| /* |
| * Copyright 2012-15 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| #include "dm_services.h" |
| #include "include/fixed31_32.h" |
| |
| static inline uint64_t abs_i64( |
| int64_t arg) |
| { |
| if (arg > 0) |
| return (uint64_t)arg; |
| else |
| return (uint64_t)(-arg); |
| } |
| |
| /* |
| * @brief |
| * result = dividend / divisor |
| * *remainder = dividend % divisor |
| */ |
| static inline uint64_t complete_integer_division_u64( |
| uint64_t dividend, |
| uint64_t divisor, |
| uint64_t *remainder) |
| { |
| uint64_t result; |
| |
| ASSERT(divisor); |
| |
| result = div64_u64_rem(dividend, divisor, remainder); |
| |
| return result; |
| } |
| |
| |
| #define FRACTIONAL_PART_MASK \ |
| ((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1) |
| |
| #define GET_INTEGER_PART(x) \ |
| ((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART) |
| |
| #define GET_FRACTIONAL_PART(x) \ |
| (FRACTIONAL_PART_MASK & (x)) |
| |
| struct fixed31_32 dal_fixed31_32_from_fraction( |
| int64_t numerator, |
| int64_t denominator) |
| { |
| struct fixed31_32 res; |
| |
| bool arg1_negative = numerator < 0; |
| bool arg2_negative = denominator < 0; |
| |
| uint64_t arg1_value = arg1_negative ? -numerator : numerator; |
| uint64_t arg2_value = arg2_negative ? -denominator : denominator; |
| |
| uint64_t remainder; |
| |
| /* determine integer part */ |
| |
| uint64_t res_value = complete_integer_division_u64( |
| arg1_value, arg2_value, &remainder); |
| |
| ASSERT(res_value <= LONG_MAX); |
| |
| /* determine fractional part */ |
| { |
| uint32_t i = FIXED31_32_BITS_PER_FRACTIONAL_PART; |
| |
| do { |
| remainder <<= 1; |
| |
| res_value <<= 1; |
| |
| if (remainder >= arg2_value) { |
| res_value |= 1; |
| remainder -= arg2_value; |
| } |
| } while (--i != 0); |
| } |
| |
| /* round up LSB */ |
| { |
| uint64_t summand = (remainder << 1) >= arg2_value; |
| |
| ASSERT(res_value <= LLONG_MAX - summand); |
| |
| res_value += summand; |
| } |
| |
| res.value = (int64_t)res_value; |
| |
| if (arg1_negative ^ arg2_negative) |
| res.value = -res.value; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_from_int_nonconst( |
| int64_t arg) |
| { |
| struct fixed31_32 res; |
| |
| ASSERT((LONG_MIN <= arg) && (arg <= LONG_MAX)); |
| |
| res.value = arg << FIXED31_32_BITS_PER_FRACTIONAL_PART; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_shl( |
| struct fixed31_32 arg, |
| uint8_t shift) |
| { |
| struct fixed31_32 res; |
| |
| ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) || |
| ((arg.value < 0) && (arg.value >= LLONG_MIN >> shift))); |
| |
| res.value = arg.value << shift; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_add( |
| struct fixed31_32 arg1, |
| struct fixed31_32 arg2) |
| { |
| struct fixed31_32 res; |
| |
| ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) || |
| ((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value))); |
| |
| res.value = arg1.value + arg2.value; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_sub( |
| struct fixed31_32 arg1, |
| struct fixed31_32 arg2) |
| { |
| struct fixed31_32 res; |
| |
| ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) || |
| ((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value))); |
| |
