | 
|  | } | 
|  |  | 
|  | if (dws->rxchan) { | 
|  | dmaengine_terminate_sync(dws->rxchan); | 
|  | dma_release_channel(dws->rxchan); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws) | 
|  | { | 
|  | dw_spi_check_status(dws, false); | 
|  |  | 
|  | complete(&dws->dma_completion); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static bool dw_spi_can_dma(struct spi_controller *master, | 
|  | struct spi_device *spi, struct spi_transfer *xfer) | 
|  | { | 
|  | struct dw_spi *dws = spi_controller_get_devdata(master); | 
|  |  | 
|  | return xfer->len > dws->fifo_len; | 
|  | } | 
|  |  | 
|  | static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes) | 
|  | { | 
|  | if (n_bytes == 1) | 
|  | return DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | else if (n_bytes == 2) | 
|  | return DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  |  | 
|  | return DMA_SLAVE_BUSWIDTH_UNDEFINED; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed) | 
|  | { | 
|  | unsigned long long ms; | 
|  |  | 
|  | ms = len * MSEC_PER_SEC * BITS_PER_BYTE; | 
|  | do_div(ms, speed); | 
|  | ms += ms + 200; | 
|  |  | 
|  | if (ms > UINT_MAX) | 
|  | ms = UINT_MAX; | 
|  |  | 
|  | ms = wait_for_completion_timeout(&dws->dma_completion, | 
|  | msecs_to_jiffies(ms)); | 
|  |  | 
|  | if (ms == 0) { | 
|  | dev_err(&dws->master->cur_msg->spi->dev, | 
|  | "DMA transaction timed out\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws) | 
|  | { | 
|  | return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_wait_tx_done(struct dw_spi *dws, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | int retry = DW_SPI_WAIT_RETRIES; | 
|  | struct spi_delay delay; | 
|  | u32 nents; | 
|  |  | 
|  | nents = dw_readl(dws, DW_SPI_TXFLR); | 
|  | delay.unit = SPI_DELAY_UNIT_SCK; | 
|  | delay.value = nents * dws->n_bytes * BITS_PER_BYTE; | 
|  |  | 
|  | while (dw_spi_dma_tx_busy(dws) && retry--) | 
|  | spi_delay_exec(&delay, xfer); | 
|  |  | 
|  | if (retry < 0) { | 
|  | dev_err(&dws->master->dev, "Tx hanged up\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dws->dma_chan_busy is set before the dma transfer starts, callback for tx | 
|  | * channel will clear a corresponding bit. | 
|  | */ | 
|  | static void dw_spi_dma_tx_done(void *arg) | 
|  | { | 
|  | struct dw_spi *dws = arg; | 
|  |  | 
|  | clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); | 
|  | if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) | 
|  | return; | 
|  |  | 
|  | complete(&dws->dma_completion); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_config_tx(struct dw_spi *dws) | 
|  | { | 
|  | struct dma_slave_config txconf; | 
|  |  | 
|  | memset(&txconf, 0, sizeof(txconf)); | 
|  | txconf.direction = DMA_MEM_TO_DEV; | 
|  | txconf.dst_addr = dws->dma_addr; | 
|  | txconf.dst_maxburst = dws->txburst; | 
|  | txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes); | 
|  | txconf.device_fc = false; | 
|  |  | 
|  | return dmaengine_slave_config(dws->txchan, &txconf); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl, | 
|  | unsigned int nents) | 
|  | { | 
|  | struct dma_async_tx_descriptor *txdesc; | 
|  | dma_cookie_t cookie; | 
|  | int ret; | 
|  |  | 
|  | txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents, | 
|  | DMA_MEM_TO_DEV, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!txdesc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | txdesc->callback = dw_spi_dma_tx_done; | 
|  | txdesc->callback_param = dws; | 
|  |  | 
|  | cookie = dmaengine_submit(txdesc); | 
|  | ret = dma_submit_error(cookie); | 
|  | if (ret) { | 
