|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2015 Broadcom | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * DOC: VC4 CRTC module | 
|  | * | 
|  | * In VC4, the Pixel Valve is what most closely corresponds to the | 
|  | * DRM's concept of a CRTC.  The PV generates video timings from the | 
|  | * encoder's clock plus its configuration.  It pulls scaled pixels from | 
|  | * the HVS at that timing, and feeds it to the encoder. | 
|  | * | 
|  | * However, the DRM CRTC also collects the configuration of all the | 
|  | * DRM planes attached to it.  As a result, the CRTC is also | 
|  | * responsible for writing the display list for the HVS channel that | 
|  | * the CRTC will use. | 
|  | * | 
|  | * The 2835 has 3 different pixel valves.  pv0 in the audio power | 
|  | * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the | 
|  | * image domain can feed either HDMI or the SDTV controller.  The | 
|  | * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for | 
|  | * SDTV, etc.) according to which output type is chosen in the mux. | 
|  | * | 
|  | * For power management, the pixel valve's registers are all clocked | 
|  | * by the AXI clock, while the timings and FIFOs make use of the | 
|  | * output-specific clock.  Since the encoders also directly consume | 
|  | * the CPRMAN clocks, and know what timings they need, they are the | 
|  | * ones that set the clock. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/component.h> | 
|  | #include <linux/of_device.h> | 
|  |  | 
|  | #include <drm/drm_atomic.h> | 
|  | #include <drm/drm_atomic_helper.h> | 
|  | #include <drm/drm_atomic_uapi.h> | 
|  | #include <drm/drm_fb_cma_helper.h> | 
|  | #include <drm/drm_print.h> | 
|  | #include <drm/drm_probe_helper.h> | 
|  | #include <drm/drm_vblank.h> | 
|  |  | 
|  | #include "vc4_drv.h" | 
|  | #include "vc4_regs.h" | 
|  |  | 
|  | #define HVS_FIFO_LATENCY_PIX	6 | 
|  |  | 
|  | #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) | 
|  | #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) | 
|  |  | 
|  | static const struct debugfs_reg32 crtc_regs[] = { | 
|  | VC4_REG32(PV_CONTROL), | 
|  | VC4_REG32(PV_V_CONTROL), | 
|  | VC4_REG32(PV_VSYNCD_EVEN), | 
|  | VC4_REG32(PV_HORZA), | 
|  | VC4_REG32(PV_HORZB), | 
|  | VC4_REG32(PV_VERTA), | 
|  | VC4_REG32(PV_VERTB), | 
|  | VC4_REG32(PV_VERTA_EVEN), | 
|  | VC4_REG32(PV_VERTB_EVEN), | 
|  | VC4_REG32(PV_INTEN), | 
|  | VC4_REG32(PV_INTSTAT), | 
|  | VC4_REG32(PV_STAT), | 
|  | VC4_REG32(PV_HACT_ACT), | 
|  | }; | 
|  |  | 
|  | static unsigned int | 
|  | vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) | 
|  | { | 
|  | u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); | 
|  | /* Top/base are supposed to be 4-pixel aligned, but the | 
|  | * Raspberry Pi firmware fills the low bits (which are | 
|  | * presumably ignored). | 
|  | */ | 
|  | u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; | 
|  | u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; | 
|  |  | 
|  | return top - base + 4; | 
|  | } | 
|  |  | 
|  | static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, | 
|  | bool in_vblank_irq, | 
|  | int *vpos, int *hpos, | 
|  | ktime_t *stime, ktime_t *etime, | 
|  | const struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); | 
|  | unsigned int cob_size; | 
|  | u32 val; | 
|  | int fifo_lines; | 
|  | int vblank_lines; | 
|  | bool ret = false; | 
|  |  | 
|  | /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ | 
|  |  | 
|  | /* Get optional system timestamp before query. */ | 
|  | if (stime) | 
|  | *stime = ktime_get(); | 
|  |  | 
|  | /* | 
|  | * Read vertical scanline which is currently composed for our | 
|  | * pixelvalve by the HVS, and also the scaler status. | 
|  | */ | 
|  | val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); | 
|  |  | 
|  | /* Get optional system timestamp after query. */ | 
|  | if (etime) | 
|  | *etime = ktime_get(); | 
|  |  | 
|  | /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ | 
|  |  | 
|  | /* Vertical position of hvs composed scanline. */ | 
|  | *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); | 
|  | *hpos = 0; | 
|  |  | 
|  | if (mode->flags & DRM_MODE_FLAG_INTERLACE) { | 
|  | *vpos /= 2; | 
|  |  | 
|  | /* Use hpos to correct for field offset in interlaced mode. */ | 
|  | if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) | 
|  | *hpos += mode->crtc_htotal / 2; | 
|  | } | 
|  |  | 
|  | cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); | 
|  | /* This is the offset we need for translating hvs -> pv scanout pos. */ | 
|  | fifo_lines = cob_size / mode->crtc_hdisplay; | 
|  |  | 
|  | if (fifo_lines > 0) | 
|  | ret = true; | 
|  |  | 
|  | /* HVS more than fifo_lines into frame for compositing? */ | 
|  | if (*vpos > fifo_lines) { | 
|  | /* | 
|  | * We are in active scanout and can get some meaningful results | 
|  | * from HVS. The actual PV scanout can not trail behind more | 
