|  | /* | 
|  | * 2002-10-18  written by Jim Houston [email protected] | 
|  | *	Copyright (C) 2002 by Concurrent Computer Corporation | 
|  | *	Distributed under the GNU GPL license version 2. | 
|  | * | 
|  | * Modified by George Anzinger to reuse immediately and to use | 
|  | * find bit instructions.  Also removed _irq on spinlocks. | 
|  | * | 
|  | * Modified by Nadia Derbey to make it RCU safe. | 
|  | * | 
|  | * Small id to pointer translation service. | 
|  | * | 
|  | * It uses a radix tree like structure as a sparse array indexed | 
|  | * by the id to obtain the pointer.  The bitmap makes allocating | 
|  | * a new id quick. | 
|  | * | 
|  | * You call it to allocate an id (an int) an associate with that id a | 
|  | * pointer or what ever, we treat it as a (void *).  You can pass this | 
|  | * id to a user for him to pass back at a later time.  You then pass | 
|  | * that id to this code and it returns your pointer. | 
|  | */ | 
|  |  | 
|  | #ifndef TEST                        // to test in user space... | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/export.h> | 
|  | #endif | 
|  | #include <linux/err.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hardirq.h> | 
|  |  | 
|  | #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1) | 
|  | #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT) | 
|  |  | 
|  | /* Leave the possibility of an incomplete final layer */ | 
|  | #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) | 
|  |  | 
|  | /* Number of id_layer structs to leave in free list */ | 
|  | #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) | 
|  |  | 
|  | static struct kmem_cache *idr_layer_cache; | 
|  | static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); | 
|  | static DEFINE_PER_CPU(int, idr_preload_cnt); | 
|  | static DEFINE_SPINLOCK(simple_ida_lock); | 
|  |  | 
|  | /* the maximum ID which can be allocated given idr->layers */ | 
|  | static int idr_max(int layers) | 
|  | { | 
|  | int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); | 
|  |  | 
|  | return (1 << bits) - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is | 
|  | * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and | 
|  | * so on. | 
|  | */ | 
|  | static int idr_layer_prefix_mask(int layer) | 
|  | { | 
|  | return ~idr_max(layer + 1); | 
|  | } | 
|  |  | 
|  | static struct idr_layer *get_from_free_list(struct idr *idp) | 
|  | { | 
|  | struct idr_layer *p; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&idp->lock, flags); | 
|  | if ((p = idp->id_free)) { | 
|  | idp->id_free = p->ary[0]; | 
|  | idp->id_free_cnt--; | 
|  | p->ary[0] = NULL; | 
|  | } | 
|  | spin_unlock_irqrestore(&idp->lock, flags); | 
|  | return(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_layer_alloc - allocate a new idr_layer | 
|  | * @gfp_mask: allocation mask | 
|  | * @layer_idr: optional idr to allocate from | 
|  | * | 
|  | * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch | 
|  | * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch | 
|  | * an idr_layer from @idr->id_free. | 
|  | * | 
|  | * @layer_idr is to maintain backward compatibility with the old alloc | 
|  | * interface - idr_pre_get() and idr_get_new*() - and will be removed | 
|  | * together with per-pool preload buffer. | 
|  | */ | 
|  | static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) | 
|  | { | 
|  | struct idr_layer *new; | 
|  |  | 
|  | /* this is the old path, bypass to get_from_free_list() */ | 
|  | if (layer_idr) | 
|  | return get_from_free_list(layer_idr); | 
|  |  | 
|  | /* | 
|  | * Try to allocate directly from kmem_cache.  We want to try this | 
|  | * before preload buffer; otherwise, non-preloading idr_alloc() | 
|  | * users will end up taking advantage of preloading ones.  As the | 