| res.value = arg1.value - arg2.value; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_mul( |
| struct fixed31_32 arg1, |
| struct fixed31_32 arg2) |
| { |
| struct fixed31_32 res; |
| |
| bool arg1_negative = arg1.value < 0; |
| bool arg2_negative = arg2.value < 0; |
| |
| uint64_t arg1_value = arg1_negative ? -arg1.value : arg1.value; |
| uint64_t arg2_value = arg2_negative ? -arg2.value : arg2.value; |
| |
| uint64_t arg1_int = GET_INTEGER_PART(arg1_value); |
| uint64_t arg2_int = GET_INTEGER_PART(arg2_value); |
| |
| uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value); |
| uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value); |
| |
| uint64_t tmp; |
| |
| res.value = arg1_int * arg2_int; |
| |
| ASSERT(res.value <= LONG_MAX); |
| |
| res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART; |
| |
| tmp = arg1_int * arg2_fra; |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| tmp = arg2_int * arg1_fra; |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| tmp = arg1_fra * arg2_fra; |
| |
| tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) + |
| (tmp >= (uint64_t)dal_fixed31_32_half.value); |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| if (arg1_negative ^ arg2_negative) |
| res.value = -res.value; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_sqr( |
| struct fixed31_32 arg) |
| { |
| struct fixed31_32 res; |
| |
| uint64_t arg_value = abs_i64(arg.value); |
| |
| uint64_t arg_int = GET_INTEGER_PART(arg_value); |
| |
| uint64_t arg_fra = GET_FRACTIONAL_PART(arg_value); |
| |
| uint64_t tmp; |
| |
| res.value = arg_int * arg_int; |
| |
| ASSERT(res.value <= LONG_MAX); |
| |
| res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART; |
| |
| tmp = arg_int * arg_fra; |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| tmp = arg_fra * arg_fra; |
| |
| tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) + |
| (tmp >= (uint64_t)dal_fixed31_32_half.value); |
| |
| ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); |
| |
| res.value += tmp; |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_recip( |
| struct fixed31_32 arg) |
| { |
| /* |
| * @note |
| * Good idea to use Newton's method |
| */ |
| |
| ASSERT(arg.value); |
| |
| return dal_fixed31_32_from_fraction( |
| dal_fixed31_32_one.value, |
| arg.value); |
| } |
| |
| struct fixed31_32 dal_fixed31_32_sinc( |
| struct fixed31_32 arg) |
| { |
| struct fixed31_32 square; |
| |
| struct fixed31_32 res = dal_fixed31_32_one; |
| |
| int32_t n = 27; |
| |
| struct fixed31_32 arg_norm = arg; |
| |
| if (dal_fixed31_32_le( |
| dal_fixed31_32_two_pi, |
| dal_fixed31_32_abs(arg))) { |
| arg_norm = dal_fixed31_32_sub( |
| arg_norm, |
| dal_fixed31_32_mul_int( |
| dal_fixed31_32_two_pi, |
| (int32_t)div64_s64( |
| arg_norm.value, |
| dal_fixed31_32_two_pi.value))); |
| } |
| |
| square = dal_fixed31_32_sqr(arg_norm); |
| |
| do { |
| res = dal_fixed31_32_sub( |
| dal_fixed31_32_one, |
| dal_fixed31_32_div_int( |
| dal_fixed31_32_mul( |
| square, |
| res), |
| n * (n - 1))); |
| |
| n -= 2; |
| } while (n > 2); |
| |
| if (arg.value != arg_norm.value) |
| res = dal_fixed31_32_div( |
| dal_fixed31_32_mul(res, arg_norm), |
| arg); |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_sin( |
| struct fixed31_32 arg) |
| { |
| return dal_fixed31_32_mul( |