|  | * than fifo_lines as that is the fifo's capacity. Assume that | 
|  | * in active scanout the HVS and PV work in lockstep wrt. HVS | 
|  | * refilling the fifo and PV consuming from the fifo, ie. | 
|  | * whenever the PV consumes and frees up a scanline in the | 
|  | * fifo, the HVS will immediately refill it, therefore | 
|  | * incrementing vpos. Therefore we choose HVS read position - | 
|  | * fifo size in scanlines as a estimate of the real scanout | 
|  | * position of the PV. | 
|  | */ | 
|  | *vpos -= fifo_lines + 1; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Less: This happens when we are in vblank and the HVS, after getting | 
|  | * the VSTART restart signal from the PV, just started refilling its | 
|  | * fifo with new lines from the top-most lines of the new framebuffers. | 
|  | * The PV does not scan out in vblank, so does not remove lines from | 
|  | * the fifo, so the fifo will be full quickly and the HVS has to pause. | 
|  | * We can't get meaningful readings wrt. scanline position of the PV | 
|  | * and need to make things up in a approximative but consistent way. | 
|  | */ | 
|  | vblank_lines = mode->vtotal - mode->vdisplay; | 
|  |  | 
|  | if (in_vblank_irq) { | 
|  | /* | 
|  | * Assume the irq handler got called close to first | 
|  | * line of vblank, so PV has about a full vblank | 
|  | * scanlines to go, and as a base timestamp use the | 
|  | * one taken at entry into vblank irq handler, so it | 
|  | * is not affected by random delays due to lock | 
|  | * contention on event_lock or vblank_time lock in | 
|  | * the core. | 
|  | */ | 
|  | *vpos = -vblank_lines; | 
|  |  | 
|  | if (stime) | 
|  | *stime = vc4_crtc->t_vblank; | 
|  | if (etime) | 
|  | *etime = vc4_crtc->t_vblank; | 
|  |  | 
|  | /* | 
|  | * If the HVS fifo is not yet full then we know for certain | 
|  | * we are at the very beginning of vblank, as the hvs just | 
|  | * started refilling, and the stime and etime timestamps | 
|  | * truly correspond to start of vblank. | 
|  | * | 
|  | * Unfortunately there's no way to report this to upper levels | 
|  | * and make it more useful. | 
|  | */ | 
|  | } else { | 
|  | /* | 
|  | * No clue where we are inside vblank. Return a vpos of zero, | 
|  | * which will cause calling code to just return the etime | 
|  | * timestamp uncorrected. At least this is no worse than the | 
|  | * standard fallback. | 
|  | */ | 
|  | *vpos = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void vc4_crtc_destroy(struct drm_crtc *crtc) | 
|  | { | 
|  | drm_crtc_cleanup(crtc); | 
|  | } | 
|  |  | 
|  | static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) | 
|  | { | 
|  | const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); | 
|  | const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); | 
|  | struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); | 
|  | u32 fifo_len_bytes = pv_data->fifo_depth; | 
|  |  | 
|  | /* | 
|  | * Pixels are pulled from the HVS if the number of bytes is | 
|  | * lower than the FIFO full level. | 
|  | * | 
|  | * The latency of the pixel fetch mechanism is 6 pixels, so we | 
|  | * need to convert those 6 pixels in bytes, depending on the | 
|  | * format, and then subtract that from the length of the FIFO | 
|  | * to make sure we never end up in a situation where the FIFO | 
|  | * is full. | 
|  | */ | 
|  | switch (format) { | 
|  | case PV_CONTROL_FORMAT_DSIV_16: | 
|  | case PV_CONTROL_FORMAT_DSIC_16: | 
|  | return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; | 
|  | case PV_CONTROL_FORMAT_DSIV_18: | 
|  | return fifo_len_bytes - 14; | 
|  | case PV_CONTROL_FORMAT_24: | 
|  | case PV_CONTROL_FORMAT_DSIV_24: | 
|  | default: | 
|  | /* | 
|  | * For some reason, the pixelvalve4 doesn't work with | 
|  | * the usual formula and will only work with 32. | 
|  | */ | 
|  | if (crtc_data->hvs_output == 5) | 
|  | return 32; | 
|  |  | 
|  | /* | 
|  | * It looks like in some situations, we will overflow | 
|  | * the PixelValve FIFO (with the bit 10 of PV stat being | 
|  | * set) and stall the HVS / PV, eventually resulting in | 
|  | * a page flip timeout. | 
|  | * | 
|  | * Displaying the video overlay during a playback with | 
|  | * Kodi on an RPi3 seems to be a great solution with a | 
|  | * failure rate around 50%. | 
|  | * | 
|  | * Removing 1 from the FIFO full level however | 
|  | * seems to completely remove that issue. | 
|  | */ | 
|  | if (!vc4->hvs->hvs5) | 
|  | return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; | 
|  |  | 
|  | return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, | 
|  | u32 format) | 
|  | { | 
|  | u32 level = vc4_get_fifo_full_level(vc4_crtc, format); | 
|  | u32 ret = 0; | 
|  |  | 
|  | ret |= VC4_SET_FIELD((level >> 6), | 
|  | PV5_CONTROL_FIFO_LEVEL_HIGH); | 
|  |  | 
|  | return ret | VC4_SET_FIELD(level & 0x3f, | 
|  | PV_CONTROL_FIFO_LEVEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the encoder attached to the CRTC. | 