|  | * following is allowed to fail for preloaded cases, suppress | 
|  | * warning this time. | 
|  | */ | 
|  | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); | 
|  | if (new) | 
|  | return new; | 
|  |  | 
|  | /* | 
|  | * Try to fetch one from the per-cpu preload buffer if in process | 
|  | * context.  See idr_preload() for details. | 
|  | */ | 
|  | if (!in_interrupt()) { | 
|  | preempt_disable(); | 
|  | new = __this_cpu_read(idr_preload_head); | 
|  | if (new) { | 
|  | __this_cpu_write(idr_preload_head, new->ary[0]); | 
|  | __this_cpu_dec(idr_preload_cnt); | 
|  | new->ary[0] = NULL; | 
|  | } | 
|  | preempt_enable(); | 
|  | if (new) | 
|  | return new; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so | 
|  | * that memory allocation failure warning is printed as intended. | 
|  | */ | 
|  | return kmem_cache_zalloc(idr_layer_cache, gfp_mask); | 
|  | } | 
|  |  | 
|  | static void idr_layer_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct idr_layer *layer; | 
|  |  | 
|  | layer = container_of(head, struct idr_layer, rcu_head); | 
|  | kmem_cache_free(idr_layer_cache, layer); | 
|  | } | 
|  |  | 
|  | static inline void free_layer(struct idr *idr, struct idr_layer *p) | 
|  | { | 
|  | if (idr->hint == p) | 
|  | RCU_INIT_POINTER(idr->hint, NULL); | 
|  | call_rcu(&p->rcu_head, idr_layer_rcu_free); | 
|  | } | 
|  |  | 
|  | /* only called when idp->lock is held */ | 
|  | static void __move_to_free_list(struct idr *idp, struct idr_layer *p) | 
|  | { | 
|  | p->ary[0] = idp->id_free; | 
|  | idp->id_free = p; | 
|  | idp->id_free_cnt++; | 
|  | } | 
|  |  | 
|  | static void move_to_free_list(struct idr *idp, struct idr_layer *p) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Depends on the return element being zeroed. | 
|  | */ | 
|  | spin_lock_irqsave(&idp->lock, flags); | 
|  | __move_to_free_list(idp, p); | 
|  | spin_unlock_irqrestore(&idp->lock, flags); | 
|  | } | 
|  |  | 
|  | static void idr_mark_full(struct idr_layer **pa, int id) | 
|  | { | 
|  | struct idr_layer *p = pa[0]; | 
|  | int l = 0; | 
|  |  | 
|  | __set_bit(id & IDR_MASK, p->bitmap); | 
|  | /* | 
|  | * If this layer is full mark the bit in the layer above to | 
|  | * show that this part of the radix tree is full.  This may | 
|  | * complete the layer above and require walking up the radix | 
|  | * tree. | 
|  | */ | 
|  | while (bitmap_full(p->bitmap, IDR_SIZE)) { | 
|  | if (!(p = pa[++l])) | 
|  | break; | 
|  | id = id >> IDR_BITS; | 
|  | __set_bit((id & IDR_MASK), p->bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) | 
|  | { | 
|  | while (idp->id_free_cnt < MAX_IDR_FREE) { | 
|  | struct idr_layer *new; | 
|  | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | 
|  | if (new == NULL) | 
|  | return (0); | 
|  | move_to_free_list(idp, new); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sub_alloc - try to allocate an id without growing the tree depth | 
|  | * @idp: idr handle | 
|  | * @starting_id: id to start search at | 
|  | * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer | 
|  | * @gfp_mask: allocation mask for idr_layer_alloc() | 
|  | * @layer_idr: optional idr passed to idr_layer_alloc() | 
|  | * | 
|  | * Allocate an id in range [@starting_id, INT_MAX] from @idp without | 
|  | * growing its depth.  Returns | 
|  | * | 
|  | *  the allocated id >= 0 if successful, | 
|  | *  -EAGAIN if the tree needs to grow for allocation to succeed, | 
|  | *  -ENOSPC if the id space is exhausted, | 
|  | *  -ENOMEM if more idr_layers need to be allocated. | 
|  | */ | 
|  | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, | 
|  | gfp_t gfp_mask, struct idr *layer_idr) | 
|  | { | 
|  | int n, m, sh; | 
|  | struct idr_layer *p, *new; | 
|  | int l, id, oid; | 
|  |  | 
|  | id = *starting_id; | 
