| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* Generic associative array implementation. | 
 |  * | 
 |  * See Documentation/core-api/assoc_array.rst for information. | 
 |  * | 
 |  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells ([email protected]) | 
 |  */ | 
 | //#define DEBUG | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/err.h> | 
 | #include <linux/assoc_array_priv.h> | 
 |  | 
 | /* | 
 |  * Iterate over an associative array.  The caller must hold the RCU read lock | 
 |  * or better. | 
 |  */ | 
 | static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, | 
 | 				       const struct assoc_array_ptr *stop, | 
 | 				       int (*iterator)(const void *leaf, | 
 | 						       void *iterator_data), | 
 | 				       void *iterator_data) | 
 | { | 
 | 	const struct assoc_array_shortcut *shortcut; | 
 | 	const struct assoc_array_node *node; | 
 | 	const struct assoc_array_ptr *cursor, *ptr, *parent; | 
 | 	unsigned long has_meta; | 
 | 	int slot, ret; | 
 |  | 
 | 	cursor = root; | 
 |  | 
 | begin_node: | 
 | 	if (assoc_array_ptr_is_shortcut(cursor)) { | 
 | 		/* Descend through a shortcut */ | 
 | 		shortcut = assoc_array_ptr_to_shortcut(cursor); | 
 | 		cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ | 
 | 	} | 
 |  | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	slot = 0; | 
 |  | 
 | 	/* We perform two passes of each node. | 
 | 	 * | 
 | 	 * The first pass does all the leaves in this node.  This means we | 
 | 	 * don't miss any leaves if the node is split up by insertion whilst | 
 | 	 * we're iterating over the branches rooted here (we may, however, see | 
 | 	 * some leaves twice). | 
 | 	 */ | 
 | 	has_meta = 0; | 
 | 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
 | 		has_meta |= (unsigned long)ptr; | 
 | 		if (ptr && assoc_array_ptr_is_leaf(ptr)) { | 
 | 			/* We need a barrier between the read of the pointer, | 
 | 			 * which is supplied by the above READ_ONCE(). | 
 | 			 */ | 
 | 			/* Invoke the callback */ | 
 | 			ret = iterator(assoc_array_ptr_to_leaf(ptr), | 
 | 				       iterator_data); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* The second pass attends to all the metadata pointers.  If we follow | 
 | 	 * one of these we may find that we don't come back here, but rather go | 
 | 	 * back to a replacement node with the leaves in a different layout. | 
 | 	 * | 
 | 	 * We are guaranteed to make progress, however, as the slot number for | 
 | 	 * a particular portion of the key space cannot change - and we | 
 | 	 * continue at the back pointer + 1. | 
 | 	 */ | 
 | 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) | 
 | 		goto finished_node; | 
 | 	slot = 0; | 
 |  | 
 | continue_node: | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
 | 		if (assoc_array_ptr_is_meta(ptr)) { | 
 | 			cursor = ptr; | 
 | 			goto begin_node; | 
 | 		} | 
 | 	} | 
 |  | 
 | finished_node: | 
 | 	/* Move up to the parent (may need to skip back over a shortcut) */ | 
 | 	parent = READ_ONCE(node->back_pointer); /* Address dependency. */ | 
 | 	slot = node->parent_slot; | 
 | 	if (parent == stop) | 
 | 		return 0; | 
 |  | 
 | 	if (assoc_array_ptr_is_shortcut(parent)) { | 
 | 		shortcut = assoc_array_ptr_to_shortcut(parent); | 
 | 		cursor = parent; | 
 | 		parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ | 
 | 		slot = shortcut->parent_slot; | 
 | 		if (parent == stop) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Ascend to next slot in parent node */ | 
 | 	cursor = parent; | 
 | 	slot++; | 
 | 	goto continue_node; | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_iterate - Pass all objects in the array to a callback | 
 |  * @array: The array to iterate over. | 
 |  * @iterator: The callback function. | 
 |  * @iterator_data: Private data for the callback function. | 
 |  * | 
 |  * Iterate over all the objects in an associative array.  Each one will be | 
 |  * presented to the iterator function. | 
 |  * | 
 |  * If the array is being modified concurrently with the iteration then it is | 
 |  * possible that some objects in the array will be passed to the iterator | 
 |  * callback more than once - though every object should be passed at least | 
 |  * once.  If this is undesirable then the caller must lock against modification | 
 |  * for the duration of this function. | 
 |  * | 
 |  * The function will return 0 if no objects were in the array or else it will | 
 |  * return the result of the last iterator function called.  Iteration stops | 
 |  * immediately if any call to the iteration function results in a non-zero | 
 |  * return. | 
 |  * | 
 |  * The caller should hold the RCU read lock or better if concurrent | 
 |  * modification is possible. | 
 |  */ | 
 | int assoc_array_iterate(const struct assoc_array *array, | 
 | 			int (*iterator)(const void *object, | 
 | 					void *iterator_data), | 
 | 			void *iterator_data) | 
 | { | 
 | 	struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ | 
 |  | 
 | 	if (!root) | 
 | 		return 0; | 
 | 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); | 
 | } | 
 |  | 
 | enum assoc_array_walk_status { | 
 | 	assoc_array_walk_tree_empty, | 
 | 	assoc_array_walk_found_terminal_node, | 
 | 	assoc_array_walk_found_wrong_shortcut, | 
 | }; | 
 |  | 
 | struct assoc_array_walk_result { | 
 | 	struct { | 
 | 		struct assoc_array_node	*node;	/* Node in which leaf might be found */ | 
 | 		int		level; | 
 | 		int		slot; | 
 | 	} terminal_node; | 
 | 	struct { | 
 | 		struct assoc_array_shortcut *shortcut; | 
 | 		int		level; | 
 | 		int		sc_level; | 
 | 		unsigned long	sc_segments; | 
 | 		unsigned long	dissimilarity; | 
 | 	} wrong_shortcut; | 
 | }; | 
 |  | 
 | /* | 
 |  * Navigate through the internal tree looking for the closest node to the key. | 
 |  */ | 
 | static enum assoc_array_walk_status | 
 | assoc_array_walk(const struct assoc_array *array, | 
 | 		 const struct assoc_array_ops *ops, | 
 | 		 const void *index_key, | 
 | 		 struct assoc_array_walk_result *result) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut; | 
 | 	struct assoc_array_node *node; | 
 | 	struct assoc_array_ptr *cursor, *ptr; | 
 | 	unsigned long sc_segments, dissimilarity; | 
 | 	unsigned long segments; | 
 | 	int level, sc_level, next_sc_level; | 
 | 	int slot; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	cursor = READ_ONCE(array->root);  /* Address dependency. */ | 
 | 	if (!cursor) | 
 | 		return assoc_array_walk_tree_empty; | 
 |  | 
 | 	level = 0; | 
 |  | 
 | 	/* Use segments from the key for the new leaf to navigate through the | 
 | 	 * internal tree, skipping through nodes and shortcuts that are on | 
 | 	 * route to the destination.  Eventually we'll come to a slot that is | 
 | 	 * either empty or contains a leaf at which point we've found a node in | 
 | 	 * which the leaf we're looking for might be found or into which it | 
 | 	 * should be inserted. | 
 | 	 */ | 
 | jumped: | 
 | 	segments = ops->get_key_chunk(index_key, level); | 
 | 	pr_devel("segments[%d]: %lx\n", level, segments); | 
 |  | 
 | 	if (assoc_array_ptr_is_shortcut(cursor)) | 
 | 		goto follow_shortcut; | 
 |  | 
 | consider_node: | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
 | 	slot &= ASSOC_ARRAY_FAN_MASK; | 
 | 	ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
 |  | 
 | 	pr_devel("consider slot %x [ix=%d type=%lu]\n", | 
 | 		 slot, level, (unsigned long)ptr & 3); | 
 |  | 
 | 	if (!assoc_array_ptr_is_meta(ptr)) { | 
 | 		/* The node doesn't have a node/shortcut pointer in the slot | 
 | 		 * corresponding to the index key that we have to follow. | 
 | 		 */ | 
 | 		result->terminal_node.node = node; | 
 | 		result->terminal_node.level = level; | 