|  | * | 
|  | * VC4 can only scan out to one encoder at a time, while the DRM core | 
|  | * allows drivers to push pixels to more than one encoder from the | 
|  | * same CRTC. | 
|  | */ | 
|  | static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_connector *connector; | 
|  | struct drm_connector_list_iter conn_iter; | 
|  |  | 
|  | drm_connector_list_iter_begin(crtc->dev, &conn_iter); | 
|  | drm_for_each_connector_iter(connector, &conn_iter) { | 
|  | if (connector->state->crtc == crtc) { | 
|  | drm_connector_list_iter_end(&conn_iter); | 
|  | return connector->encoder; | 
|  | } | 
|  | } | 
|  | drm_connector_list_iter_end(&conn_iter); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  |  | 
|  | /* The PV needs to be disabled before it can be flushed */ | 
|  | CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); | 
|  | CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_config_pv(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  | struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); | 
|  | struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); | 
|  | struct drm_crtc_state *state = crtc->state; | 
|  | struct drm_display_mode *mode = &state->adjusted_mode; | 
|  | bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; | 
|  | u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; | 
|  | bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || | 
|  | vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); | 
|  | bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; | 
|  | u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; | 
|  | u8 ppc = pv_data->pixels_per_clock; | 
|  | bool debug_dump_regs = false; | 
|  |  | 
|  | if (debug_dump_regs) { | 
|  | struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); | 
|  | dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", | 
|  | drm_crtc_index(crtc)); | 
|  | drm_print_regset32(&p, &vc4_crtc->regset); | 
|  | } | 
|  |  | 
|  | vc4_crtc_pixelvalve_reset(crtc); | 
|  |  | 
|  | CRTC_WRITE(PV_HORZA, | 
|  | VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, | 
|  | PV_HORZA_HBP) | | 
|  | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, | 
|  | PV_HORZA_HSYNC)); | 
|  |  | 
|  | CRTC_WRITE(PV_HORZB, | 
|  | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, | 
|  | PV_HORZB_HFP) | | 
|  | VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, | 
|  | PV_HORZB_HACTIVE)); | 
|  |  | 
|  | CRTC_WRITE(PV_VERTA, | 
|  | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + | 
|  | interlace, | 
|  | PV_VERTA_VBP) | | 
|  | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, | 
|  | PV_VERTA_VSYNC)); | 
|  | CRTC_WRITE(PV_VERTB, | 
|  | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, | 
|  | PV_VERTB_VFP) | | 
|  | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); | 
|  |  | 
|  | if (interlace) { | 
|  | CRTC_WRITE(PV_VERTA_EVEN, | 
|  | VC4_SET_FIELD(mode->crtc_vtotal - | 
|  | mode->crtc_vsync_end, | 
|  | PV_VERTA_VBP) | | 
|  | VC4_SET_FIELD(mode->crtc_vsync_end - | 
|  | mode->crtc_vsync_start, | 
|  | PV_VERTA_VSYNC)); | 
|  | CRTC_WRITE(PV_VERTB_EVEN, | 
|  | VC4_SET_FIELD(mode->crtc_vsync_start - | 
|  | mode->crtc_vdisplay, | 
|  | PV_VERTB_VFP) | | 
|  | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); | 
|  |  | 
|  | /* We set up first field even mode for HDMI.  VEC's | 
|  | * NTSC mode would want first field odd instead, once | 
|  | * we support it (to do so, set ODD_FIRST and put the | 
|  | * delay in VSYNCD_EVEN instead). | 
|  | */ | 
|  | CRTC_WRITE(PV_V_CONTROL, | 
|  | PV_VCONTROL_CONTINUOUS | | 
|  | (is_dsi ? PV_VCONTROL_DSI : 0) | | 
|  | PV_VCONTROL_INTERLACE | | 
|  | VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc), | 
|  | PV_VCONTROL_ODD_DELAY)); | 
|  | CRTC_WRITE(PV_VSYNCD_EVEN, 0); | 
|  | } else { | 
|  | CRTC_WRITE(PV_V_CONTROL, | 
|  | PV_VCONTROL_CONTINUOUS | | 
|  | (is_dsi ? PV_VCONTROL_DSI : 0)); | 
|  | } | 
|  |  | 
|  | if (is_dsi) | 
|  | CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); | 
|  |  | 
|  | if (vc4->hvs->hvs5) | 
|  | CRTC_WRITE(PV_MUX_CFG, | 
|  | VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, | 
|  | PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); | 
|  |  | 
|  | CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | | 
|  | vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | | 
|  | VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | | 
|  | VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | | 
|  | PV_CONTROL_CLR_AT_START | | 
|  | PV_CONTROL_TRIGGER_UNDERFLOW | | 
|  | PV_CONTROL_WAIT_HSTART | | 
|  | VC4_SET_FIELD(vc4_encoder->clock_select, | 
|  | PV_CONTROL_CLK_SELECT)); | 
|  |  | 
|  | if (debug_dump_regs) { | 
|  | struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); | 
|  | dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", | 
|  | drm_crtc_index(crtc)); | 