|  | restart: | 
|  | p = idp->top; | 
|  | l = idp->layers; | 
|  | pa[l--] = NULL; | 
|  | while (1) { | 
|  | /* | 
|  | * We run around this while until we reach the leaf node... | 
|  | */ | 
|  | n = (id >> (IDR_BITS*l)) & IDR_MASK; | 
|  | m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); | 
|  | if (m == IDR_SIZE) { | 
|  | /* no space available go back to previous layer. */ | 
|  | l++; | 
|  | oid = id; | 
|  | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; | 
|  |  | 
|  | /* if already at the top layer, we need to grow */ | 
|  | if (id > idr_max(idp->layers)) { | 
|  | *starting_id = id; | 
|  | return -EAGAIN; | 
|  | } | 
|  | p = pa[l]; | 
|  | BUG_ON(!p); | 
|  |  | 
|  | /* If we need to go up one layer, continue the | 
|  | * loop; otherwise, restart from the top. | 
|  | */ | 
|  | sh = IDR_BITS * (l + 1); | 
|  | if (oid >> sh == id >> sh) | 
|  | continue; | 
|  | else | 
|  | goto restart; | 
|  | } | 
|  | if (m != n) { | 
|  | sh = IDR_BITS*l; | 
|  | id = ((id >> sh) ^ n ^ m) << sh; | 
|  | } | 
|  | if ((id >= MAX_IDR_BIT) || (id < 0)) | 
|  | return -ENOSPC; | 
|  | if (l == 0) | 
|  | break; | 
|  | /* | 
|  | * Create the layer below if it is missing. | 
|  | */ | 
|  | if (!p->ary[m]) { | 
|  | new = idr_layer_alloc(gfp_mask, layer_idr); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | new->layer = l-1; | 
|  | new->prefix = id & idr_layer_prefix_mask(new->layer); | 
|  | rcu_assign_pointer(p->ary[m], new); | 
|  | p->count++; | 
|  | } | 
|  | pa[l--] = p; | 
|  | p = p->ary[m]; | 
|  | } | 
|  |  | 
|  | pa[l] = p; | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static int idr_get_empty_slot(struct idr *idp, int starting_id, | 
|  | struct idr_layer **pa, gfp_t gfp_mask, | 
|  | struct idr *layer_idr) | 
|  | { | 
|  | struct idr_layer *p, *new; | 
|  | int layers, v, id; | 
|  | unsigned long flags; | 
|  |  | 
|  | id = starting_id; | 
|  | build_up: | 
|  | p = idp->top; | 
|  | layers = idp->layers; | 
|  | if (unlikely(!p)) { | 
|  | if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) | 
|  | return -ENOMEM; | 
|  | p->layer = 0; | 
|  | layers = 1; | 
|  | } | 
|  | /* | 
|  | * Add a new layer to the top of the tree if the requested | 
|  | * id is larger than the currently allocated space. | 
|  | */ | 
|  | while (id > idr_max(layers)) { | 
|  | layers++; | 
|  | if (!p->count) { | 
|  | /* special case: if the tree is currently empty, | 
|  | * then we grow the tree by moving the top node | 
|  | * upwards. | 
|  | */ | 
|  | p->layer++; | 
|  | WARN_ON_ONCE(p->prefix); | 
|  | continue; | 
|  | } | 
|  | if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { | 
|  | /* | 
|  | * The allocation failed.  If we built part of | 
|  | * the structure tear it down. | 
|  | */ | 
|  | spin_lock_irqsave(&idp->lock, flags); | 
|  | for (new = p; p && p != idp->top; new = p) { | 
|  | p = p->ary[0]; | 
|  | new->ary[0] = NULL; | 
|  | new->count = 0; | 
|  | bitmap_clear(new->bitmap, 0, IDR_SIZE); | 
|  | __move_to_free_list(idp, new); | 
|  | } | 
|  | spin_unlock_irqrestore(&idp->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | new->ary[0] = p; | 
|  | new->count = 1; | 
|  | new->layer = layers-1; | 
|  | new->prefix = id & idr_layer_prefix_mask(new->layer); | 
|  | if (bitmap_full(p->bitmap, IDR_SIZE)) | 
|  | __set_bit(0, new->bitmap); | 
|  | p = new; | 
|  | } | 
|  | rcu_assign_pointer(idp->top, p); | 
|  | idp->layers = layers; | 
|  | v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); | 
|  | if (v == -EAGAIN) | 
|  | goto build_up; | 
|  | return(v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @id and @pa are from a successful allocation from idr_get_empty_slot(). | 
|  | * Install the user pointer @ptr and mark the slot full. | 
|  | */ | 
