blob: e4ec36943cb7cb82bc2e0783a4b20c088a55f6ee [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2018-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <[email protected]>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_metafile.h"
#include "xfs_rmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_error.h"
#include "xfs_extent_busy.h"
#include "xfs_rtgroup.h"
#include "xfs_bmap.h"
#include "xfs_health.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
static struct kmem_cache *xfs_rtrmapbt_cur_cache;
/*
* Realtime Reverse Map btree.
*
* This is a btree used to track the owner(s) of a given extent in the realtime
* device. See the comments in xfs_rmap_btree.c for more information.
*
* This tree is basically the same as the regular rmap btree except that it
* is rooted in an inode and does not live in free space.
*/
static struct xfs_btree_cur *
xfs_rtrmapbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_rtrmapbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
}
STATIC int
xfs_rtrmapbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0) / 2;
}
return cur->bc_mp->m_rtrmap_mnr[level != 0];
}
STATIC int
xfs_rtrmapbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0);
}
return cur->bc_mp->m_rtrmap_mxr[level != 0];
}
/* Calculate number of records in the ondisk realtime rmap btree inode root. */
unsigned int
xfs_rtrmapbt_droot_maxrecs(
unsigned int blocklen,
bool leaf)
{
blocklen -= sizeof(struct xfs_rtrmap_root);
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen / (2 * sizeof(struct xfs_rmap_key) +
sizeof(xfs_rtrmap_ptr_t));
}
/*
* Get the maximum records we could store in the on-disk format.
*
* For non-root nodes this is equivalent to xfs_rtrmapbt_get_maxrecs, but
* for the root node this checks the available space in the dinode fork
* so that we can resize the in-memory buffer to match it. After a
* resize to the maximum size this function returns the same value
* as xfs_rtrmapbt_get_maxrecs for the root node, too.
*/
STATIC int
xfs_rtrmapbt_get_dmaxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level != cur->bc_nlevels - 1)
return cur->bc_mp->m_rtrmap_mxr[level != 0];
return xfs_rtrmapbt_droot_maxrecs(cur->bc_ino.forksize, level == 0);
}
/*
* Convert the ondisk record's offset field into the ondisk key's offset field.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
{
return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
}
STATIC void
xfs_rtrmapbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->rmap.rm_startblock = rec->rmap.rm_startblock;
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
}
STATIC void
xfs_rtrmapbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
uint64_t off;
int adj;
adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
key->rmap.rm_startblock = rec->rmap.rm_startblock;
be32_add_cpu(&key->rmap.rm_startblock, adj);
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
return;
off = be64_to_cpu(key->rmap.rm_offset);
off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
key->rmap.rm_offset = cpu_to_be64(off);
}
STATIC void
xfs_rtrmapbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
rec->rmap.rm_offset = cpu_to_be64(
xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
}
STATIC void
xfs_rtrmapbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
ptr->l = 0;
}
/*
* Mask the appropriate parts of the ondisk key field for a key comparison.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline uint64_t offset_keymask(uint64_t offset)
{
return offset & ~XFS_RMAP_OFF_UNWRITTEN;
}
STATIC int64_t
xfs_rtrmapbt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
struct xfs_rmap_irec *rec = &cur->bc_rec.r;
const struct xfs_rmap_key *kp = &key->rmap;
__u64 x, y;
int64_t d;
d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
if (d)
return d;
x = be64_to_cpu(kp->rm_owner);
y = rec->rm_owner;
if (x > y)
return 1;
else if (y > x)
return -1;
x = offset_keymask(be64_to_cpu(kp->rm_offset));
y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
if (x > y)
return 1;
else if (y > x)
return -1;
return 0;
}
STATIC int64_t
xfs_rtrmapbt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
const struct xfs_rmap_key *kp1 = &k1->rmap;
const struct xfs_rmap_key *kp2 = &k2->rmap;