| arg, |
| dal_fixed31_32_sinc(arg)); |
| } |
| |
| struct fixed31_32 dal_fixed31_32_cos( |
| struct fixed31_32 arg) |
| { |
| /* TODO implement argument normalization */ |
| |
| const struct fixed31_32 square = dal_fixed31_32_sqr(arg); |
| |
| struct fixed31_32 res = dal_fixed31_32_one; |
| |
| int32_t n = 26; |
| |
| do { |
| res = dal_fixed31_32_sub( |
| dal_fixed31_32_one, |
| dal_fixed31_32_div_int( |
| dal_fixed31_32_mul( |
| square, |
| res), |
| n * (n - 1))); |
| |
| n -= 2; |
| } while (n != 0); |
| |
| return res; |
| } |
| |
| /* |
| * @brief |
| * result = exp(arg), |
| * where abs(arg) < 1 |
| * |
| * Calculated as Taylor series. |
| */ |
| static struct fixed31_32 fixed31_32_exp_from_taylor_series( |
| struct fixed31_32 arg) |
| { |
| uint32_t n = 9; |
| |
| struct fixed31_32 res = dal_fixed31_32_from_fraction( |
| n + 2, |
| n + 1); |
| /* TODO find correct res */ |
| |
| ASSERT(dal_fixed31_32_lt(arg, dal_fixed31_32_one)); |
| |
| do |
| res = dal_fixed31_32_add( |
| dal_fixed31_32_one, |
| dal_fixed31_32_div_int( |
| dal_fixed31_32_mul( |
| arg, |
| res), |
| n)); |
| while (--n != 1); |
| |
| return dal_fixed31_32_add( |
| dal_fixed31_32_one, |
| dal_fixed31_32_mul( |
| arg, |
| res)); |
| } |
| |
| struct fixed31_32 dal_fixed31_32_exp( |
| struct fixed31_32 arg) |
| { |
| /* |
| * @brief |
| * Main equation is: |
| * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r), |
| * where m = round(x / ln(2)), r = x - m * ln(2) |
| */ |
| |
| if (dal_fixed31_32_le( |
| dal_fixed31_32_ln2_div_2, |
| dal_fixed31_32_abs(arg))) { |
| int32_t m = dal_fixed31_32_round( |
| dal_fixed31_32_div( |
| arg, |
| dal_fixed31_32_ln2)); |
| |
| struct fixed31_32 r = dal_fixed31_32_sub( |
| arg, |
| dal_fixed31_32_mul_int( |
| dal_fixed31_32_ln2, |
| m)); |
| |
| ASSERT(m != 0); |
| |
| ASSERT(dal_fixed31_32_lt( |
| dal_fixed31_32_abs(r), |
| dal_fixed31_32_one)); |
| |
| if (m > 0) |
| return dal_fixed31_32_shl( |
| fixed31_32_exp_from_taylor_series(r), |
| (uint8_t)m); |
| else |
| return dal_fixed31_32_div_int( |
| fixed31_32_exp_from_taylor_series(r), |
| 1LL << -m); |
| } else if (arg.value != 0) |
| return fixed31_32_exp_from_taylor_series(arg); |
| else |
| return dal_fixed31_32_one; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_log( |
| struct fixed31_32 arg) |
| { |
| struct fixed31_32 res = dal_fixed31_32_neg(dal_fixed31_32_one); |
| /* TODO improve 1st estimation */ |
| |
| struct fixed31_32 error; |
| |
| ASSERT(arg.value > 0); |
| /* TODO if arg is negative, return NaN */ |
| /* TODO if arg is zero, return -INF */ |
| |
| do { |
| struct fixed31_32 res1 = dal_fixed31_32_add( |
| dal_fixed31_32_sub( |
| res, |
| dal_fixed31_32_one), |
| dal_fixed31_32_div( |
| arg, |
| dal_fixed31_32_exp(res))); |
| |
| error = dal_fixed31_32_sub( |
| res, |
| res1); |
| |
| res = res1; |
| /* TODO determine max_allowed_error based on quality of exp() */ |
| } while (abs_i64(error.value) > 100ULL); |
| |
| return res; |
| } |
| |
| struct fixed31_32 dal_fixed31_32_pow( |
| struct fixed31_32 arg1, |
| struct fixed31_32 arg2) |
| { |
| return dal_fixed31_32_exp( |
| dal_fixed31_32_mul( |
| dal_fixed31_32_log(arg1), |
| arg2)); |
| } |
| |
| int32_t dal_fixed31_32_floor( |
| struct fixed31_32 arg) |
| { |