|  | static void idr_fill_slot(struct idr *idr, void *ptr, int id, | 
|  | struct idr_layer **pa) | 
|  | { | 
|  | /* update hint used for lookup, cleared from free_layer() */ | 
|  | rcu_assign_pointer(idr->hint, pa[0]); | 
|  |  | 
|  | rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); | 
|  | pa[0]->count++; | 
|  | idr_mark_full(pa, id); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * idr_preload - preload for idr_alloc() | 
|  | * @gfp_mask: allocation mask to use for preloading | 
|  | * | 
|  | * Preload per-cpu layer buffer for idr_alloc().  Can only be used from | 
|  | * process context and each idr_preload() invocation should be matched with | 
|  | * idr_preload_end().  Note that preemption is disabled while preloaded. | 
|  | * | 
|  | * The first idr_alloc() in the preloaded section can be treated as if it | 
|  | * were invoked with @gfp_mask used for preloading.  This allows using more | 
|  | * permissive allocation masks for idrs protected by spinlocks. | 
|  | * | 
|  | * For example, if idr_alloc() below fails, the failure can be treated as | 
|  | * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. | 
|  | * | 
|  | *	idr_preload(GFP_KERNEL); | 
|  | *	spin_lock(lock); | 
|  | * | 
|  | *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); | 
|  | * | 
|  | *	spin_unlock(lock); | 
|  | *	idr_preload_end(); | 
|  | *	if (id < 0) | 
|  | *		error; | 
|  | */ | 
|  | void idr_preload(gfp_t gfp_mask) | 
|  | { | 
|  | /* | 
|  | * Consuming preload buffer from non-process context breaks preload | 
|  | * allocation guarantee.  Disallow usage from those contexts. | 
|  | */ | 
|  | WARN_ON_ONCE(in_interrupt()); | 
|  | might_sleep_if(gfp_mask & __GFP_WAIT); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * idr_alloc() is likely to succeed w/o full idr_layer buffer and | 
|  | * return value from idr_alloc() needs to be checked for failure | 
|  | * anyway.  Silently give up if allocation fails.  The caller can | 
|  | * treat failures from idr_alloc() as if idr_alloc() were called | 
|  | * with @gfp_mask which should be enough. | 
|  | */ | 
|  | while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { | 
|  | struct idr_layer *new; | 
|  |  | 
|  | preempt_enable(); | 
|  | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | 
|  | preempt_disable(); | 
|  | if (!new) | 
|  | break; | 
|  |  | 
|  | /* link the new one to per-cpu preload list */ | 
|  | new->ary[0] = __this_cpu_read(idr_preload_head); | 
|  | __this_cpu_write(idr_preload_head, new); | 
|  | __this_cpu_inc(idr_preload_cnt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(idr_preload); | 
|  |  | 
|  | /** | 
|  | * idr_alloc - allocate new idr entry | 
|  | * @idr: the (initialized) idr | 
|  | * @ptr: pointer to be associated with the new id | 
|  | * @start: the minimum id (inclusive) | 
|  | * @end: the maximum id (exclusive, <= 0 for max) | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * Allocate an id in [start, end) and associate it with @ptr.  If no ID is | 
|  | * available in the specified range, returns -ENOSPC.  On memory allocation | 
|  | * failure, returns -ENOMEM. | 
|  | * | 
|  | * Note that @end is treated as max when <= 0.  This is to always allow | 
|  | * using @start + N as @end as long as N is inside integer range. | 
|  | * | 
|  | * The user is responsible for exclusively synchronizing all operations | 
|  | * which may modify @idr.  However, read-only accesses such as idr_find() | 
|  | * or iteration can be performed under RCU read lock provided the user | 
|  | * destroys @ptr in RCU-safe way after removal from idr. | 
|  | */ | 
|  | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) | 
|  | { | 
|  | int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */ | 
|  | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 
|  | int id; | 