int64_t d;
__u64 x, y;
/* Doesn't make sense to mask off the physical space part */
ASSERT(!mask || mask->rmap.rm_startblock);
d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
be32_to_cpu(kp2->rm_startblock);
if (d)
return d;
if (!mask || mask->rmap.rm_owner) {
x = be64_to_cpu(kp1->rm_owner);
y = be64_to_cpu(kp2->rm_owner);
if (x > y)
return 1;
else if (y > x)
return -1;
}
if (!mask || mask->rmap.rm_offset) {
/* Doesn't make sense to allow offset but not owner */
ASSERT(!mask || mask->rmap.rm_owner);
x = offset_keymask(be64_to_cpu(kp1->rm_offset));
y = offset_keymask(be64_to_cpu(kp2->rm_offset));
if (x > y)
return 1;
else if (y > x)
return -1;
}
return 0;
}
static xfs_failaddr_t
xfs_rtrmapbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_rmapbt(mp))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (level > mp->m_rtrmap_maxlevels)
return __this_address;
return xfs_btree_fsblock_verify(bp, mp->m_rtrmap_mxr[level != 0]);
}
static void
xfs_rtrmapbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_fsblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_rtrmapbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_rtrmapbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_rtrmapbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_fsblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = {
.name = "xfs_rtrmapbt",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_read_verify,
.verify_write = xfs_rtrmapbt_write_verify,
.verify_struct = xfs_rtrmapbt_verify,
};
STATIC int
xfs_rtrmapbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(k1->rmap.rm_startblock);
y = be32_to_cpu(k2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(k1->rmap.rm_owner);
b = be64_to_cpu(k2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC int
xfs_rtrmapbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(r1->rmap.rm_startblock);
y = be32_to_cpu(r2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(r1->rmap.rm_owner);
b = be64_to_cpu(r2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC enum xbtree_key_contig
xfs_rtrmapbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->rmap.rm_startblock);
/*
* We only support checking contiguity of the physical space component.
* If any callers ever need more specificity than that, they'll have to
* implement it here.
*/
ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
be32_to_cpu(key2->rmap.rm_startblock));
}
static inline void
xfs_rtrmapbt_move_ptrs(
struct xfs_mount *mp,
struct xfs_btree_block *broot,
short old_size,
size_t new_size,
unsigned int numrecs)
{
void *dptr;
void *sptr;
sptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, old_size);
dptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, new_size);
memmove(dptr, sptr, numrecs * sizeof(xfs_rtrmap_ptr_t));
}
static struct xfs_btree_block *
xfs_rtrmapbt_broot_realloc(
struct xfs_btree_cur *cur,
unsigned int new_numrecs)
{
struct xfs_mount *mp = cur->bc_mp;
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
struct xfs_btree_block *broot;
unsigned int new_size;
unsigned int old_size = ifp->if_broot_bytes;
const unsigned int level = cur->bc_nlevels - 1;
new_size = xfs_rtrmap_broot_space_calc(mp, level, new_numrecs);
/* Handle the nop case quietly. */
if (new_size == old_size)
return ifp->if_broot;
if (new_size > old_size) {
unsigned int old_numrecs;
/*
* If there wasn't any memory allocated before, just allocate
* it now and get out.
*/
if (old_size == 0)
return xfs_broot_realloc(ifp, new_size);
/*
* If there is already an existing if_broot, then we need to
* realloc it and possibly move the node block pointers because
* those are not butted up against the btree block header.
*/
old_numrecs = xfs_rtrmapbt_maxrecs(mp, old_size, level == 0);
broot = xfs_broot_realloc(ifp, new_size);
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, broot, old_size, new_size,
old_numrecs);
goto out_broot;
}
/*
* We're reducing numrecs. If we're going all the way to zero, just
* free the block.
*/
ASSERT(ifp->if_broot != NULL && old_size > 0);
if (new_size == 0)
return xfs_broot_realloc(ifp, 0);
/*
* Shrink the btree root by possibly moving the rtrmapbt pointers,
* since they are not butted up against the btree block header. Then
* reallocate broot.