|  | dmaengine_terminate_sync(dws->txchan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws) | 
|  | { | 
|  | return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_wait_rx_done(struct dw_spi *dws) | 
|  | { | 
|  | int retry = DW_SPI_WAIT_RETRIES; | 
|  | struct spi_delay delay; | 
|  | unsigned long ns, us; | 
|  | u32 nents; | 
|  |  | 
|  | /* | 
|  | * It's unlikely that DMA engine is still doing the data fetching, but | 
|  | * if it's let's give it some reasonable time. The timeout calculation | 
|  | * is based on the synchronous APB/SSI reference clock rate, on a | 
|  | * number of data entries left in the Rx FIFO, times a number of clock | 
|  | * periods normally needed for a single APB read/write transaction | 
|  | * without PREADY signal utilized (which is true for the DW APB SSI | 
|  | * controller). | 
|  | */ | 
|  | nents = dw_readl(dws, DW_SPI_RXFLR); | 
|  | ns = 4U * NSEC_PER_SEC / dws->max_freq * nents; | 
|  | if (ns <= NSEC_PER_USEC) { | 
|  | delay.unit = SPI_DELAY_UNIT_NSECS; | 
|  | delay.value = ns; | 
|  | } else { | 
|  | us = DIV_ROUND_UP(ns, NSEC_PER_USEC); | 
|  | delay.unit = SPI_DELAY_UNIT_USECS; | 
|  | delay.value = clamp_val(us, 0, USHRT_MAX); | 
|  | } | 
|  |  | 
|  | while (dw_spi_dma_rx_busy(dws) && retry--) | 
|  | spi_delay_exec(&delay, NULL); | 
|  |  | 
|  | if (retry < 0) { | 
|  | dev_err(&dws->master->dev, "Rx hanged up\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dws->dma_chan_busy is set before the dma transfer starts, callback for rx | 
|  | * channel will clear a corresponding bit. | 
|  | */ | 
|  | static void dw_spi_dma_rx_done(void *arg) | 
|  | { | 
|  | struct dw_spi *dws = arg; | 
|  |  | 
|  | clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); | 
|  | if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) | 
|  | return; | 
|  |  | 
|  | complete(&dws->dma_completion); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_config_rx(struct dw_spi *dws) | 
|  | { | 
|  | struct dma_slave_config rxconf; | 
|  |  | 
|  | memset(&rxconf, 0, sizeof(rxconf)); | 
|  | rxconf.direction = DMA_DEV_TO_MEM; | 
|  | rxconf.src_addr = dws->dma_addr; | 
|  | rxconf.src_maxburst = dws->rxburst; | 
|  | rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes); | 
|  | rxconf.device_fc = false; | 
|  |  | 
|  | return dmaengine_slave_config(dws->rxchan, &rxconf); | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl, | 
|  | unsigned int nents) | 
|  | { | 
|  | struct dma_async_tx_descriptor *rxdesc; | 
|  | dma_cookie_t cookie; | 
|  | int ret; | 
|  |  | 
|  | rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents, | 
|  | DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!rxdesc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rxdesc->callback = dw_spi_dma_rx_done; | 
|  | rxdesc->callback_param = dws; | 
|  |  | 
|  | cookie = dmaengine_submit(rxdesc); | 
|  | ret = dma_submit_error(cookie); | 
|  | if (ret) { | 
|  | dmaengine_terminate_sync(dws->rxchan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) | 
|  | { | 
|  | u16 imr, dma_ctrl; | 
|  | int ret; | 
|  |  | 
|  | if (!xfer->tx_buf) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Setup DMA channels */ | 
|  | ret = dw_spi_dma_config_tx(dws); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (xfer->rx_buf) { | 
|  | ret = dw_spi_dma_config_rx(dws); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Set the DMA handshaking interface */ | 
|  | dma_ctrl = DW_SPI_DMACR_TDMAE; | 
|  | if (xfer->rx_buf) | 
|  | dma_ctrl |= DW_SPI_DMACR_RDMAE; | 
|  | dw_writel(dws, DW_SPI_DMACR, dma_ctrl); | 
|  |  | 
|  | /* Set the interrupt mask */ | 
|  | imr = DW_SPI_INT_TXOI; | 
|  | if (xfer->rx_buf) | 