|  |  | 
|  | might_sleep_if(gfp_mask & __GFP_WAIT); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (WARN_ON_ONCE(start < 0)) | 
|  | return -EINVAL; | 
|  | if (unlikely(max < start)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* allocate id */ | 
|  | id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); | 
|  | if (unlikely(id < 0)) | 
|  | return id; | 
|  | if (unlikely(id > max)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | idr_fill_slot(idr, ptr, id, pa); | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(idr_alloc); | 
|  |  | 
|  | /** | 
|  | * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion | 
|  | * @idr: the (initialized) idr | 
|  | * @ptr: pointer to be associated with the new id | 
|  | * @start: the minimum id (inclusive) | 
|  | * @end: the maximum id (exclusive, <= 0 for max) | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * Essentially the same as idr_alloc, but prefers to allocate progressively | 
|  | * higher ids if it can. If the "cur" counter wraps, then it will start again | 
|  | * at the "start" end of the range and allocate one that has already been used. | 
|  | */ | 
|  | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); | 
|  | if (id == -ENOSPC) | 
|  | id = idr_alloc(idr, ptr, start, end, gfp_mask); | 
|  |  | 
|  | if (likely(id >= 0)) | 
|  | idr->cur = id + 1; | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_alloc_cyclic); | 
|  |  | 
|  | static void idr_remove_warning(int id) | 
|  | { | 
|  | WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); | 
|  | } | 
|  |  | 
|  | static void sub_remove(struct idr *idp, int shift, int id) | 
|  | { | 
|  | struct idr_layer *p = idp->top; | 
|  | struct idr_layer **pa[MAX_IDR_LEVEL + 1]; | 
|  | struct idr_layer ***paa = &pa[0]; | 
|  | struct idr_layer *to_free; | 
|  | int n; | 
|  |  | 
|  | *paa = NULL; | 
|  | *++paa = &idp->top; | 
|  |  | 
|  | while ((shift > 0) && p) { | 
|  | n = (id >> shift) & IDR_MASK; | 
|  | __clear_bit(n, p->bitmap); | 
|  | *++paa = &p->ary[n]; | 
|  | p = p->ary[n]; | 
|  | shift -= IDR_BITS; | 
|  | } | 
|  | n = id & IDR_MASK; | 
|  | if (likely(p != NULL && test_bit(n, p->bitmap))) { | 
|  | __clear_bit(n, p->bitmap); | 
|  | RCU_INIT_POINTER(p->ary[n], NULL); | 
|  | to_free = NULL; | 
|  | while(*paa && ! --((**paa)->count)){ | 
|  | if (to_free) | 
|  | free_layer(idp, to_free); | 
|  | to_free = **paa; | 
|  | **paa-- = NULL; | 
|  | } | 
|  | if (!*paa) | 
|  | idp->layers = 0; | 
|  | if (to_free) | 
|  | free_layer(idp, to_free); | 
|  | } else | 
|  | idr_remove_warning(id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_remove - remove the given id and free its slot | 
|  | * @idp: idr handle | 
|  | * @id: unique key | 
|  | */ | 
|  | void idr_remove(struct idr *idp, int id) | 
|  | { | 
|  | struct idr_layer *p; | 
|  | struct idr_layer *to_free; | 
|  |  | 
|  | if (id < 0) | 
|  | return; | 
|  |  | 
|  | if (id > idr_max(idp->layers)) { | 
|  | idr_remove_warning(id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | 
|  | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && | 
|  | idp->top->ary[0]) { | 
|  | /* | 
|  | * Single child at leftmost slot: we can shrink the tree. | 
|  | * This level is not needed anymore since when layers are | 
|  | * inserted, they are inserted at the top of the existing | 
|  | * tree. | 
|  | */ | 
|  | to_free = idp->top; | 
|  | p = idp->top->ary[0]; | 
|  | rcu_assign_pointer(idp->top, p); | 
|  | --idp->layers; | 
|  | to_free->count = 0; | 
|  | bitmap_clear(to_free->bitmap, 0, IDR_SIZE); | 
|  | free_layer(idp, to_free); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(idr_remove); | 
|  |  | 
|  | static void __idr_remove_all(struct idr *idp) | 
|  | { | 
|  | int n, id, max; | 
|  | int bt_mask; | 