*/
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, ifp->if_broot, old_size, new_size,
new_numrecs);
broot = xfs_broot_realloc(ifp, new_size);
out_broot:
ASSERT(xfs_rtrmap_droot_space(broot) <=
xfs_inode_fork_size(cur->bc_ino.ip, cur->bc_ino.whichfork));
return broot;
}
const struct xfs_btree_ops xfs_rtrmapbt_ops = {
.name = "rtrmap",
.type = XFS_BTREE_TYPE_INODE,
.geom_flags = XFS_BTGEO_OVERLAPPING |
XFS_BTGEO_IROOT_RECORDS,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_2),
.sick_mask = XFS_SICK_RG_RMAPBT,
.dup_cursor = xfs_rtrmapbt_dup_cursor,
.alloc_block = xfs_btree_alloc_metafile_block,
.free_block = xfs_btree_free_metafile_block,
.get_minrecs = xfs_rtrmapbt_get_minrecs,
.get_maxrecs = xfs_rtrmapbt_get_maxrecs,
.get_dmaxrecs = xfs_rtrmapbt_get_dmaxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_rtrmapbt_init_ptr_from_cur,
.key_diff = xfs_rtrmapbt_key_diff,
.buf_ops = &xfs_rtrmapbt_buf_ops,
.diff_two_keys = xfs_rtrmapbt_diff_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
.broot_realloc = xfs_rtrmapbt_broot_realloc,
};
/* Allocate a new rt rmap btree cursor. */
struct xfs_btree_cur *
xfs_rtrmapbt_init_cursor(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg)
{
struct xfs_inode *ip = rtg_rmap(rtg);
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_ino.ip = ip;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
cur->bc_ino.whichfork = XFS_DATA_FORK;
cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
return cur;
}
#ifdef CONFIG_XFS_BTREE_IN_MEM
/*
* Validate an in-memory realtime rmap btree block. Callers are allowed to
* generate an in-memory btree even if the ondisk feature is not enabled.
*/
static xfs_failaddr_t
xfs_rtrmapbt_mem_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
unsigned int level;
unsigned int maxrecs;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (xfs_has_rmapbt(mp)) {
if (level >= mp->m_rtrmap_maxlevels)
return __this_address;
} else {
if (level >= xfs_rtrmapbt_maxlevels_ondisk())
return __this_address;
}
maxrecs = xfs_rtrmapbt_maxrecs(mp, XFBNO_BLOCKSIZE, level == 0);
return xfs_btree_memblock_verify(bp, maxrecs);
}
static void
xfs_rtrmapbt_mem_rw_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa = xfs_rtrmapbt_mem_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
/* skip crc checks on in-memory btrees to save time */
static const struct xfs_buf_ops xfs_rtrmapbt_mem_buf_ops = {
.name = "xfs_rtrmapbt_mem",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_mem_rw_verify,
.verify_write = xfs_rtrmapbt_mem_rw_verify,
.verify_struct = xfs_rtrmapbt_mem_verify,
};
const struct xfs_btree_ops xfs_rtrmapbt_mem_ops = {
.type = XFS_BTREE_TYPE_MEM,
.geom_flags = XFS_BTGEO_OVERLAPPING,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_mem_2),
.dup_cursor = xfbtree_dup_cursor,
.set_root = xfbtree_set_root,
.alloc_block = xfbtree_alloc_block,
.free_block = xfbtree_free_block,
.get_minrecs = xfbtree_get_minrecs,
.get_maxrecs = xfbtree_get_maxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfbtree_init_ptr_from_cur,
.key_diff = xfs_rtrmapbt_key_diff,
.buf_ops = &xfs_rtrmapbt_mem_buf_ops,
.diff_two_keys = xfs_rtrmapbt_diff_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
};
/* Create a cursor for an in-memory btree. */
struct xfs_btree_cur *
xfs_rtrmapbt_mem_cursor(
struct xfs_rtgroup *rtg,
struct xfs_trans *tp,
struct xfbtree *xfbt)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_mem_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_mem.xfbtree = xfbt;
cur->bc_nlevels = xfbt->nlevels;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
return cur;
}
/* Create an in-memory realtime rmap btree. */
int
xfs_rtrmapbt_mem_init(
struct xfs_mount *mp,
struct xfbtree *xfbt,
struct xfs_buftarg *btp,
xfs_rgnumber_t rgno)
{
xfbt->owner = rgno;
return xfbtree_init(mp, xfbt, btp, &xfs_rtrmapbt_mem_ops);
}
#endif /* CONFIG_XFS_BTREE_IN_MEM */
/*
* Install a new rt reverse mapping btree root. Caller is responsible for
* invalidating and freeing the old btree blocks.