|  | drm_print_regset32(&p, &vc4_crtc->regset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void require_hvs_enabled(struct drm_device *dev) | 
|  | { | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  |  | 
|  | WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != | 
|  | SCALER_DISPCTRL_ENABLE); | 
|  | } | 
|  |  | 
|  | static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel) | 
|  | { | 
|  | struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); | 
|  | struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | struct drm_device *dev = crtc->dev; | 
|  | int ret; | 
|  |  | 
|  | CRTC_WRITE(PV_V_CONTROL, | 
|  | CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); | 
|  | ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); | 
|  | WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); | 
|  |  | 
|  | /* | 
|  | * This delay is needed to avoid to get a pixel stuck in an | 
|  | * unflushable FIFO between the pixelvalve and the HDMI | 
|  | * controllers on the BCM2711. | 
|  | * | 
|  | * Timing is fairly sensitive here, so mdelay is the safest | 
|  | * approach. | 
|  | * | 
|  | * If it was to be reworked, the stuck pixel happens on a | 
|  | * BCM2711 when changing mode with a good probability, so a | 
|  | * script that changes mode on a regular basis should trigger | 
|  | * the bug after less than 10 attempts. It manifests itself with | 
|  | * every pixels being shifted by one to the right, and thus the | 
|  | * last pixel of a line actually being displayed as the first | 
|  | * pixel on the next line. | 
|  | */ | 
|  | mdelay(20); | 
|  |  | 
|  | if (vc4_encoder && vc4_encoder->post_crtc_disable) | 
|  | vc4_encoder->post_crtc_disable(encoder); | 
|  |  | 
|  | vc4_crtc_pixelvalve_reset(crtc); | 
|  | vc4_hvs_stop_channel(dev, channel); | 
|  |  | 
|  | if (vc4_encoder && vc4_encoder->post_crtc_powerdown) | 
|  | vc4_encoder->post_crtc_powerdown(encoder); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *drm = crtc->dev; | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | int channel; | 
|  |  | 
|  | if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, | 
|  | "brcm,bcm2711-pixelvalve2") || | 
|  | of_device_is_compatible(vc4_crtc->pdev->dev.of_node, | 
|  | "brcm,bcm2711-pixelvalve4"))) | 
|  | return 0; | 
|  |  | 
|  | if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) | 
|  | return 0; | 
|  |  | 
|  | if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) | 
|  | return 0; | 
|  |  | 
|  | channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output); | 
|  | if (channel < 0) | 
|  | return 0; | 
|  |  | 
|  | return vc4_crtc_disable(crtc, channel); | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *old_state) | 
|  | { | 
|  | struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); | 
|  | struct drm_device *dev = crtc->dev; | 
|  |  | 
|  | require_hvs_enabled(dev); | 
|  |  | 
|  | /* Disable vblank irq handling before crtc is disabled. */ | 
|  | drm_crtc_vblank_off(crtc); | 
|  |  | 
|  | vc4_crtc_disable(crtc, old_vc4_state->assigned_channel); | 
|  |  | 
|  | /* | 
|  | * Make sure we issue a vblank event after disabling the CRTC if | 
|  | * someone was waiting it. | 
|  | */ | 
|  | if (crtc->state->event) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | drm_crtc_send_vblank_event(crtc, crtc->state->event); | 
|  | crtc->state->event = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *old_state) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); | 
|  | struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); | 
|  |  | 
|  | require_hvs_enabled(dev); | 
|  |  | 
|  | /* Enable vblank irq handling before crtc is started otherwise | 
|  | * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). | 
|  | */ | 
|  | drm_crtc_vblank_on(crtc); | 
|  |  | 
|  | vc4_hvs_atomic_enable(crtc, old_state); | 
|  |  | 
|  | if (vc4_encoder->pre_crtc_configure) | 
|  | vc4_encoder->pre_crtc_configure(encoder); | 
|  |  | 
|  | vc4_crtc_config_pv(crtc); | 
|  |  | 
|  | CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); | 
|  |  | 
|  | if (vc4_encoder->pre_crtc_enable) | 
|  | vc4_encoder->pre_crtc_enable(encoder); | 
|  |  | 
|  | /* When feeding the transposer block the pixelvalve is unneeded and | 
|  | * should not be enabled. | 
|  | */ | 
|  | CRTC_WRITE(PV_V_CONTROL, | 
|  | CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); | 
|  |  | 
|  | if (vc4_encoder->post_crtc_enable) | 
|  | vc4_encoder->post_crtc_enable(encoder); | 
|  | } | 
|  |  | 
|  | static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, | 
|  | const struct drm_display_mode *mode) | 
|  | { | 
|  | /* Do not allow doublescan modes from user space */ | 
|  | if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { | 
|  | DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", | 
|  | crtc->base.id); | 
|  | return MODE_NO_DBLESCAN; | 
|  | } | 
|  |  | 
|  | return MODE_OK; | 
|  | } | 
|  |  | 