|  | struct idr_layer *p; | 
|  | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 
|  | struct idr_layer **paa = &pa[0]; | 
|  |  | 
|  | n = idp->layers * IDR_BITS; | 
|  | p = idp->top; | 
|  | RCU_INIT_POINTER(idp->top, NULL); | 
|  | max = idr_max(idp->layers); | 
|  |  | 
|  | id = 0; | 
|  | while (id >= 0 && id <= max) { | 
|  | while (n > IDR_BITS && p) { | 
|  | n -= IDR_BITS; | 
|  | *paa++ = p; | 
|  | p = p->ary[(id >> n) & IDR_MASK]; | 
|  | } | 
|  |  | 
|  | bt_mask = id; | 
|  | id += 1 << n; | 
|  | /* Get the highest bit that the above add changed from 0->1. */ | 
|  | while (n < fls(id ^ bt_mask)) { | 
|  | if (p) | 
|  | free_layer(idp, p); | 
|  | n += IDR_BITS; | 
|  | p = *--paa; | 
|  | } | 
|  | } | 
|  | idp->layers = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_destroy - release all cached layers within an idr tree | 
|  | * @idp: idr handle | 
|  | * | 
|  | * Free all id mappings and all idp_layers.  After this function, @idp is | 
|  | * completely unused and can be freed / recycled.  The caller is | 
|  | * responsible for ensuring that no one else accesses @idp during or after | 
|  | * idr_destroy(). | 
|  | * | 
|  | * A typical clean-up sequence for objects stored in an idr tree will use | 
|  | * idr_for_each() to free all objects, if necessay, then idr_destroy() to | 
|  | * free up the id mappings and cached idr_layers. | 
|  | */ | 
|  | void idr_destroy(struct idr *idp) | 
|  | { | 
|  | __idr_remove_all(idp); | 
|  |  | 
|  | while (idp->id_free_cnt) { | 
|  | struct idr_layer *p = get_from_free_list(idp); | 
|  | kmem_cache_free(idr_layer_cache, p); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(idr_destroy); | 
|  |  | 
|  | void *idr_find_slowpath(struct idr *idp, int id) | 
|  | { | 
|  | int n; | 
|  | struct idr_layer *p; | 
|  |  | 
|  | if (id < 0) | 
|  | return NULL; | 
|  |  | 
|  | p = rcu_dereference_raw(idp->top); | 
|  | if (!p) | 
|  | return NULL; | 
|  | n = (p->layer+1) * IDR_BITS; | 
|  |  | 
|  | if (id > idr_max(p->layer + 1)) | 
|  | return NULL; | 
|  | BUG_ON(n == 0); | 
|  |  | 
|  | while (n > 0 && p) { | 
|  | n -= IDR_BITS; | 
|  | BUG_ON(n != p->layer*IDR_BITS); | 
|  | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | 
|  | } | 
|  | return((void *)p); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_find_slowpath); | 
|  |  | 
|  | /** | 
|  | * idr_for_each - iterate through all stored pointers | 
|  | * @idp: idr handle | 
|  | * @fn: function to be called for each pointer | 
|  | * @data: data passed back to callback function | 
|  | * | 
|  | * Iterate over the pointers registered with the given idr.  The | 
|  | * callback function will be called for each pointer currently | 
|  | * registered, passing the id, the pointer and the data pointer passed | 
|  | * to this function.  It is not safe to modify the idr tree while in | 
|  | * the callback, so functions such as idr_get_new and idr_remove are | 
|  | * not allowed. | 
|  | * | 
|  | * We check the return of @fn each time. If it returns anything other | 
|  | * than %0, we break out and return that value. | 
|  | * | 
|  | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | 
|  | */ | 
|  | int idr_for_each(struct idr *idp, | 
|  | int (*fn)(int id, void *p, void *data), void *data) | 
|  | { | 
|  | int n, id, max, error = 0; | 
|  | struct idr_layer *p; | 
|  | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 
|  | struct idr_layer **paa = &pa[0]; | 
|  |  | 
|  | n = idp->layers * IDR_BITS; | 
|  | p = rcu_dereference_raw(idp->top); | 
|  | max = idr_max(idp->layers); | 
|  |  | 
|  | id = 0; | 
|  | while (id >= 0 && id <= max) { | 
|  | while (n > 0 && p) { | 
|  | n -= IDR_BITS; | 
|  | *paa++ = p; | 
|  | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | 
|  | } | 
|  |  | 
|  | if (p) { | 