 | 		result->terminal_node.slot = slot; | 
 | 		pr_devel("<--%s() = terminal_node\n", __func__); | 
 | 		return assoc_array_walk_found_terminal_node; | 
 | 	} | 
 |  | 
 | 	if (assoc_array_ptr_is_node(ptr)) { | 
 | 		/* There is a pointer to a node in the slot corresponding to | 
 | 		 * this index key segment, so we need to follow it. | 
 | 		 */ | 
 | 		cursor = ptr; | 
 | 		level += ASSOC_ARRAY_LEVEL_STEP; | 
 | 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) | 
 | 			goto consider_node; | 
 | 		goto jumped; | 
 | 	} | 
 |  | 
 | 	/* There is a shortcut in the slot corresponding to the index key | 
 | 	 * segment.  We follow the shortcut if its partial index key matches | 
 | 	 * this leaf's.  Otherwise we need to split the shortcut. | 
 | 	 */ | 
 | 	cursor = ptr; | 
 | follow_shortcut: | 
 | 	shortcut = assoc_array_ptr_to_shortcut(cursor); | 
 | 	pr_devel("shortcut to %d\n", shortcut->skip_to_level); | 
 | 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP; | 
 | 	BUG_ON(sc_level > shortcut->skip_to_level); | 
 |  | 
 | 	do { | 
 | 		/* Check the leaf against the shortcut's index key a word at a | 
 | 		 * time, trimming the final word (the shortcut stores the index | 
 | 		 * key completely from the root to the shortcut's target). | 
 | 		 */ | 
 | 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) | 
 | 			segments = ops->get_key_chunk(index_key, sc_level); | 
 |  | 
 | 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; | 
 | 		dissimilarity = segments ^ sc_segments; | 
 |  | 
 | 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { | 
 | 			/* Trim segments that are beyond the shortcut */ | 
 | 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
 | 			dissimilarity &= ~(ULONG_MAX << shift); | 
 | 			next_sc_level = shortcut->skip_to_level; | 
 | 		} else { | 
 | 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; | 
 | 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 | 		} | 
 |  | 
 | 		if (dissimilarity != 0) { | 
 | 			/* This shortcut points elsewhere */ | 
 | 			result->wrong_shortcut.shortcut = shortcut; | 
 | 			result->wrong_shortcut.level = level; | 
 | 			result->wrong_shortcut.sc_level = sc_level; | 
 | 			result->wrong_shortcut.sc_segments = sc_segments; | 
 | 			result->wrong_shortcut.dissimilarity = dissimilarity; | 
 | 			return assoc_array_walk_found_wrong_shortcut; | 
 | 		} | 
 |  | 
 | 		sc_level = next_sc_level; | 
 | 	} while (sc_level < shortcut->skip_to_level); | 
 |  | 
 | 	/* The shortcut matches the leaf's index to this point. */ | 
 | 	cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ | 
 | 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { | 
 | 		level = sc_level; | 
 | 		goto jumped; | 
 | 	} else { | 
 | 		level = sc_level; | 
 | 		goto consider_node; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_find - Find an object by index key | 
 |  * @array: The associative array to search. | 
 |  * @ops: The operations to use. | 
 |  * @index_key: The key to the object. | 
 |  * | 
 |  * Find an object in an associative array by walking through the internal tree | 
 |  * to the node that should contain the object and then searching the leaves | 
 |  * there.  NULL is returned if the requested object was not found in the array. | 
 |  * | 
 |  * The caller must hold the RCU read lock or better. | 
 |  */ | 
 | void *assoc_array_find(const struct assoc_array *array, | 
 | 		       const struct assoc_array_ops *ops, | 
 | 		       const void *index_key) | 
 | { | 
 | 	struct assoc_array_walk_result result; | 
 | 	const struct assoc_array_node *node; | 
 | 	const struct assoc_array_ptr *ptr; | 
 | 	const void *leaf; | 
 | 	int slot; | 
 |  | 
 | 	if (assoc_array_walk(array, ops, index_key, &result) != | 
 | 	    assoc_array_walk_found_terminal_node) | 
 | 		return NULL; | 
 |  | 
 | 	node = result.terminal_node.node; | 
 |  | 
 | 	/* If the target key is available to us, it's has to be pointed to by | 
 | 	 * the terminal node. | 
 | 	 */ | 
 | 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
 | 		if (ptr && assoc_array_ptr_is_leaf(ptr)) { | 
 | 			/* We need a barrier between the read of the pointer | 
 | 			 * and dereferencing the pointer - but only if we are | 
 | 			 * actually going to dereference it. | 
 | 			 */ | 
 | 			leaf = assoc_array_ptr_to_leaf(ptr); | 
 | 			if (ops->compare_object(leaf, index_key)) | 
 | 				return (void *)leaf; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Destructively iterate over an associative array.  The caller must prevent | 
 |  * other simultaneous accesses. | 
 |  */ | 
 | static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, | 
 | 					const struct assoc_array_ops *ops) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut; | 
 | 	struct assoc_array_node *node; | 
 | 	struct assoc_array_ptr *cursor, *parent = NULL; | 
 | 	int slot = -1; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	cursor = root; | 
 | 	if (!cursor) { | 
 | 		pr_devel("empty\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | move_to_meta: | 
 | 	if (assoc_array_ptr_is_shortcut(cursor)) { | 
 | 		/* Descend through a shortcut */ | 
 | 		pr_devel("[%d] shortcut\n", slot); | 
 | 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); | 
 | 		shortcut = assoc_array_ptr_to_shortcut(cursor); | 
 | 		BUG_ON(shortcut->back_pointer != parent); | 
 | 		BUG_ON(slot != -1 && shortcut->parent_slot != slot); | 
 | 		parent = cursor; | 
 | 		cursor = shortcut->next_node; | 
 | 		slot = -1; | 
 | 		BUG_ON(!assoc_array_ptr_is_node(cursor)); | 
 | 	} | 
 |  | 
 | 	pr_devel("[%d] node\n", slot); | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	BUG_ON(node->back_pointer != parent); | 
 | 	BUG_ON(slot != -1 && node->parent_slot != slot); | 
 | 	slot = 0; | 
 |  | 
 | continue_node: | 
 | 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer); | 
 | 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		struct assoc_array_ptr *ptr = node->slots[slot]; | 
 | 		if (!ptr) | 
 | 			continue; | 
 | 		if (assoc_array_ptr_is_meta(ptr)) { | 
 | 			parent = cursor; | 
 | 			cursor = ptr; | 
 | 			goto move_to_meta; | 
 | 		} | 
 |  | 
 | 		if (ops) { | 
 | 			pr_devel("[%d] free leaf\n", slot); | 
 | 			ops->free_object(assoc_array_ptr_to_leaf(ptr)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	parent = node->back_pointer; | 
 | 	slot = node->parent_slot; | 
 | 	pr_devel("free node\n"); | 
 | 	kfree(node); | 
 | 	if (!parent) | 
 | 		return; /* Done */ | 
 |  | 
 | 	/* Move back up to the parent (may need to free a shortcut on | 
 | 	 * the way up) */ | 
 | 	if (assoc_array_ptr_is_shortcut(parent)) { | 
 | 		shortcut = assoc_array_ptr_to_shortcut(parent); | 
 | 		BUG_ON(shortcut->next_node != cursor); | 
 | 		cursor = parent; | 
 | 		parent = shortcut->back_pointer; | 
 | 		slot = shortcut->parent_slot; | 
 | 		pr_devel("free shortcut\n"); | 
 | 		kfree(shortcut); | 
 | 		if (!parent) | 
 | 			return; | 
 |  | 
 | 		BUG_ON(!assoc_array_ptr_is_node(parent)); | 
 | 	} | 
 |  | 
 | 	/* Ascend to next slot in parent node */ | 
 | 	pr_devel("ascend to %p[%d]\n", parent, slot); | 
 | 	cursor = parent; | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	slot++; | 
 | 	goto continue_node; | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_destroy - Destroy an associative array | 
 |  * @array: The array to destroy. | 
 |  * @ops: The operations to use. | 
 |  * | 
 |  * Discard all metadata and free all objects in an associative array.  The | 
 |  * array will be empty and ready to use again upon completion.  This function | 
 |  * cannot fail. | 
 |  * | 
 |  * The caller must prevent all other accesses whilst this takes place as no | 
 |  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding | 