|  | imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI; | 
|  | dw_spi_umask_intr(dws, imr); | 
|  |  | 
|  | reinit_completion(&dws->dma_completion); | 
|  |  | 
|  | dws->transfer_handler = dw_spi_dma_transfer_handler; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_transfer_all(struct dw_spi *dws, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Submit the DMA Tx transfer */ | 
|  | ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents); | 
|  | if (ret) | 
|  | goto err_clear_dmac; | 
|  |  | 
|  | /* Submit the DMA Rx transfer if required */ | 
|  | if (xfer->rx_buf) { | 
|  | ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl, | 
|  | xfer->rx_sg.nents); | 
|  | if (ret) | 
|  | goto err_clear_dmac; | 
|  |  | 
|  | /* rx must be started before tx due to spi instinct */ | 
|  | dma_async_issue_pending(dws->rxchan); | 
|  | } | 
|  |  | 
|  | dma_async_issue_pending(dws->txchan); | 
|  |  | 
|  | ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz); | 
|  |  | 
|  | err_clear_dmac: | 
|  | dw_writel(dws, DW_SPI_DMACR, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case if at least one of the requested DMA channels doesn't support the | 
|  | * hardware accelerated SG list entries traverse, the DMA driver will most | 
|  | * likely work that around by performing the IRQ-based SG list entries | 
|  | * resubmission. That might and will cause a problem if the DMA Tx channel is | 
|  | * recharged and re-executed before the Rx DMA channel. Due to | 
|  | * non-deterministic IRQ-handler execution latency the DMA Tx channel will | 
|  | * start pushing data to the SPI bus before the Rx DMA channel is even | 
|  | * reinitialized with the next inbound SG list entry. By doing so the DMA Tx | 
|  | * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while | 
|  | * the DMA Rx channel being recharged and re-executed will eventually be | 
|  | * overflown. | 
|  | * | 
|  | * In order to solve the problem we have to feed the DMA engine with SG list | 
|  | * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs | 
|  | * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg | 
|  | * and rx_sg lists may have different number of entries of different lengths | 
|  | * (though total length should match) let's virtually split the SG-lists to the | 
|  | * set of DMA transfers, which length is a minimum of the ordered SG-entries | 
|  | * lengths. An ASCII-sketch of the implemented algo is following: | 
|  | *                  xfer->len | 
|  | *                |___________| | 
|  | * tx_sg list:    |___|____|__| | 
|  | * rx_sg list:    |_|____|____| | 
|  | * DMA transfers: |_|_|__|_|__| | 
|  | * | 
|  | * Note in order to have this workaround solving the denoted problem the DMA | 
|  | * engine driver should properly initialize the max_sg_burst capability and set | 
|  | * the DMA device max segment size parameter with maximum data block size the | 
|  | * DMA engine supports. | 
|  | */ | 
|  |  | 
|  | static int dw_spi_dma_transfer_one(struct dw_spi *dws, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp; | 
|  | unsigned int tx_len = 0, rx_len = 0; | 
|  | unsigned int base, len; | 
|  | int ret; | 
|  |  | 
|  | sg_init_table(&tx_tmp, 1); | 
|  | sg_init_table(&rx_tmp, 1); | 
|  |  | 
|  | for (base = 0, len = 0; base < xfer->len; base += len) { | 
|  | /* Fetch next Tx DMA data chunk */ | 
|  | if (!tx_len) { | 
|  | tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg); | 
|  | sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg); | 
|  | tx_len = sg_dma_len(tx_sg); | 
|  | } | 
|  |  | 
|  | /* Fetch next Rx DMA data chunk */ | 
|  | if (!rx_len) { | 