|  | void vc4_crtc_get_margins(struct drm_crtc_state *state, | 
|  | unsigned int *left, unsigned int *right, | 
|  | unsigned int *top, unsigned int *bottom) | 
|  | { | 
|  | struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); | 
|  | struct drm_connector_state *conn_state; | 
|  | struct drm_connector *conn; | 
|  | int i; | 
|  |  | 
|  | *left = vc4_state->margins.left; | 
|  | *right = vc4_state->margins.right; | 
|  | *top = vc4_state->margins.top; | 
|  | *bottom = vc4_state->margins.bottom; | 
|  |  | 
|  | /* We have to interate over all new connector states because | 
|  | * vc4_crtc_get_margins() might be called before | 
|  | * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state | 
|  | * might be outdated. | 
|  | */ | 
|  | for_each_new_connector_in_state(state->state, conn, conn_state, i) { | 
|  | if (conn_state->crtc != state->crtc) | 
|  | continue; | 
|  |  | 
|  | *left = conn_state->tv.margins.left; | 
|  | *right = conn_state->tv.margins.right; | 
|  | *top = conn_state->tv.margins.top; | 
|  | *bottom = conn_state->tv.margins.bottom; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vc4_crtc_atomic_check(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *state) | 
|  | { | 
|  | struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); | 
|  | struct drm_connector *conn; | 
|  | struct drm_connector_state *conn_state; | 
|  | int ret, i; | 
|  |  | 
|  | ret = vc4_hvs_atomic_check(crtc, state); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for_each_new_connector_in_state(state->state, conn, conn_state, i) { | 
|  | if (conn_state->crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | vc4_state->margins.left = conn_state->tv.margins.left; | 
|  | vc4_state->margins.right = conn_state->tv.margins.right; | 
|  | vc4_state->margins.top = conn_state->tv.margins.top; | 
|  | vc4_state->margins.bottom = conn_state->tv.margins.bottom; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vc4_enable_vblank(struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  |  | 
|  | CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vc4_disable_vblank(struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  |  | 
|  | CRTC_WRITE(PV_INTEN, 0); | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) | 
|  | { | 
|  | struct drm_crtc *crtc = &vc4_crtc->base; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  | struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); | 
|  | u32 chan = vc4_state->assigned_channel; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (vc4_crtc->event && | 
|  | (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || | 
|  | vc4_state->feed_txp)) { | 
|  | drm_crtc_send_vblank_event(crtc, vc4_crtc->event); | 
|  | vc4_crtc->event = NULL; | 
|  | drm_crtc_vblank_put(crtc); | 
|  |  | 
|  | /* Wait for the page flip to unmask the underrun to ensure that | 
|  | * the display list was updated by the hardware. Before that | 
|  | * happens, the HVS will be using the previous display list with | 
|  | * the CRTC and encoder already reconfigured, leading to | 
|  | * underruns. This can be seen when reconfiguring the CRTC. | 
|  | */ | 
|  | vc4_hvs_unmask_underrun(dev, chan); | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) | 
|  | { | 
|  | crtc->t_vblank = ktime_get(); | 
|  | drm_crtc_handle_vblank(&crtc->base); | 
|  | vc4_crtc_handle_page_flip(crtc); | 
|  | } | 
|  |  | 
|  | static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) | 
|  | { | 
|  | struct vc4_crtc *vc4_crtc = data; | 
|  | u32 stat = CRTC_READ(PV_INTSTAT); | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  |  | 
|  | if (stat & PV_INT_VFP_START) { | 
|  | CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); | 
|  | vc4_crtc_handle_vblank(vc4_crtc); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct vc4_async_flip_state { | 
|  | struct drm_crtc *crtc; | 
|  | struct drm_framebuffer *fb; | 
|  | struct drm_framebuffer *old_fb; | 
|  | struct drm_pending_vblank_event *event; | 
|  |  | 
|  | struct vc4_seqno_cb cb; | 
|  | }; | 
|  |  | 
|  | /* Called when the V3D execution for the BO being flipped to is done, so that | 
|  | * we can actually update the plane's address to point to it. | 
|  | */ | 
|  | static void | 
|  | vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) | 
|  | { | 
|  | struct vc4_async_flip_state *flip_state = | 
|  | container_of(cb, struct vc4_async_flip_state, cb); | 
|  | struct drm_crtc *crtc = flip_state->crtc; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  | struct drm_plane *plane = crtc->primary; | 
|  |  | 
|  | vc4_plane_async_set_fb(plane, flip_state->fb); | 
|  | if (flip_state->event) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | drm_crtc_send_vblank_event(crtc, flip_state->event); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | drm_crtc_vblank_put(crtc); | 
|  | drm_framebuffer_put(flip_state->fb); | 
|  |  | 
|  | /* Decrement the BO usecnt in order to keep the inc/dec calls balanced | 