 |  * accesses to continue.  On the other hand, no memory allocation is required. | 
 |  */ | 
 | void assoc_array_destroy(struct assoc_array *array, | 
 | 			 const struct assoc_array_ops *ops) | 
 | { | 
 | 	assoc_array_destroy_subtree(array->root, ops); | 
 | 	array->root = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle insertion into an empty tree. | 
 |  */ | 
 | static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) | 
 | { | 
 | 	struct assoc_array_node *new_n0; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 	if (!new_n0) | 
 | 		return false; | 
 |  | 
 | 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
 | 	edit->leaf_p = &new_n0->slots[0]; | 
 | 	edit->adjust_count_on = new_n0; | 
 | 	edit->set[0].ptr = &edit->array->root; | 
 | 	edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
 |  | 
 | 	pr_devel("<--%s() = ok [no root]\n", __func__); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle insertion into a terminal node. | 
 |  */ | 
 | static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, | 
 | 						  const struct assoc_array_ops *ops, | 
 | 						  const void *index_key, | 
 | 						  struct assoc_array_walk_result *result) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut, *new_s0; | 
 | 	struct assoc_array_node *node, *new_n0, *new_n1, *side; | 
 | 	struct assoc_array_ptr *ptr; | 
 | 	unsigned long dissimilarity, base_seg, blank; | 
 | 	size_t keylen; | 
 | 	bool have_meta; | 
 | 	int level, diff; | 
 | 	int slot, next_slot, free_slot, i, j; | 
 |  | 
 | 	node	= result->terminal_node.node; | 
 | 	level	= result->terminal_node.level; | 
 | 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	/* We arrived at a node which doesn't have an onward node or shortcut | 
 | 	 * pointer that we have to follow.  This means that (a) the leaf we | 
 | 	 * want must go here (either by insertion or replacement) or (b) we | 
 | 	 * need to split this node and insert in one of the fragments. | 
 | 	 */ | 
 | 	free_slot = -1; | 
 |  | 
 | 	/* Firstly, we have to check the leaves in this node to see if there's | 
 | 	 * a matching one we should replace in place. | 
 | 	 */ | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		ptr = node->slots[i]; | 
 | 		if (!ptr) { | 
 | 			free_slot = i; | 
 | 			continue; | 
 | 		} | 
 | 		if (assoc_array_ptr_is_leaf(ptr) && | 
 | 		    ops->compare_object(assoc_array_ptr_to_leaf(ptr), | 
 | 					index_key)) { | 
 | 			pr_devel("replace in slot %d\n", i); | 
 | 			edit->leaf_p = &node->slots[i]; | 
 | 			edit->dead_leaf = node->slots[i]; | 
 | 			pr_devel("<--%s() = ok [replace]\n", __func__); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If there is a free slot in this node then we can just insert the | 
 | 	 * leaf here. | 
 | 	 */ | 
 | 	if (free_slot >= 0) { | 
 | 		pr_devel("insert in free slot %d\n", free_slot); | 
 | 		edit->leaf_p = &node->slots[free_slot]; | 
 | 		edit->adjust_count_on = node; | 
 | 		pr_devel("<--%s() = ok [insert]\n", __func__); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* The node has no spare slots - so we're either going to have to split | 
 | 	 * it or insert another node before it. | 
 | 	 * | 
 | 	 * Whatever, we're going to need at least two new nodes - so allocate | 
 | 	 * those now.  We may also need a new shortcut, but we deal with that | 
 | 	 * when we need it. | 
 | 	 */ | 
 | 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 	if (!new_n0) | 
 | 		return false; | 
 | 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
 | 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 	if (!new_n1) | 
 | 		return false; | 
 | 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); | 
 |  | 
 | 	/* We need to find out how similar the leaves are. */ | 
 | 	pr_devel("no spare slots\n"); | 
 | 	have_meta = false; | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		ptr = node->slots[i]; | 
 | 		if (assoc_array_ptr_is_meta(ptr)) { | 
 | 			edit->segment_cache[i] = 0xff; | 
 | 			have_meta = true; | 
 | 			continue; | 
 | 		} | 
 | 		base_seg = ops->get_object_key_chunk( | 
 | 			assoc_array_ptr_to_leaf(ptr), level); | 
 | 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
 | 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
 | 	} | 
 |  | 
 | 	if (have_meta) { | 
 | 		pr_devel("have meta\n"); | 
 | 		goto split_node; | 
 | 	} | 
 |  | 
 | 	/* The node contains only leaves */ | 
 | 	dissimilarity = 0; | 
 | 	base_seg = edit->segment_cache[0]; | 
 | 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) | 
 | 		dissimilarity |= edit->segment_cache[i] ^ base_seg; | 
 |  | 
 | 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); | 
 |  | 
 | 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { | 
 | 		/* The old leaves all cluster in the same slot.  We will need | 
 | 		 * to insert a shortcut if the new node wants to cluster with them. | 
 | 		 */ | 
 | 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) | 
 | 			goto all_leaves_cluster_together; | 
 |  | 
 | 		/* Otherwise all the old leaves cluster in the same slot, but | 
 | 		 * the new leaf wants to go into a different slot - so we | 
 | 		 * create a new node (n0) to hold the new leaf and a pointer to | 
 | 		 * a new node (n1) holding all the old leaves. | 
 | 		 * | 
 | 		 * This can be done by falling through to the node splitting | 
 | 		 * path. | 
 | 		 */ | 
 | 		pr_devel("present leaves cluster but not new leaf\n"); | 
 | 	} | 
 |  | 
 | split_node: | 
 | 	pr_devel("split node\n"); | 
 |  | 
 | 	/* We need to split the current node.  The node must contain anything | 
 | 	 * from a single leaf (in the one leaf case, this leaf will cluster | 
 | 	 * with the new leaf) and the rest meta-pointers, to all leaves, some | 
 | 	 * of which may cluster. | 
 | 	 * | 
 | 	 * It won't contain the case in which all the current leaves plus the | 
 | 	 * new leaves want to cluster in the same slot. | 
 | 	 * | 
 | 	 * We need to expel at least two leaves out of a set consisting of the | 
 | 	 * leaves in the node and the new leaf.  The current meta pointers can | 
 | 	 * just be copied as they shouldn't cluster with any of the leaves. | 
 | 	 * | 
 | 	 * We need a new node (n0) to replace the current one and a new node to | 
 | 	 * take the expelled nodes (n1). | 
 | 	 */ | 
 | 	edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
 | 	new_n0->back_pointer = node->back_pointer; | 
 | 	new_n0->parent_slot = node->parent_slot; | 
 | 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
 | 	new_n1->parent_slot = -1; /* Need to calculate this */ | 
 |  | 
 | do_split_node: | 
 | 	pr_devel("do_split_node\n"); | 
 |  | 
 | 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | 
 | 	new_n1->nr_leaves_on_branch = 0; | 
 |  | 
 | 	/* Begin by finding two matching leaves.  There have to be at least two | 
 | 	 * that match - even if there are meta pointers - because any leaf that | 
 | 	 * would match a slot with a meta pointer in it must be somewhere | 
 | 	 * behind that meta pointer and cannot be here.  Further, given N | 
 | 	 * remaining leaf slots, we now have N+1 leaves to go in them. | 
 | 	 */ | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		slot = edit->segment_cache[i]; | 
 | 		if (slot != 0xff) | 
 | 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) | 
 | 				if (edit->segment_cache[j] == slot) | 
 | 					goto found_slot_for_multiple_occupancy; | 
 | 	} | 
 | found_slot_for_multiple_occupancy: | 
 | 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot); | 
 | 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); | 
 | 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); | 
 | 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); | 
 |  | 
 | 	new_n1->parent_slot = slot; | 
 |  | 