|  | error = fn(id, (void *)p, data); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  |  | 
|  | id += 1 << n; | 
|  | while (n < fls(id)) { | 
|  | n += IDR_BITS; | 
|  | p = *--paa; | 
|  | } | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_for_each); | 
|  |  | 
|  | /** | 
|  | * idr_get_next - lookup next object of id to given id. | 
|  | * @idp: idr handle | 
|  | * @nextidp:  pointer to lookup key | 
|  | * | 
|  | * Returns pointer to registered object with id, which is next number to | 
|  | * given id. After being looked up, *@nextidp will be updated for the next | 
|  | * iteration. | 
|  | * | 
|  | * This function can be called under rcu_read_lock(), given that the leaf | 
|  | * pointers lifetimes are correctly managed. | 
|  | */ | 
|  | void *idr_get_next(struct idr *idp, int *nextidp) | 
|  | { | 
|  | struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; | 
|  | struct idr_layer **paa = &pa[0]; | 
|  | int id = *nextidp; | 
|  | int n, max; | 
|  |  | 
|  | /* find first ent */ | 
|  | p = rcu_dereference_raw(idp->top); | 
|  | if (!p) | 
|  | return NULL; | 
|  | n = (p->layer + 1) * IDR_BITS; | 
|  | max = idr_max(p->layer + 1); | 
|  |  | 
|  | while (id >= 0 && id <= max) { | 
|  | while (n > 0 && p) { | 
|  | n -= IDR_BITS; | 
|  | *paa++ = p; | 
|  | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | 
|  | } | 
|  |  | 
|  | if (p) { | 
|  | *nextidp = id; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Proceed to the next layer at the current level.  Unlike | 
|  | * idr_for_each(), @id isn't guaranteed to be aligned to | 
|  | * layer boundary at this point and adding 1 << n may | 
|  | * incorrectly skip IDs.  Make sure we jump to the | 
|  | * beginning of the next layer using round_up(). | 
|  | */ | 
|  | id = round_up(id + 1, 1 << n); | 
|  | while (n < fls(id)) { | 
|  | n += IDR_BITS; | 
|  | p = *--paa; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_get_next); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * idr_replace - replace pointer for given id | 
|  | * @idp: idr handle | 
|  | * @ptr: pointer you want associated with the id | 
|  | * @id: lookup key | 
|  | * | 
|  | * Replace the pointer registered with an id and return the old value. | 
|  | * A %-ENOENT return indicates that @id was not found. | 
|  | * A %-EINVAL return indicates that @id was not within valid constraints. | 
|  | * | 
|  | * The caller must serialize with writers. | 
|  | */ | 
|  | void *idr_replace(struct idr *idp, void *ptr, int id) | 
|  | { | 
|  | int n; | 
|  | struct idr_layer *p, *old_p; | 
|  |  | 
|  | if (id < 0) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | p = idp->top; | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (id > idr_max(p->layer + 1)) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | n = p->layer * IDR_BITS; | 
|  | while ((n > 0) && p) { | 
|  | p = p->ary[(id >> n) & IDR_MASK]; | 
|  | n -= IDR_BITS; | 
|  | } | 
|  |  | 
|  | n = id & IDR_MASK; | 
|  | if (unlikely(p == NULL || !test_bit(n, p->bitmap))) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | old_p = p->ary[n]; | 
|  | rcu_assign_pointer(p->ary[n], ptr); | 
|  |  | 
|  | return old_p; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_replace); | 
|  |  | 
|  | void __init idr_init_cache(void) | 
|  | { | 
|  | idr_layer_cache = kmem_cache_create("idr_layer_cache", | 
|  | sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_init - initialize idr handle | 
|  | * @idp:	idr handle | 
|  | * | 
|  | * This function is use to set up the handle (@idp) that you will pass | 
|  | * to the rest of the functions. | 
|  | */ | 
|  | void idr_init(struct idr *idp) | 
|  | { | 
|  | memset(idp, 0, sizeof(struct idr)); | 
|  | spin_lock_init(&idp->lock); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_init); | 