*/
void
xfs_rtrmapbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp)
{
struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
struct xfs_ifork *ifp;
int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE);
/*
* Free any resources hanging off the real fork, then shallow-copy the
* staging fork's contents into the real fork to transfer everything
* we just built.
*/
ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
xfs_idestroy_fork(ifp);
memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
}
/* Calculate number of records in a rt reverse mapping btree block. */
static inline unsigned int
xfs_rtrmapbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen /
(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rtrmap_ptr_t));
}
/*
* Calculate number of records in an rt reverse mapping btree block.
*/
unsigned int
xfs_rtrmapbt_maxrecs(
struct xfs_mount *mp,
unsigned int blocklen,
bool leaf)
{
blocklen -= XFS_RTRMAP_BLOCK_LEN;
return xfs_rtrmapbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height for realtime reverse mapping btrees. */
unsigned int
xfs_rtrmapbt_maxlevels_ondisk(void)
{
unsigned long long max_dblocks;
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2;
/*
* Compute the asymptotic maxlevels for an rtrmapbt on any rtreflink fs.
*
* On a reflink filesystem, each block in an rtgroup can have up to
* 2^32 (per the refcount record format) owners, which means that
* theoretically we could face up to 2^64 rmap records. However, we're
* likely to run out of blocks in the data device long before that
* happens, which means that we must compute the max height based on
* what the btree will look like if it consumes almost all the blocks
* in the data device due to maximal sharing factor.
*/
max_dblocks = -1U; /* max ag count */
max_dblocks *= XFS_MAX_CRC_AG_BLOCKS;
return xfs_btree_space_to_height(minrecs, max_dblocks);
}
int __init
xfs_rtrmapbt_init_cur_cache(void)
{
xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur",
xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_rtrmapbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_rtrmapbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_rtrmapbt_cur_cache);
xfs_rtrmapbt_cur_cache = NULL;
}
/* Compute the maximum height of an rt reverse mapping btree. */
void
xfs_rtrmapbt_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int d_maxlevels, r_maxlevels;
if (!xfs_has_rtrmapbt(mp)) {
mp->m_rtrmap_maxlevels = 0;
return;
}
/*
* The realtime rmapbt lives on the data device, which means that its
* maximum height is constrained by the size of the data device and
* the height required to store one rmap record for each block in an
* rt group.
*
* On a reflink filesystem, each rt block can have up to 2^32 (per the
* refcount record format) owners, which means that theoretically we
* could face up to 2^64 rmap records. This makes the computation of
* maxlevels based on record count meaningless, so we only consider the
* size of the data device.
*/
d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr,
mp->m_sb.sb_dblocks);
if (xfs_has_rtreflink(mp)) {
mp->m_rtrmap_maxlevels = d_maxlevels + 1;
return;
}
r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr,
mp->m_groups[XG_TYPE_RTG].blocks);
/* Add one level to handle the inode root level. */
mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
}
/* Calculate the rtrmap btree size for some records. */
unsigned long long
xfs_rtrmapbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_rtrmap_mnr, len);
}
/*
* Calculate the maximum rmap btree size.
*/
static unsigned long long
xfs_rtrmapbt_max_size(
struct xfs_mount *mp,
xfs_rtblock_t rtblocks)
{
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_rtrmap_mxr[0] == 0)
return 0;
return xfs_rtrmapbt_calc_size(mp, rtblocks);
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
xfs_filblks_t
xfs_rtrmapbt_calc_reserves(
struct xfs_mount *mp)
{
uint32_t blocks = mp->m_groups[XG_TYPE_RTG].blocks;
if (!xfs_has_rtrmapbt(mp))
return 0;
/* Reserve 1% of the rtgroup or enough for 1 block per record. */
return max_t(xfs_filblks_t, blocks / 100,
xfs_rtrmapbt_max_size(mp, blocks));
}
/* Convert on-disk form of btree root to in-memory form. */
STATIC void
xfs_rtrmapbt_from_disk(
struct xfs_inode *ip,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen,
struct xfs_btree_block *rblock)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int rblocklen = xfs_rtrmap_broot_space(mp, dblock);
unsigned int numrecs;
unsigned int maxrecs;
xfs_btree_init_block(mp, rblock, &xfs_rtrmapbt_ops, 0, 0, ip->i_ino);
rblock->bb_level = dblock->bb_level;
rblock->bb_numrecs = dblock->bb_numrecs;
numrecs = be16_to_cpu(dblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_droot_key_addr(dblock, 1);
tkp = xfs_rtrmap_key_addr(rblock, 1);
fpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
tpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_droot_rec_addr(dblock, 1);
trp = xfs_rtrmap_rec_addr(rblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Load a realtime reverse mapping btree root in from disk. */
int
xfs_iformat_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
struct xfs_btree_block *broot;
unsigned int numrecs;
unsigned int level;
int dsize;
/*
* growfs must create the rtrmap inodes before adding a realtime volume
* to the filesystem, so we cannot use the rtrmapbt predicate here.