 | 	/* Metadata pointers cannot change slot */ | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) | 
 | 		if (assoc_array_ptr_is_meta(node->slots[i])) | 
 | 			new_n0->slots[i] = node->slots[i]; | 
 | 		else | 
 | 			new_n0->slots[i] = NULL; | 
 | 	BUG_ON(new_n0->slots[slot] != NULL); | 
 | 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); | 
 |  | 
 | 	/* Filter the leaf pointers between the new nodes */ | 
 | 	free_slot = -1; | 
 | 	next_slot = 0; | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		if (assoc_array_ptr_is_meta(node->slots[i])) | 
 | 			continue; | 
 | 		if (edit->segment_cache[i] == slot) { | 
 | 			new_n1->slots[next_slot++] = node->slots[i]; | 
 | 			new_n1->nr_leaves_on_branch++; | 
 | 		} else { | 
 | 			do { | 
 | 				free_slot++; | 
 | 			} while (new_n0->slots[free_slot] != NULL); | 
 | 			new_n0->slots[free_slot] = node->slots[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); | 
 |  | 
 | 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { | 
 | 		do { | 
 | 			free_slot++; | 
 | 		} while (new_n0->slots[free_slot] != NULL); | 
 | 		edit->leaf_p = &new_n0->slots[free_slot]; | 
 | 		edit->adjust_count_on = new_n0; | 
 | 	} else { | 
 | 		edit->leaf_p = &new_n1->slots[next_slot++]; | 
 | 		edit->adjust_count_on = new_n1; | 
 | 	} | 
 |  | 
 | 	BUG_ON(next_slot <= 1); | 
 |  | 
 | 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		if (edit->segment_cache[i] == 0xff) { | 
 | 			ptr = node->slots[i]; | 
 | 			BUG_ON(assoc_array_ptr_is_leaf(ptr)); | 
 | 			if (assoc_array_ptr_is_node(ptr)) { | 
 | 				side = assoc_array_ptr_to_node(ptr); | 
 | 				edit->set_backpointers[i] = &side->back_pointer; | 
 | 			} else { | 
 | 				shortcut = assoc_array_ptr_to_shortcut(ptr); | 
 | 				edit->set_backpointers[i] = &shortcut->back_pointer; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ptr = node->back_pointer; | 
 | 	if (!ptr) | 
 | 		edit->set[0].ptr = &edit->array->root; | 
 | 	else if (assoc_array_ptr_is_node(ptr)) | 
 | 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; | 
 | 	else | 
 | 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; | 
 | 	edit->excised_meta[0] = assoc_array_node_to_ptr(node); | 
 | 	pr_devel("<--%s() = ok [split node]\n", __func__); | 
 | 	return true; | 
 |  | 
 | all_leaves_cluster_together: | 
 | 	/* All the leaves, new and old, want to cluster together in this node | 
 | 	 * in the same slot, so we have to replace this node with a shortcut to | 
 | 	 * skip over the identical parts of the key and then place a pair of | 
 | 	 * nodes, one inside the other, at the end of the shortcut and | 
 | 	 * distribute the keys between them. | 
 | 	 * | 
 | 	 * Firstly we need to work out where the leaves start diverging as a | 
 | 	 * bit position into their keys so that we know how big the shortcut | 
 | 	 * needs to be. | 
 | 	 * | 
 | 	 * We only need to make a single pass of N of the N+1 leaves because if | 
 | 	 * any keys differ between themselves at bit X then at least one of | 
 | 	 * them must also differ with the base key at bit X or before. | 
 | 	 */ | 
 | 	pr_devel("all leaves cluster together\n"); | 
 | 	diff = INT_MAX; | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), | 
 | 					  index_key); | 
 | 		if (x < diff) { | 
 | 			BUG_ON(x < 0); | 
 | 			diff = x; | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(diff == INT_MAX); | 
 | 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); | 
 |  | 
 | 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 | 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
 |  | 
 | 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
 | 			 keylen * sizeof(unsigned long), GFP_KERNEL); | 
 | 	if (!new_s0) | 
 | 		return false; | 
 | 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); | 
 |  | 
 | 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | 
 | 	new_s0->back_pointer = node->back_pointer; | 
 | 	new_s0->parent_slot = node->parent_slot; | 
 | 	new_s0->next_node = assoc_array_node_to_ptr(new_n0); | 
 | 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | 
 | 	new_n0->parent_slot = 0; | 
 | 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
 | 	new_n1->parent_slot = -1; /* Need to calculate this */ | 
 |  | 
 | 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; | 
 | 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff); | 
 | 	BUG_ON(level <= 0); | 
 |  | 
 | 	for (i = 0; i < keylen; i++) | 
 | 		new_s0->index_key[i] = | 
 | 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 |  | 
 | 	if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) { | 
 | 		blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
 | 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); | 
 | 		new_s0->index_key[keylen - 1] &= ~blank; | 
 | 	} | 
 |  | 
 | 	/* This now reduces to a node splitting exercise for which we'll need | 
 | 	 * to regenerate the disparity table. | 
 | 	 */ | 
 | 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 		ptr = node->slots[i]; | 
 | 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), | 
 | 						     level); | 
 | 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
 | 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
 | 	} | 
 |  | 
 | 	base_seg = ops->get_key_chunk(index_key, level); | 
 | 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
 | 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
 | 	goto do_split_node; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle insertion into the middle of a shortcut. | 
 |  */ | 
 | static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, | 
 | 					    const struct assoc_array_ops *ops, | 
 | 					    struct assoc_array_walk_result *result) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; | 
 | 	struct assoc_array_node *node, *new_n0, *side; | 
 | 	unsigned long sc_segments, dissimilarity, blank; | 
 | 	size_t keylen; | 
 | 	int level, sc_level, diff; | 
 | 	int sc_slot; | 
 |  | 
 | 	shortcut	= result->wrong_shortcut.shortcut; | 
 | 	level		= result->wrong_shortcut.level; | 
 | 	sc_level	= result->wrong_shortcut.sc_level; | 
 | 	sc_segments	= result->wrong_shortcut.sc_segments; | 
 | 	dissimilarity	= result->wrong_shortcut.dissimilarity; | 
 |  | 
 | 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", | 
 | 		 __func__, level, dissimilarity, sc_level); | 
 |  | 
 | 	/* We need to split a shortcut and insert a node between the two | 
 | 	 * pieces.  Zero-length pieces will be dispensed with entirely. | 
 | 	 * | 
 | 	 * First of all, we need to find out in which level the first | 
 | 	 * difference was. | 
 | 	 */ | 
 | 	diff = __ffs(dissimilarity); | 
 | 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; | 
 | 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; | 
 | 	pr_devel("diff=%d\n", diff); | 
 |  | 
 | 	if (!shortcut->back_pointer) { | 
 | 		edit->set[0].ptr = &edit->array->root; | 
 | 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { | 
 | 		node = assoc_array_ptr_to_node(shortcut->back_pointer); | 
 | 		edit->set[0].ptr = &node->slots[shortcut->parent_slot]; | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); | 
 |  | 
 | 	/* Create a new node now since we're going to need it anyway */ | 
 | 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 	if (!new_n0) | 
 | 		return false; | 
 | 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
 | 	edit->adjust_count_on = new_n0; | 
 |  | 
 | 	/* Insert a new shortcut before the new node if this segment isn't of | 
 | 	 * zero length - otherwise we just connect the new node directly to the | 
 | 	 * parent. | 
 | 	 */ | 
 | 	level += ASSOC_ARRAY_LEVEL_STEP; | 
 | 	if (diff > level) { | 
 | 		pr_devel("pre-shortcut %d...%d\n", level, diff); | 
 | 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 | 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