|  | * when the planes are updated through the async update path. | 
|  | * FIXME: we should move to generic async-page-flip when it's | 
|  | * available, so that we can get rid of this hand-made cleanup_fb() | 
|  | * logic. | 
|  | */ | 
|  | if (flip_state->old_fb) { | 
|  | struct drm_gem_cma_object *cma_bo; | 
|  | struct vc4_bo *bo; | 
|  |  | 
|  | cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); | 
|  | bo = to_vc4_bo(&cma_bo->base); | 
|  | vc4_bo_dec_usecnt(bo); | 
|  | drm_framebuffer_put(flip_state->old_fb); | 
|  | } | 
|  |  | 
|  | kfree(flip_state); | 
|  |  | 
|  | up(&vc4->async_modeset); | 
|  | } | 
|  |  | 
|  | /* Implements async (non-vblank-synced) page flips. | 
|  | * | 
|  | * The page flip ioctl needs to return immediately, so we grab the | 
|  | * modeset semaphore on the pipe, and queue the address update for | 
|  | * when V3D is done with the BO being flipped to. | 
|  | */ | 
|  | static int vc4_async_page_flip(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_pending_vblank_event *event, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct vc4_dev *vc4 = to_vc4_dev(dev); | 
|  | struct drm_plane *plane = crtc->primary; | 
|  | int ret = 0; | 
|  | struct vc4_async_flip_state *flip_state; | 
|  | struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); | 
|  | struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); | 
|  |  | 
|  | /* Increment the BO usecnt here, so that we never end up with an | 
|  | * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the | 
|  | * plane is later updated through the non-async path. | 
|  | * FIXME: we should move to generic async-page-flip when it's | 
|  | * available, so that we can get rid of this hand-made prepare_fb() | 
|  | * logic. | 
|  | */ | 
|  | ret = vc4_bo_inc_usecnt(bo); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); | 
|  | if (!flip_state) { | 
|  | vc4_bo_dec_usecnt(bo); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | drm_framebuffer_get(fb); | 
|  | flip_state->fb = fb; | 
|  | flip_state->crtc = crtc; | 
|  | flip_state->event = event; | 
|  |  | 
|  | /* Make sure all other async modesetes have landed. */ | 
|  | ret = down_interruptible(&vc4->async_modeset); | 
|  | if (ret) { | 
|  | drm_framebuffer_put(fb); | 
|  | vc4_bo_dec_usecnt(bo); | 
|  | kfree(flip_state); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Save the current FB before it's replaced by the new one in | 
|  | * drm_atomic_set_fb_for_plane(). We'll need the old FB in | 
|  | * vc4_async_page_flip_complete() to decrement the BO usecnt and keep | 
|  | * it consistent. | 
|  | * FIXME: we should move to generic async-page-flip when it's | 
|  | * available, so that we can get rid of this hand-made cleanup_fb() | 
|  | * logic. | 
|  | */ | 
|  | flip_state->old_fb = plane->state->fb; | 
|  | if (flip_state->old_fb) | 
|  | drm_framebuffer_get(flip_state->old_fb); | 
|  |  | 
|  | WARN_ON(drm_crtc_vblank_get(crtc) != 0); | 
|  |  | 
|  | /* Immediately update the plane's legacy fb pointer, so that later | 
|  | * modeset prep sees the state that will be present when the semaphore | 
|  | * is released. | 
|  | */ | 
|  | drm_atomic_set_fb_for_plane(plane->state, fb); | 
|  |  | 
|  | vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, | 
|  | vc4_async_page_flip_complete); | 
|  |  | 
|  | /* Driver takes ownership of state on successful async commit. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int vc4_page_flip(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_pending_vblank_event *event, | 
|  | uint32_t flags, | 
|  | struct drm_modeset_acquire_ctx *ctx) | 
|  | { | 
|  | if (flags & DRM_MODE_PAGE_FLIP_ASYNC) | 
|  | return vc4_async_page_flip(crtc, fb, event, flags); | 
|  | else | 
|  | return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); | 
|  | } | 
|  |  | 
|  | struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc_state *vc4_state, *old_vc4_state; | 
|  |  | 
|  | vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); | 
|  | if (!vc4_state) | 
|  | return NULL; | 
|  |  | 
|  | old_vc4_state = to_vc4_crtc_state(crtc->state); | 
|  | vc4_state->feed_txp = old_vc4_state->feed_txp; | 
|  | vc4_state->margins = old_vc4_state->margins; | 
|  | vc4_state->assigned_channel = old_vc4_state->assigned_channel; | 
|  |  | 
|  | __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); | 
|  | return &vc4_state->base; | 
|  | } | 
|  |  | 
|  | void vc4_crtc_destroy_state(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *state) | 
|  | { | 
|  | struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); | 
|  | struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); | 
|  |  | 
|  | if (drm_mm_node_allocated(&vc4_state->mm)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&vc4->hvs->mm_lock, flags); | 
|  | drm_mm_remove_node(&vc4_state->mm); | 
|  | spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | drm_atomic_helper_crtc_destroy_state(crtc, state); | 