|  | rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg); | 
|  | sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg); | 
|  | rx_len = sg_dma_len(rx_sg); | 
|  | } | 
|  |  | 
|  | len = min(tx_len, rx_len); | 
|  |  | 
|  | sg_dma_len(&tx_tmp) = len; | 
|  | sg_dma_len(&rx_tmp) = len; | 
|  |  | 
|  | /* Submit DMA Tx transfer */ | 
|  | ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* Submit DMA Rx transfer */ | 
|  | ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* Rx must be started before Tx due to SPI instinct */ | 
|  | dma_async_issue_pending(dws->rxchan); | 
|  |  | 
|  | dma_async_issue_pending(dws->txchan); | 
|  |  | 
|  | /* | 
|  | * Here we only need to wait for the DMA transfer to be | 
|  | * finished since SPI controller is kept enabled during the | 
|  | * procedure this loop implements and there is no risk to lose | 
|  | * data left in the Tx/Rx FIFOs. | 
|  | */ | 
|  | ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | reinit_completion(&dws->dma_completion); | 
|  |  | 
|  | sg_dma_address(&tx_tmp) += len; | 
|  | sg_dma_address(&rx_tmp) += len; | 
|  | tx_len -= len; | 
|  | rx_len -= len; | 
|  | } | 
|  |  | 
|  | dw_writel(dws, DW_SPI_DMACR, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) | 
|  | { | 
|  | unsigned int nents; | 
|  | int ret; | 
|  |  | 
|  | nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents); | 
|  |  | 
|  | /* | 
|  | * Execute normal DMA-based transfer (which submits the Rx and Tx SG | 
|  | * lists directly to the DMA engine at once) if either full hardware | 
|  | * accelerated SG list traverse is supported by both channels, or the | 
|  | * Tx-only SPI transfer is requested, or the DMA engine is capable to | 
|  | * handle both SG lists on hardware accelerated basis. | 
|  | */ | 
|  | if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst) | 
|  | ret = dw_spi_dma_transfer_all(dws, xfer); | 
|  | else | 
|  | ret = dw_spi_dma_transfer_one(dws, xfer); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (dws->master->cur_msg->status == -EINPROGRESS) { | 
|  | ret = dw_spi_dma_wait_tx_done(dws, xfer); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS) | 
|  | ret = dw_spi_dma_wait_rx_done(dws); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dw_spi_dma_stop(struct dw_spi *dws) | 
|  | { | 
|  | if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) { | 
|  | dmaengine_terminate_sync(dws->txchan); | 
|  | clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); | 
|  | } | 
|  | if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) { | 
|  | dmaengine_terminate_sync(dws->rxchan); | 
|  | clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = { | 
|  | .dma_init	= dw_spi_dma_init_mfld, | 
|  | .dma_exit	= dw_spi_dma_exit, | 
|  | .dma_setup	= dw_spi_dma_setup, | 
|  | .can_dma	= dw_spi_can_dma, | 
|  | .dma_transfer	= dw_spi_dma_transfer, | 
|  | .dma_stop	= dw_spi_dma_stop, | 
|  | }; | 
|  |  | 
|  | void dw_spi_dma_setup_mfld(struct dw_spi *dws) | 
|  | { | 
|  | dws->dma_ops = &dw_spi_dma_mfld_ops; | 
|  | } | 
|  | EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE); | 
|  |  | 
|  | static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = { | 
|  | .dma_init	= dw_spi_dma_init_generic, | 
|  | .dma_exit	= dw_spi_dma_exit, | 
|  | .dma_setup	= dw_spi_dma_setup, | 
|  | .can_dma	= dw_spi_can_dma, | 
|  | .dma_transfer	= dw_spi_dma_transfer, | 
|  | .dma_stop	= dw_spi_dma_stop, | 
|  | }; | 
|  |  | 
|  | void dw_spi_dma_setup_generic(struct dw_spi *dws) | 
|  | { | 
|  | dws->dma_ops = &dw_spi_dma_generic_ops; | 
|  | } | 
|  | EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE); |