 |  | 
 | 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
 | 				 keylen * sizeof(unsigned long), GFP_KERNEL); | 
 | 		if (!new_s0) | 
 | 			return false; | 
 | 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); | 
 | 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | 
 | 		new_s0->back_pointer = shortcut->back_pointer; | 
 | 		new_s0->parent_slot = shortcut->parent_slot; | 
 | 		new_s0->next_node = assoc_array_node_to_ptr(new_n0); | 
 | 		new_s0->skip_to_level = diff; | 
 |  | 
 | 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | 
 | 		new_n0->parent_slot = 0; | 
 |  | 
 | 		memcpy(new_s0->index_key, shortcut->index_key, | 
 | 		       keylen * sizeof(unsigned long)); | 
 |  | 
 | 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
 | 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); | 
 | 		new_s0->index_key[keylen - 1] &= ~blank; | 
 | 	} else { | 
 | 		pr_devel("no pre-shortcut\n"); | 
 | 		edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
 | 		new_n0->back_pointer = shortcut->back_pointer; | 
 | 		new_n0->parent_slot = shortcut->parent_slot; | 
 | 	} | 
 |  | 
 | 	side = assoc_array_ptr_to_node(shortcut->next_node); | 
 | 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; | 
 |  | 
 | 	/* We need to know which slot in the new node is going to take a | 
 | 	 * metadata pointer. | 
 | 	 */ | 
 | 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
 | 	sc_slot &= ASSOC_ARRAY_FAN_MASK; | 
 |  | 
 | 	pr_devel("new slot %lx >> %d -> %d\n", | 
 | 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); | 
 |  | 
 | 	/* Determine whether we need to follow the new node with a replacement | 
 | 	 * for the current shortcut.  We could in theory reuse the current | 
 | 	 * shortcut if its parent slot number doesn't change - but that's a | 
 | 	 * 1-in-16 chance so not worth expending the code upon. | 
 | 	 */ | 
 | 	level = diff + ASSOC_ARRAY_LEVEL_STEP; | 
 | 	if (level < shortcut->skip_to_level) { | 
 | 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); | 
 | 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 | 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
 |  | 
 | 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
 | 				 keylen * sizeof(unsigned long), GFP_KERNEL); | 
 | 		if (!new_s1) | 
 | 			return false; | 
 | 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); | 
 |  | 
 | 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
 | 		new_s1->parent_slot = sc_slot; | 
 | 		new_s1->next_node = shortcut->next_node; | 
 | 		new_s1->skip_to_level = shortcut->skip_to_level; | 
 |  | 
 | 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); | 
 |  | 
 | 		memcpy(new_s1->index_key, shortcut->index_key, | 
 | 		       keylen * sizeof(unsigned long)); | 
 |  | 
 | 		edit->set[1].ptr = &side->back_pointer; | 
 | 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); | 
 | 	} else { | 
 | 		pr_devel("no post-shortcut\n"); | 
 |  | 
 | 		/* We don't have to replace the pointed-to node as long as we | 
 | 		 * use memory barriers to make sure the parent slot number is | 
 | 		 * changed before the back pointer (the parent slot number is | 
 | 		 * irrelevant to the old parent shortcut). | 
 | 		 */ | 
 | 		new_n0->slots[sc_slot] = shortcut->next_node; | 
 | 		edit->set_parent_slot[0].p = &side->parent_slot; | 
 | 		edit->set_parent_slot[0].to = sc_slot; | 
 | 		edit->set[1].ptr = &side->back_pointer; | 
 | 		edit->set[1].to = assoc_array_node_to_ptr(new_n0); | 
 | 	} | 
 |  | 
 | 	/* Install the new leaf in a spare slot in the new node. */ | 
 | 	if (sc_slot == 0) | 
 | 		edit->leaf_p = &new_n0->slots[1]; | 
 | 	else | 
 | 		edit->leaf_p = &new_n0->slots[0]; | 
 |  | 
 | 	pr_devel("<--%s() = ok [split shortcut]\n", __func__); | 
 | 	return edit; | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_insert - Script insertion of an object into an associative array | 
 |  * @array: The array to insert into. | 
 |  * @ops: The operations to use. | 
 |  * @index_key: The key to insert at. | 
 |  * @object: The object to insert. | 
 |  * | 
 |  * Precalculate and preallocate a script for the insertion or replacement of an | 
 |  * object in an associative array.  This results in an edit script that can | 
 |  * either be applied or cancelled. | 
 |  * | 
 |  * The function returns a pointer to an edit script or -ENOMEM. | 
 |  * | 
 |  * The caller should lock against other modifications and must continue to hold | 
 |  * the lock until assoc_array_apply_edit() has been called. | 
 |  * | 
 |  * Accesses to the tree may take place concurrently with this function, | 
 |  * provided they hold the RCU read lock. | 
 |  */ | 
 | struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, | 
 | 					    const struct assoc_array_ops *ops, | 
 | 					    const void *index_key, | 
 | 					    void *object) | 
 | { | 
 | 	struct assoc_array_walk_result result; | 
 | 	struct assoc_array_edit *edit; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	/* The leaf pointer we're given must not have the bottom bit set as we | 
 | 	 * use those for type-marking the pointer.  NULL pointers are also not | 
 | 	 * allowed as they indicate an empty slot but we have to allow them | 
 | 	 * here as they can be updated later. | 
 | 	 */ | 
 | 	BUG_ON(assoc_array_ptr_is_meta(object)); | 
 |  | 
 | 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
 | 	if (!edit) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	edit->array = array; | 
 | 	edit->ops = ops; | 
 | 	edit->leaf = assoc_array_leaf_to_ptr(object); | 
 | 	edit->adjust_count_by = 1; | 
 |  | 
 | 	switch (assoc_array_walk(array, ops, index_key, &result)) { | 
 | 	case assoc_array_walk_tree_empty: | 
 | 		/* Allocate a root node if there isn't one yet */ | 
 | 		if (!assoc_array_insert_in_empty_tree(edit)) | 
 | 			goto enomem; | 
 | 		return edit; | 
 |  | 
 | 	case assoc_array_walk_found_terminal_node: | 
 | 		/* We found a node that doesn't have a node/shortcut pointer in | 
 | 		 * the slot corresponding to the index key that we have to | 
 | 		 * follow. | 
 | 		 */ | 
 | 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, | 
 | 							   &result)) | 
 | 			goto enomem; | 
 | 		return edit; | 
 |  | 
 | 	case assoc_array_walk_found_wrong_shortcut: | 
 | 		/* We found a shortcut that didn't match our key in a slot we | 
 | 		 * needed to follow. | 
 | 		 */ | 
 | 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) | 
 | 			goto enomem; | 
 | 		return edit; | 
 | 	} | 
 |  | 
 | enomem: | 
 | 	/* Clean up after an out of memory error */ | 
 | 	pr_devel("enomem\n"); | 
 | 	assoc_array_cancel_edit(edit); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_insert_set_object - Set the new object pointer in an edit script | 
 |  * @edit: The edit script to modify. | 
 |  * @object: The object pointer to set. | 
 |  * | 
 |  * Change the object to be inserted in an edit script.  The object pointed to | 
 |  * by the old object is not freed.  This must be done prior to applying the | 
 |  * script. | 
 |  */ | 
 | void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) | 
 | { | 
 | 	BUG_ON(!object); | 
 | 	edit->leaf = assoc_array_leaf_to_ptr(object); | 
 | } | 
 |  | 
 | struct assoc_array_delete_collapse_context { | 
 | 	struct assoc_array_node	*node; | 
 | 	const void		*skip_leaf; | 
 | 	int			slot; | 
 | }; | 
 |  | 
 | /* | 
 |  * Subtree collapse to node iterator. | 
 |  */ | 
 | static int assoc_array_delete_collapse_iterator(const void *leaf, | 
 | 						void *iterator_data) | 
 | { | 
 | 	struct assoc_array_delete_collapse_context *collapse = iterator_data; | 
 |  | 
 | 	if (leaf == collapse->skip_leaf) | 
 | 		return 0; | 
 |  | 