|  | } | 
|  |  | 
|  | void vc4_crtc_reset(struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc_state *vc4_crtc_state; | 
|  |  | 
|  | if (crtc->state) | 
|  | vc4_crtc_destroy_state(crtc, crtc->state); | 
|  |  | 
|  | vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); | 
|  | if (!vc4_crtc_state) { | 
|  | crtc->state = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; | 
|  | __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); | 
|  | } | 
|  |  | 
|  | static const struct drm_crtc_funcs vc4_crtc_funcs = { | 
|  | .set_config = drm_atomic_helper_set_config, | 
|  | .destroy = vc4_crtc_destroy, | 
|  | .page_flip = vc4_page_flip, | 
|  | .set_property = NULL, | 
|  | .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ | 
|  | .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ | 
|  | .reset = vc4_crtc_reset, | 
|  | .atomic_duplicate_state = vc4_crtc_duplicate_state, | 
|  | .atomic_destroy_state = vc4_crtc_destroy_state, | 
|  | .gamma_set = drm_atomic_helper_legacy_gamma_set, | 
|  | .enable_vblank = vc4_enable_vblank, | 
|  | .disable_vblank = vc4_disable_vblank, | 
|  | .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, | 
|  | }; | 
|  |  | 
|  | static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { | 
|  | .mode_valid = vc4_crtc_mode_valid, | 
|  | .atomic_check = vc4_crtc_atomic_check, | 
|  | .atomic_flush = vc4_hvs_atomic_flush, | 
|  | .atomic_enable = vc4_crtc_atomic_enable, | 
|  | .atomic_disable = vc4_crtc_atomic_disable, | 
|  | .get_scanout_position = vc4_crtc_get_scanout_position, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2835_pv0_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(0), | 
|  | .hvs_output = 0, | 
|  | }, | 
|  | .debugfs_name = "crtc0_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, | 
|  | [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2835_pv1_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(2), | 
|  | .hvs_output = 2, | 
|  | }, | 
|  | .debugfs_name = "crtc1_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, | 
|  | [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2835_pv2_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(1), | 
|  | .hvs_output = 1, | 
|  | }, | 
|  | .debugfs_name = "crtc2_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, | 
|  | [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2711_pv0_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(0), | 
|  | .hvs_output = 0, | 
|  | }, | 
|  | .debugfs_name = "crtc0_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [0] = VC4_ENCODER_TYPE_DSI0, | 
|  | [1] = VC4_ENCODER_TYPE_DPI, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2711_pv1_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), | 
|  | .hvs_output = 3, | 
|  | }, | 
|  | .debugfs_name = "crtc1_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [0] = VC4_ENCODER_TYPE_DSI1, | 
|  | [1] = VC4_ENCODER_TYPE_SMI, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2711_pv2_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), | 
|  | .hvs_output = 4, | 
|  | }, | 
|  | .debugfs_name = "crtc2_regs", | 
|  | .fifo_depth = 256, | 
|  | .pixels_per_clock = 2, | 
|  | .encoder_types = { | 
|  | [0] = VC4_ENCODER_TYPE_HDMI0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2711_pv3_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(1), | 
|  | .hvs_output = 1, | 
|  | }, | 
|  | .debugfs_name = "crtc3_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 1, | 
|  | .encoder_types = { | 
|  | [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct vc4_pv_data bcm2711_pv4_data = { | 
|  | .base = { | 
|  | .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), | 
|  | .hvs_output = 5, | 
|  | }, | 
|  | .debugfs_name = "crtc4_regs", | 
|  | .fifo_depth = 64, | 
|  | .pixels_per_clock = 2, | 
|  | .encoder_types = { | 
|  | [0] = VC4_ENCODER_TYPE_HDMI1, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id vc4_crtc_dt_match[] = { | 
|  | { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, | 
|  | { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, | 
|  | { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, | 
|  | { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, | 
|  | { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, | 
|  | { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, | 
|  | { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, | 
|  | { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static void vc4_set_crtc_possible_masks(struct drm_device *drm, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); | 
|  | const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); | 
|  | const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; | 
|  | struct drm_encoder *encoder; | 
|  |  | 
|  | drm_for_each_encoder(encoder, drm) { | 
|  | struct vc4_encoder *vc4_encoder; | 
|  | int i; | 
|  |  | 