*/
if (!xfs_has_rmapbt(ip->i_mount)) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK);
numrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
if (level > mp->m_rtrmap_maxlevels ||
xfs_rtrmap_droot_space_calc(level, numrecs) > dsize) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
broot = xfs_broot_alloc(xfs_ifork_ptr(ip, XFS_DATA_FORK),
xfs_rtrmap_broot_space_calc(mp, level, numrecs));
if (broot)
xfs_rtrmapbt_from_disk(ip, dfp, dsize, broot);
return 0;
}
/* Convert in-memory form of btree root to on-disk form. */
void
xfs_rtrmapbt_to_disk(
struct xfs_mount *mp,
struct xfs_btree_block *rblock,
unsigned int rblocklen,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen)
{
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int numrecs;
unsigned int maxrecs;
ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTRMAP_CRC_MAGIC));
ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid));
ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL));
ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
dblock->bb_level = rblock->bb_level;
dblock->bb_numrecs = rblock->bb_numrecs;
numrecs = be16_to_cpu(rblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_key_addr(rblock, 1);
tkp = xfs_rtrmap_droot_key_addr(dblock, 1);
fpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
tpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_rec_addr(rblock, 1);
trp = xfs_rtrmap_droot_rec_addr(dblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Flush a realtime reverse mapping btree root out to disk. */
void
xfs_iflush_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
ASSERT(ifp->if_broot != NULL);
ASSERT(ifp->if_broot_bytes > 0);
ASSERT(xfs_rtrmap_droot_space(ifp->if_broot) <=
xfs_inode_fork_size(ip, XFS_DATA_FORK));
xfs_rtrmapbt_to_disk(ip->i_mount, ifp->if_broot, ifp->if_broot_bytes,
dfp, XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK));
}
/*
* Create a realtime rmap btree inode.
*/
int
xfs_rtrmapbt_create(
struct xfs_rtgroup *rtg,
struct xfs_inode *ip,
struct xfs_trans *tp,
bool init)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_mount *mp = ip->i_mount;
struct xfs_btree_block *broot;
ifp->if_format = XFS_DINODE_FMT_META_BTREE;
ASSERT(ifp->if_broot_bytes == 0);
ASSERT(ifp->if_bytes == 0);
/* Initialize the empty incore btree root. */
broot = xfs_broot_realloc(ifp, xfs_rtrmap_broot_space_calc(mp, 0, 0));
if (broot)
xfs_btree_init_block(mp, broot, &xfs_rtrmapbt_ops, 0, 0,
ip->i_ino);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT);
return 0;
}
/*
* Initialize an rmap for a realtime superblock using the potentially updated
* rt geometry in the provided @mp.
*/
int
xfs_rtrmapbt_init_rtsb(
struct xfs_mount *mp,
struct xfs_rtgroup *rtg,
struct xfs_trans *tp)
{
struct xfs_rmap_irec rmap = {
.rm_blockcount = mp->m_sb.sb_rextsize,
.rm_owner = XFS_RMAP_OWN_FS,
};
struct xfs_btree_cur *cur;
int error;
ASSERT(xfs_has_rtsb(mp));
ASSERT(rtg_rgno(rtg) == 0);
cur = xfs_rtrmapbt_init_cursor(tp, rtg);
error = xfs_rmap_map_raw(cur, &rmap);
xfs_btree_del_cursor(cur, error);
return error;
}