 | 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); | 
 |  | 
 | 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_delete - Script deletion of an object from an associative array | 
 |  * @array: The array to search. | 
 |  * @ops: The operations to use. | 
 |  * @index_key: The key to the object. | 
 |  * | 
 |  * Precalculate and preallocate a script for the deletion of an object from an | 
 |  * associative array.  This results in an edit script that can either be | 
 |  * applied or cancelled. | 
 |  * | 
 |  * The function returns a pointer to an edit script if the object was found, | 
 |  * NULL if the object was not found or -ENOMEM. | 
 |  * | 
 |  * The caller should lock against other modifications and must continue to hold | 
 |  * the lock until assoc_array_apply_edit() has been called. | 
 |  * | 
 |  * Accesses to the tree may take place concurrently with this function, | 
 |  * provided they hold the RCU read lock. | 
 |  */ | 
 | struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, | 
 | 					    const struct assoc_array_ops *ops, | 
 | 					    const void *index_key) | 
 | { | 
 | 	struct assoc_array_delete_collapse_context collapse; | 
 | 	struct assoc_array_walk_result result; | 
 | 	struct assoc_array_node *node, *new_n0; | 
 | 	struct assoc_array_edit *edit; | 
 | 	struct assoc_array_ptr *ptr; | 
 | 	bool has_meta; | 
 | 	int slot, i; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
 | 	if (!edit) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	edit->array = array; | 
 | 	edit->ops = ops; | 
 | 	edit->adjust_count_by = -1; | 
 |  | 
 | 	switch (assoc_array_walk(array, ops, index_key, &result)) { | 
 | 	case assoc_array_walk_found_terminal_node: | 
 | 		/* We found a node that should contain the leaf we've been | 
 | 		 * asked to remove - *if* it's in the tree. | 
 | 		 */ | 
 | 		pr_devel("terminal_node\n"); | 
 | 		node = result.terminal_node.node; | 
 |  | 
 | 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 			ptr = node->slots[slot]; | 
 | 			if (ptr && | 
 | 			    assoc_array_ptr_is_leaf(ptr) && | 
 | 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr), | 
 | 						index_key)) | 
 | 				goto found_leaf; | 
 | 		} | 
 | 		/* fall through */ | 
 | 	case assoc_array_walk_tree_empty: | 
 | 	case assoc_array_walk_found_wrong_shortcut: | 
 | 	default: | 
 | 		assoc_array_cancel_edit(edit); | 
 | 		pr_devel("not found\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | found_leaf: | 
 | 	BUG_ON(array->nr_leaves_on_tree <= 0); | 
 |  | 
 | 	/* In the simplest form of deletion we just clear the slot and release | 
 | 	 * the leaf after a suitable interval. | 
 | 	 */ | 
 | 	edit->dead_leaf = node->slots[slot]; | 
 | 	edit->set[0].ptr = &node->slots[slot]; | 
 | 	edit->set[0].to = NULL; | 
 | 	edit->adjust_count_on = node; | 
 |  | 
 | 	/* If that concludes erasure of the last leaf, then delete the entire | 
 | 	 * internal array. | 
 | 	 */ | 
 | 	if (array->nr_leaves_on_tree == 1) { | 
 | 		edit->set[1].ptr = &array->root; | 
 | 		edit->set[1].to = NULL; | 
 | 		edit->adjust_count_on = NULL; | 
 | 		edit->excised_subtree = array->root; | 
 | 		pr_devel("all gone\n"); | 
 | 		return edit; | 
 | 	} | 
 |  | 
 | 	/* However, we'd also like to clear up some metadata blocks if we | 
 | 	 * possibly can. | 
 | 	 * | 
 | 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer | 
 | 	 * leaves in it, then attempt to collapse it - and attempt to | 
 | 	 * recursively collapse up the tree. | 
 | 	 * | 
 | 	 * We could also try and collapse in partially filled subtrees to take | 
 | 	 * up space in this node. | 
 | 	 */ | 
 | 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | 
 | 		struct assoc_array_node *parent, *grandparent; | 
 | 		struct assoc_array_ptr *ptr; | 
 |  | 
 | 		/* First of all, we need to know if this node has metadata so | 
 | 		 * that we don't try collapsing if all the leaves are already | 
 | 		 * here. | 
 | 		 */ | 
 | 		has_meta = false; | 
 | 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 			ptr = node->slots[i]; | 
 | 			if (assoc_array_ptr_is_meta(ptr)) { | 
 | 				has_meta = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pr_devel("leaves: %ld [m=%d]\n", | 
 | 			 node->nr_leaves_on_branch - 1, has_meta); | 
 |  | 
 | 		/* Look further up the tree to see if we can collapse this node | 
 | 		 * into a more proximal node too. | 
 | 		 */ | 
 | 		parent = node; | 
 | 	collapse_up: | 
 | 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); | 
 |  | 
 | 		ptr = parent->back_pointer; | 
 | 		if (!ptr) | 
 | 			goto do_collapse; | 
 | 		if (assoc_array_ptr_is_shortcut(ptr)) { | 
 | 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); | 
 | 			ptr = s->back_pointer; | 
 | 			if (!ptr) | 
 | 				goto do_collapse; | 
 | 		} | 
 |  | 
 | 		grandparent = assoc_array_ptr_to_node(ptr); | 
 | 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | 
 | 			parent = grandparent; | 
 | 			goto collapse_up; | 
 | 		} | 
 |  | 
 | 	do_collapse: | 
 | 		/* There's no point collapsing if the original node has no meta | 
 | 		 * pointers to discard and if we didn't merge into one of that | 
 | 		 * node's ancestry. | 
 | 		 */ | 
 | 		if (has_meta || parent != node) { | 
 | 			node = parent; | 
 |  | 
 | 			/* Create a new node to collapse into */ | 
 | 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 			if (!new_n0) | 
 | 				goto enomem; | 
 | 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
 |  | 
 | 			new_n0->back_pointer = node->back_pointer; | 
 | 			new_n0->parent_slot = node->parent_slot; | 
 | 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | 
 | 			edit->adjust_count_on = new_n0; | 
 |  | 
 | 			collapse.node = new_n0; | 
 | 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); | 
 | 			collapse.slot = 0; | 
 | 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), | 
 | 						    node->back_pointer, | 
 | 						    assoc_array_delete_collapse_iterator, | 
 | 						    &collapse); | 
 | 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); | 
 | 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); | 
 |  | 
 | 			if (!node->back_pointer) { | 
 | 				edit->set[1].ptr = &array->root; | 
 | 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) { | 
 | 				BUG(); | 
 | 			} else if (assoc_array_ptr_is_node(node->back_pointer)) { | 
 | 				struct assoc_array_node *p = | 
 | 					assoc_array_ptr_to_node(node->back_pointer); | 
 | 				edit->set[1].ptr = &p->slots[node->parent_slot]; | 
 | 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { | 
 | 				struct assoc_array_shortcut *s = | 
 | 					assoc_array_ptr_to_shortcut(node->back_pointer); | 
 | 				edit->set[1].ptr = &s->next_node; | 
 | 			} | 
 | 			edit->set[1].to = assoc_array_node_to_ptr(new_n0); | 
 | 			edit->excised_subtree = assoc_array_node_to_ptr(node); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return edit; | 
 |  | 
 | enomem: | 
 | 	/* Clean up after an out of memory error */ | 
 | 	pr_devel("enomem\n"); | 
 | 	assoc_array_cancel_edit(edit); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_clear - Script deletion of all objects from an associative array | 
 |  * @array: The array to clear. | 
 |  * @ops: The operations to use. | 
 |  * | 
 |  * Precalculate and preallocate a script for the deletion of all the objects | 
 |  * from an associative array.  This results in an edit script that can either | 
 |  * be applied or cancelled. | 
 |  * | 
 |  * The function returns a pointer to an edit script if there are objects to be | 
 |  * deleted, NULL if there are no objects in the array or -ENOMEM. | 
 |  * | 
 |  * The caller should lock against other modifications and must continue to hold | 
 |  * the lock until assoc_array_apply_edit() has been called. | 