|  | if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) | 
|  | continue; | 
|  |  | 
|  | vc4_encoder = to_vc4_encoder(encoder); | 
|  | for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { | 
|  | if (vc4_encoder->type == encoder_types[i]) { | 
|  | vc4_encoder->clock_select = i; | 
|  | encoder->possible_crtcs |= drm_crtc_mask(crtc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, | 
|  | const struct drm_crtc_funcs *crtc_funcs, | 
|  | const struct drm_crtc_helper_funcs *crtc_helper_funcs) | 
|  | { | 
|  | struct vc4_dev *vc4 = to_vc4_dev(drm); | 
|  | struct drm_crtc *crtc = &vc4_crtc->base; | 
|  | struct drm_plane *primary_plane; | 
|  | unsigned int i; | 
|  |  | 
|  | /* For now, we create just the primary and the legacy cursor | 
|  | * planes.  We should be able to stack more planes on easily, | 
|  | * but to do that we would need to compute the bandwidth | 
|  | * requirement of the plane configuration, and reject ones | 
|  | * that will take too much. | 
|  | */ | 
|  | primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); | 
|  | if (IS_ERR(primary_plane)) { | 
|  | dev_err(drm->dev, "failed to construct primary plane\n"); | 
|  | return PTR_ERR(primary_plane); | 
|  | } | 
|  |  | 
|  | drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, | 
|  | crtc_funcs, NULL); | 
|  | drm_crtc_helper_add(crtc, crtc_helper_funcs); | 
|  |  | 
|  | if (!vc4->hvs->hvs5) { | 
|  | drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); | 
|  |  | 
|  | drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); | 
|  |  | 
|  | /* We support CTM, but only for one CRTC at a time. It's therefore | 
|  | * implemented as private driver state in vc4_kms, not here. | 
|  | */ | 
|  | drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < crtc->gamma_size; i++) { | 
|  | vc4_crtc->lut_r[i] = i; | 
|  | vc4_crtc->lut_g[i] = i; | 
|  | vc4_crtc->lut_b[i] = i; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) | 
|  | { | 
|  | struct platform_device *pdev = to_platform_device(dev); | 
|  | struct drm_device *drm = dev_get_drvdata(master); | 
|  | const struct vc4_pv_data *pv_data; | 
|  | struct vc4_crtc *vc4_crtc; | 
|  | struct drm_crtc *crtc; | 
|  | struct drm_plane *destroy_plane, *temp; | 
|  | int ret; | 
|  |  | 
|  | vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); | 
|  | if (!vc4_crtc) | 
|  | return -ENOMEM; | 
|  | crtc = &vc4_crtc->base; | 
|  |  | 
|  | pv_data = of_device_get_match_data(dev); | 
|  | if (!pv_data) | 
|  | return -ENODEV; | 
|  | vc4_crtc->data = &pv_data->base; | 
|  | vc4_crtc->pdev = pdev; | 
|  |  | 
|  | vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); | 
|  | if (IS_ERR(vc4_crtc->regs)) | 
|  | return PTR_ERR(vc4_crtc->regs); | 
|  |  | 
|  | vc4_crtc->regset.base = vc4_crtc->regs; | 
|  | vc4_crtc->regset.regs = crtc_regs; | 
|  | vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); | 
|  |  | 
|  | ret = vc4_crtc_init(drm, vc4_crtc, | 
|  | &vc4_crtc_funcs, &vc4_crtc_helper_funcs); | 
|  | if (ret) | 
|  | return ret; | 
|  | vc4_set_crtc_possible_masks(drm, crtc); | 
|  |  | 
|  | CRTC_WRITE(PV_INTEN, 0); | 
|  | CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); | 
|  | ret = devm_request_irq(dev, platform_get_irq(pdev, 0), | 
|  | vc4_crtc_irq_handler, | 
|  | IRQF_SHARED, | 
|  | "vc4 crtc", vc4_crtc); | 
|  | if (ret) | 
|  | goto err_destroy_planes; | 
|  |  | 
|  | platform_set_drvdata(pdev, vc4_crtc); | 
|  |  | 
|  | vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, | 
|  | &vc4_crtc->regset); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_destroy_planes: | 
|  | list_for_each_entry_safe(destroy_plane, temp, | 
|  | &drm->mode_config.plane_list, head) { | 
|  | if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) | 
|  | destroy_plane->funcs->destroy(destroy_plane); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void vc4_crtc_unbind(struct device *dev, struct device *master, | 
|  | void *data) | 
|  | { | 
|  | struct platform_device *pdev = to_platform_device(dev); | 
|  | struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); | 
|  |  | 
|  | vc4_crtc_destroy(&vc4_crtc->base); | 
|  |  | 
|  | CRTC_WRITE(PV_INTEN, 0); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | } | 
|  |  | 
|  | static const struct component_ops vc4_crtc_ops = { | 
|  | .bind   = vc4_crtc_bind, | 
|  | .unbind = vc4_crtc_unbind, | 
|  | }; | 
|  |  | 
|  | static int vc4_crtc_dev_probe(struct platform_device *pdev) | 
|  | { | 
|  | return component_add(&pdev->dev, &vc4_crtc_ops); | 
|  | } | 
|  |  | 
|  | static int vc4_crtc_dev_remove(struct platform_device *pdev) | 
|  | { | 
|  | component_del(&pdev->dev, &vc4_crtc_ops); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct platform_driver vc4_crtc_driver = { | 
|  | .probe = vc4_crtc_dev_probe, | 
|  | .remove = vc4_crtc_dev_remove, | 
|  | .driver = { | 
|  | .name = "vc4_crtc", | 
|  | .of_match_table = vc4_crtc_dt_match, | 
|  | }, | 
|  | }; |