| uint64_t arg_value = abs_i64(arg.value); |
| |
| if (arg.value >= 0) |
| return (int32_t)GET_INTEGER_PART(arg_value); |
| else |
| return -(int32_t)GET_INTEGER_PART(arg_value); |
| } |
| |
| int32_t dal_fixed31_32_round( |
| struct fixed31_32 arg) |
| { |
| uint64_t arg_value = abs_i64(arg.value); |
| |
| const int64_t summand = dal_fixed31_32_half.value; |
| |
| ASSERT(LLONG_MAX - (int64_t)arg_value >= summand); |
| |
| arg_value += summand; |
| |
| if (arg.value >= 0) |
| return (int32_t)GET_INTEGER_PART(arg_value); |
| else |
| return -(int32_t)GET_INTEGER_PART(arg_value); |
| } |
| |
| int32_t dal_fixed31_32_ceil( |
| struct fixed31_32 arg) |
| { |
| uint64_t arg_value = abs_i64(arg.value); |
| |
| const int64_t summand = dal_fixed31_32_one.value - |
| dal_fixed31_32_epsilon.value; |
| |
| ASSERT(LLONG_MAX - (int64_t)arg_value >= summand); |
| |
| arg_value += summand; |
| |
| if (arg.value >= 0) |
| return (int32_t)GET_INTEGER_PART(arg_value); |
| else |
| return -(int32_t)GET_INTEGER_PART(arg_value); |
| } |
| |
| /* this function is a generic helper to translate fixed point value to |
| * specified integer format that will consist of integer_bits integer part and |
| * fractional_bits fractional part. For example it is used in |
| * dal_fixed31_32_u2d19 to receive 2 bits integer part and 19 bits fractional |
| * part in 32 bits. It is used in hw programming (scaler) |
| */ |
| |
| static inline uint32_t ux_dy( |
| int64_t value, |
| uint32_t integer_bits, |
| uint32_t fractional_bits) |
| { |
| /* 1. create mask of integer part */ |
| uint32_t result = (1 << integer_bits) - 1; |
| /* 2. mask out fractional part */ |
| uint32_t fractional_part = FRACTIONAL_PART_MASK & value; |
| /* 3. shrink fixed point integer part to be of integer_bits width*/ |
| result &= GET_INTEGER_PART(value); |
| /* 4. make space for fractional part to be filled in after integer */ |
| result <<= fractional_bits; |
| /* 5. shrink fixed point fractional part to of fractional_bits width*/ |
| fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits; |
| /* 6. merge the result */ |
| return result | fractional_part; |
| } |
| |
| static inline uint32_t clamp_ux_dy( |
| int64_t value, |
| uint32_t integer_bits, |
| uint32_t fractional_bits, |
| uint32_t min_clamp) |
| { |
| uint32_t truncated_val = ux_dy(value, integer_bits, fractional_bits); |
| |
| if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART))) |
| return (1 << (integer_bits + fractional_bits)) - 1; |
| else if (truncated_val > min_clamp) |
| return truncated_val; |
| else |
| return min_clamp; |
| } |
| |
| uint32_t dal_fixed31_32_u2d19( |
| struct fixed31_32 arg) |
| { |
| return ux_dy(arg.value, 2, 19); |
| } |
| |
| uint32_t dal_fixed31_32_u0d19( |
| struct fixed31_32 arg) |
| { |
| return ux_dy(arg.value, 0, 19); |
| } |
| |
| uint32_t dal_fixed31_32_clamp_u0d14( |
| struct fixed31_32 arg) |
| { |
| return clamp_ux_dy(arg.value, 0, 14, 1); |
| } |
| |
| uint32_t dal_fixed31_32_clamp_u0d10( |
| struct fixed31_32 arg) |
| { |
| return clamp_ux_dy(arg.value, 0, 10, 1); |
| } |
| |
| int32_t dal_fixed31_32_s4d19( |
| struct fixed31_32 arg) |
| { |
| if (arg.value < 0) |
| return -(int32_t)ux_dy(dal_fixed31_32_abs(arg).value, 4, 19); |
| else |
| return ux_dy(arg.value, 4, 19); |
| } |