 |  * | 
 |  * Accesses to the tree may take place concurrently with this function, | 
 |  * provided they hold the RCU read lock. | 
 |  */ | 
 | struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, | 
 | 					   const struct assoc_array_ops *ops) | 
 | { | 
 | 	struct assoc_array_edit *edit; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	if (!array->root) | 
 | 		return NULL; | 
 |  | 
 | 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
 | 	if (!edit) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	edit->array = array; | 
 | 	edit->ops = ops; | 
 | 	edit->set[1].ptr = &array->root; | 
 | 	edit->set[1].to = NULL; | 
 | 	edit->excised_subtree = array->root; | 
 | 	edit->ops_for_excised_subtree = ops; | 
 | 	pr_devel("all gone\n"); | 
 | 	return edit; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle the deferred destruction after an applied edit. | 
 |  */ | 
 | static void assoc_array_rcu_cleanup(struct rcu_head *head) | 
 | { | 
 | 	struct assoc_array_edit *edit = | 
 | 		container_of(head, struct assoc_array_edit, rcu); | 
 | 	int i; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	if (edit->dead_leaf) | 
 | 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); | 
 | 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) | 
 | 		if (edit->excised_meta[i]) | 
 | 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); | 
 |  | 
 | 	if (edit->excised_subtree) { | 
 | 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); | 
 | 		if (assoc_array_ptr_is_node(edit->excised_subtree)) { | 
 | 			struct assoc_array_node *n = | 
 | 				assoc_array_ptr_to_node(edit->excised_subtree); | 
 | 			n->back_pointer = NULL; | 
 | 		} else { | 
 | 			struct assoc_array_shortcut *s = | 
 | 				assoc_array_ptr_to_shortcut(edit->excised_subtree); | 
 | 			s->back_pointer = NULL; | 
 | 		} | 
 | 		assoc_array_destroy_subtree(edit->excised_subtree, | 
 | 					    edit->ops_for_excised_subtree); | 
 | 	} | 
 |  | 
 | 	kfree(edit); | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_apply_edit - Apply an edit script to an associative array | 
 |  * @edit: The script to apply. | 
 |  * | 
 |  * Apply an edit script to an associative array to effect an insertion, | 
 |  * deletion or clearance.  As the edit script includes preallocated memory, | 
 |  * this is guaranteed not to fail. | 
 |  * | 
 |  * The edit script, dead objects and dead metadata will be scheduled for | 
 |  * destruction after an RCU grace period to permit those doing read-only | 
 |  * accesses on the array to continue to do so under the RCU read lock whilst | 
 |  * the edit is taking place. | 
 |  */ | 
 | void assoc_array_apply_edit(struct assoc_array_edit *edit) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut; | 
 | 	struct assoc_array_node *node; | 
 | 	struct assoc_array_ptr *ptr; | 
 | 	int i; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	smp_wmb(); | 
 | 	if (edit->leaf_p) | 
 | 		*edit->leaf_p = edit->leaf; | 
 |  | 
 | 	smp_wmb(); | 
 | 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) | 
 | 		if (edit->set_parent_slot[i].p) | 
 | 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; | 
 |  | 
 | 	smp_wmb(); | 
 | 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) | 
 | 		if (edit->set_backpointers[i]) | 
 | 			*edit->set_backpointers[i] = edit->set_backpointers_to; | 
 |  | 
 | 	smp_wmb(); | 
 | 	for (i = 0; i < ARRAY_SIZE(edit->set); i++) | 
 | 		if (edit->set[i].ptr) | 
 | 			*edit->set[i].ptr = edit->set[i].to; | 
 |  | 
 | 	if (edit->array->root == NULL) { | 
 | 		edit->array->nr_leaves_on_tree = 0; | 
 | 	} else if (edit->adjust_count_on) { | 
 | 		node = edit->adjust_count_on; | 
 | 		for (;;) { | 
 | 			node->nr_leaves_on_branch += edit->adjust_count_by; | 
 |  | 
 | 			ptr = node->back_pointer; | 
 | 			if (!ptr) | 
 | 				break; | 
 | 			if (assoc_array_ptr_is_shortcut(ptr)) { | 
 | 				shortcut = assoc_array_ptr_to_shortcut(ptr); | 
 | 				ptr = shortcut->back_pointer; | 
 | 				if (!ptr) | 
 | 					break; | 
 | 			} | 
 | 			BUG_ON(!assoc_array_ptr_is_node(ptr)); | 
 | 			node = assoc_array_ptr_to_node(ptr); | 
 | 		} | 
 |  | 
 | 		edit->array->nr_leaves_on_tree += edit->adjust_count_by; | 
 | 	} | 
 |  | 
 | 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup); | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_cancel_edit - Discard an edit script. | 
 |  * @edit: The script to discard. | 
 |  * | 
 |  * Free an edit script and all the preallocated data it holds without making | 
 |  * any changes to the associative array it was intended for. | 
 |  * | 
 |  * NOTE!  In the case of an insertion script, this does _not_ release the leaf | 
 |  * that was to be inserted.  That is left to the caller. | 
 |  */ | 
 | void assoc_array_cancel_edit(struct assoc_array_edit *edit) | 
 | { | 
 | 	struct assoc_array_ptr *ptr; | 
 | 	int i; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	/* Clean up after an out of memory error */ | 
 | 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { | 
 | 		ptr = edit->new_meta[i]; | 
 | 		if (ptr) { | 
 | 			if (assoc_array_ptr_is_node(ptr)) | 
 | 				kfree(assoc_array_ptr_to_node(ptr)); | 
 | 			else | 
 | 				kfree(assoc_array_ptr_to_shortcut(ptr)); | 
 | 		} | 
 | 	} | 
 | 	kfree(edit); | 
 | } | 
 |  | 
 | /** | 
 |  * assoc_array_gc - Garbage collect an associative array. | 
 |  * @array: The array to clean. | 
 |  * @ops: The operations to use. | 
 |  * @iterator: A callback function to pass judgement on each object. | 
 |  * @iterator_data: Private data for the callback function. | 
 |  * | 
 |  * Collect garbage from an associative array and pack down the internal tree to | 
 |  * save memory. | 
 |  * | 
 |  * The iterator function is asked to pass judgement upon each object in the | 
 |  * array.  If it returns false, the object is discard and if it returns true, | 
 |  * the object is kept.  If it returns true, it must increment the object's | 
 |  * usage count (or whatever it needs to do to retain it) before returning. | 
 |  * | 
 |  * This function returns 0 if successful or -ENOMEM if out of memory.  In the | 
 |  * latter case, the array is not changed. | 
 |  * | 
 |  * The caller should lock against other modifications and must continue to hold | 
 |  * the lock until assoc_array_apply_edit() has been called. | 
 |  * | 
 |  * Accesses to the tree may take place concurrently with this function, | 
 |  * provided they hold the RCU read lock. | 
 |  */ | 
 | int assoc_array_gc(struct assoc_array *array, | 
 | 		   const struct assoc_array_ops *ops, | 
 | 		   bool (*iterator)(void *object, void *iterator_data), | 
 | 		   void *iterator_data) | 
 | { | 
 | 	struct assoc_array_shortcut *shortcut, *new_s; | 
 | 	struct assoc_array_node *node, *new_n; | 
 | 	struct assoc_array_edit *edit; | 
 | 	struct assoc_array_ptr *cursor, *ptr; | 
 | 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; | 
 | 	unsigned long nr_leaves_on_tree; | 
 | 	bool retained; | 
 | 	int keylen, slot, nr_free, next_slot, i; | 
 |  | 
 | 	pr_devel("-->%s()\n", __func__); | 
 |  | 
 | 	if (!array->root) | 
 | 		return 0; | 
 |  | 
 | 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
 | 	if (!edit) | 
 | 		return -ENOMEM; | 
 | 	edit->array = array; | 
 | 	edit->ops = ops; | 
 | 	edit->ops_for_excised_subtree = ops; | 
 | 	edit->set[0].ptr = &array->root; | 
 | 	edit->excised_subtree = array->root; | 
 |  | 
 | 	new_root = new_parent = NULL; | 
 | 	new_ptr_pp = &new_root; | 
 | 	cursor = array->root; | 
 |  | 
 | descend: | 
 | 	/* If this point is a shortcut, then we need to duplicate it and | 
 | 	 * advance the target cursor. | 
 | 	 */ | 
 | 	if (assoc_array_ptr_is_shortcut(cursor)) { | 
 | 		shortcut = assoc_array_ptr_to_shortcut(cursor); | 
 | 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
 | 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
 | 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) + | 
 | 				keylen * sizeof(unsigned long), GFP_KERNEL); | 
 | 		if (!new_s) | 
 | 			goto enomem; | 
 | 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); | 
 | 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + | 
 | 					 keylen * sizeof(unsigned long))); | 
 | 		new_s->back_pointer = new_parent; | 
 | 		new_s->parent_slot = shortcut->parent_slot; | 
 | 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); | 
 | 		new_ptr_pp = &new_s->next_node; | 
 | 		cursor = shortcut->next_node; | 
 | 	} | 
 |  | 
 | 	/* Duplicate the node at this position */ | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
 | 	if (!new_n) | 
 | 		goto enomem; | 
 | 	pr_devel("dup node %p -> %p\n", node, new_n); | 
 | 	new_n->back_pointer = new_parent; | 
 | 	new_n->parent_slot = node->parent_slot; | 
 | 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); | 
 | 	new_ptr_pp = NULL; | 
 | 	slot = 0; | 
 |  | 
 | continue_node: | 
 | 	/* Filter across any leaves and gc any subtrees */ | 
 | 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		ptr = node->slots[slot]; | 
 | 		if (!ptr) | 
 | 			continue; | 
 |  | 
 | 		if (assoc_array_ptr_is_leaf(ptr)) { | 
 | 			if (iterator(assoc_array_ptr_to_leaf(ptr), | 
 | 				     iterator_data)) | 
 | 				/* The iterator will have done any reference | 
 | 				 * counting on the object for us. | 
 | 				 */ | 
 | 				new_n->slots[slot] = ptr; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_ptr_pp = &new_n->slots[slot]; | 
 | 		cursor = ptr; | 
 | 		goto descend; | 
 | 	} | 
 |  | 
 | retry_compress: | 
 | 	pr_devel("-- compress node %p --\n", new_n); | 
 |  | 
 | 	/* Count up the number of empty slots in this node and work out the | 
 | 	 * subtree leaf count. | 
 | 	 */ | 
 | 	new_n->nr_leaves_on_branch = 0; | 
 | 	nr_free = 0; | 
 | 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		ptr = new_n->slots[slot]; | 
 | 		if (!ptr) | 
 | 			nr_free++; | 
 | 		else if (assoc_array_ptr_is_leaf(ptr)) | 
 | 			new_n->nr_leaves_on_branch++; | 
 | 	} | 
 | 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); | 
 |  | 
 | 	/* See what we can fold in */ | 
 | 	retained = false; | 
 | 	next_slot = 0; | 
 | 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
 | 		struct assoc_array_shortcut *s; | 
 | 		struct assoc_array_node *child; | 
 |  | 
 | 		ptr = new_n->slots[slot]; | 
 | 		if (!ptr || assoc_array_ptr_is_leaf(ptr)) | 
 | 			continue; | 
 |  | 
 | 		s = NULL; | 
 | 		if (assoc_array_ptr_is_shortcut(ptr)) { | 
 | 			s = assoc_array_ptr_to_shortcut(ptr); | 
 | 			ptr = s->next_node; | 
 | 		} | 
 |  | 
 | 		child = assoc_array_ptr_to_node(ptr); | 
 | 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; | 
 |  | 
 | 		if (child->nr_leaves_on_branch <= nr_free + 1) { | 
 | 			/* Fold the child node into this one */ | 
 | 			pr_devel("[%d] fold node %lu/%d [nx %d]\n", | 
 | 				 slot, child->nr_leaves_on_branch, nr_free + 1, | 
 | 				 next_slot); | 
 |  | 
 | 			/* We would already have reaped an intervening shortcut | 
 | 			 * on the way back up the tree. | 
 | 			 */ | 
 | 			BUG_ON(s); | 
 |  | 
 | 			new_n->slots[slot] = NULL; | 
 | 			nr_free++; | 
 | 			if (slot < next_slot) | 
 | 				next_slot = slot; | 
 | 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
 | 				struct assoc_array_ptr *p = child->slots[i]; | 
 | 				if (!p) | 
 | 					continue; | 
 | 				BUG_ON(assoc_array_ptr_is_meta(p)); | 
 | 				while (new_n->slots[next_slot]) | 
 | 					next_slot++; | 
 | 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); | 
 | 				new_n->slots[next_slot++] = p; | 
 | 				nr_free--; | 
 | 			} | 
 | 			kfree(child); | 
 | 		} else { | 
 | 			pr_devel("[%d] retain node %lu/%d [nx %d]\n", | 
 | 				 slot, child->nr_leaves_on_branch, nr_free + 1, | 
 | 				 next_slot); | 
 | 			retained = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (retained && new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { | 
 | 		pr_devel("internal nodes remain despite enough space, retrying\n"); | 
 | 		goto retry_compress; | 
 | 	} | 
 | 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); | 
 |  | 
 | 	nr_leaves_on_tree = new_n->nr_leaves_on_branch; | 
 |  | 
 | 	/* Excise this node if it is singly occupied by a shortcut */ | 
 | 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { | 
 | 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) | 
 | 			if ((ptr = new_n->slots[slot])) | 
 | 				break; | 
 |  | 
 | 		if (assoc_array_ptr_is_meta(ptr) && | 
 | 		    assoc_array_ptr_is_shortcut(ptr)) { | 
 | 			pr_devel("excise node %p with 1 shortcut\n", new_n); | 
 | 			new_s = assoc_array_ptr_to_shortcut(ptr); | 
 | 			new_parent = new_n->back_pointer; | 
 | 			slot = new_n->parent_slot; | 
 | 			kfree(new_n); | 
 | 			if (!new_parent) { | 
 | 				new_s->back_pointer = NULL; | 
 | 				new_s->parent_slot = 0; | 
 | 				new_root = ptr; | 
 | 				goto gc_complete; | 
 | 			} | 
 |  | 
 | 			if (assoc_array_ptr_is_shortcut(new_parent)) { | 
 | 				/* We can discard any preceding shortcut also */ | 
 | 				struct assoc_array_shortcut *s = | 
 | 					assoc_array_ptr_to_shortcut(new_parent); | 
 |  | 
 | 				pr_devel("excise preceding shortcut\n"); | 
 |  | 
 | 				new_parent = new_s->back_pointer = s->back_pointer; | 
 | 				slot = new_s->parent_slot = s->parent_slot; | 
 | 				kfree(s); | 
 | 				if (!new_parent) { | 
 | 					new_s->back_pointer = NULL; | 
 | 					new_s->parent_slot = 0; | 
 | 					new_root = ptr; | 
 | 					goto gc_complete; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			new_s->back_pointer = new_parent; | 
 | 			new_s->parent_slot = slot; | 
 | 			new_n = assoc_array_ptr_to_node(new_parent); | 
 | 			new_n->slots[slot] = ptr; | 
 | 			goto ascend_old_tree; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Excise any shortcuts we might encounter that point to nodes that | 
 | 	 * only contain leaves. | 
 | 	 */ | 
 | 	ptr = new_n->back_pointer; | 
 | 	if (!ptr) | 
 | 		goto gc_complete; | 
 |  | 
 | 	if (assoc_array_ptr_is_shortcut(ptr)) { | 
 | 		new_s = assoc_array_ptr_to_shortcut(ptr); | 
 | 		new_parent = new_s->back_pointer; | 
 | 		slot = new_s->parent_slot; | 
 |  | 
 | 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { | 
 | 			struct assoc_array_node *n; | 
 |  | 
 | 			pr_devel("excise shortcut\n"); | 
 | 			new_n->back_pointer = new_parent; | 
 | 			new_n->parent_slot = slot; | 
 | 			kfree(new_s); | 
 | 			if (!new_parent) { | 
 | 				new_root = assoc_array_node_to_ptr(new_n); | 
 | 				goto gc_complete; | 
 | 			} | 
 |  | 
 | 			n = assoc_array_ptr_to_node(new_parent); | 
 | 			n->slots[slot] = assoc_array_node_to_ptr(new_n); | 
 | 		} | 
 | 	} else { | 
 | 		new_parent = ptr; | 
 | 	} | 
 | 	new_n = assoc_array_ptr_to_node(new_parent); | 
 |  | 
 | ascend_old_tree: | 
 | 	ptr = node->back_pointer; | 
 | 	if (assoc_array_ptr_is_shortcut(ptr)) { | 
 | 		shortcut = assoc_array_ptr_to_shortcut(ptr); | 
 | 		slot = shortcut->parent_slot; | 
 | 		cursor = shortcut->back_pointer; | 
 | 		if (!cursor) | 
 | 			goto gc_complete; | 
 | 	} else { | 
 | 		slot = node->parent_slot; | 
 | 		cursor = ptr; | 
 | 	} | 
 | 	BUG_ON(!cursor); | 
 | 	node = assoc_array_ptr_to_node(cursor); | 
 | 	slot++; | 
 | 	goto continue_node; | 
 |  | 
 | gc_complete: | 
 | 	edit->set[0].to = new_root; | 
 | 	assoc_array_apply_edit(edit); | 
 | 	array->nr_leaves_on_tree = nr_leaves_on_tree; | 
 | 	return 0; | 
 |  | 
 | enomem: | 
 | 	pr_devel("enomem\n"); | 
 | 	assoc_array_destroy_subtree(new_root, edit->ops); | 
 | 	kfree(edit); | 
 | 	return -ENOMEM; | 
 | } |