|  |  | 
|  | static int idr_has_entry(int id, void *p, void *data) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bool idr_is_empty(struct idr *idp) | 
|  | { | 
|  | return !idr_for_each(idp, idr_has_entry, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_is_empty); | 
|  |  | 
|  | /** | 
|  | * DOC: IDA description | 
|  | * IDA - IDR based ID allocator | 
|  | * | 
|  | * This is id allocator without id -> pointer translation.  Memory | 
|  | * usage is much lower than full blown idr because each id only | 
|  | * occupies a bit.  ida uses a custom leaf node which contains | 
|  | * IDA_BITMAP_BITS slots. | 
|  | * | 
|  | * 2007-04-25  written by Tejun Heo <[email protected]> | 
|  | */ | 
|  |  | 
|  | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!ida->free_bitmap) { | 
|  | spin_lock_irqsave(&ida->idr.lock, flags); | 
|  | if (!ida->free_bitmap) { | 
|  | ida->free_bitmap = bitmap; | 
|  | bitmap = NULL; | 
|  | } | 
|  | spin_unlock_irqrestore(&ida->idr.lock, flags); | 
|  | } | 
|  |  | 
|  | kfree(bitmap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ida_pre_get - reserve resources for ida allocation | 
|  | * @ida:	ida handle | 
|  | * @gfp_mask:	memory allocation flag | 
|  | * | 
|  | * This function should be called prior to locking and calling the | 
|  | * following function.  It preallocates enough memory to satisfy the | 
|  | * worst possible allocation. | 
|  | * | 
|  | * If the system is REALLY out of memory this function returns %0, | 
|  | * otherwise %1. | 
|  | */ | 
|  | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | 
|  | { | 
|  | /* allocate idr_layers */ | 
|  | if (!__idr_pre_get(&ida->idr, gfp_mask)) | 
|  | return 0; | 
|  |  | 
|  | /* allocate free_bitmap */ | 
|  | if (!ida->free_bitmap) { | 
|  | struct ida_bitmap *bitmap; | 
|  |  | 
|  | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | 
|  | if (!bitmap) | 
|  | return 0; | 
|  |  | 
|  | free_bitmap(ida, bitmap); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(ida_pre_get); | 
|  |  | 
|  | /** | 
|  | * ida_get_new_above - allocate new ID above or equal to a start id | 
|  | * @ida:	ida handle | 
|  | * @starting_id: id to start search at | 
|  | * @p_id:	pointer to the allocated handle | 
|  | * | 
|  | * Allocate new ID above or equal to @starting_id.  It should be called | 
|  | * with any required locks. | 
|  | * | 
|  | * If memory is required, it will return %-EAGAIN, you should unlock | 
|  | * and go back to the ida_pre_get() call.  If the ida is full, it will | 
|  | * return %-ENOSPC. | 
|  | * | 
|  | * @p_id returns a value in the range @starting_id ... %0x7fffffff. | 
|  | */ | 
|  | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | 
|  | { | 
|  | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 
|  | struct ida_bitmap *bitmap; | 
|  | unsigned long flags; | 
|  | int idr_id = starting_id / IDA_BITMAP_BITS; | 
|  | int offset = starting_id % IDA_BITMAP_BITS; | 
|  | int t, id; | 
|  |  | 
|  | restart: | 
|  | /* get vacant slot */ | 
|  | t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); | 
|  | if (t < 0) | 
|  | return t == -ENOMEM ? -EAGAIN : t; | 
|  |  | 
|  | if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (t != idr_id) | 
|  | offset = 0; | 
|  | idr_id = t; | 
|  |  | 
|  | /* if bitmap isn't there, create a new one */ | 
|  | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | 
|  | if (!bitmap) { | 
|  | spin_lock_irqsave(&ida->idr.lock, flags); | 
|  | bitmap = ida->free_bitmap; | 
|  | ida->free_bitmap = NULL; | 
|  | spin_unlock_irqrestore(&ida->idr.lock, flags); | 
|  |  | 
|  | if (!bitmap) | 
|  | return -EAGAIN; | 
|  |  | 
|  | memset(bitmap, 0, sizeof(struct ida_bitmap)); | 
|  | rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], | 
|  | (void *)bitmap); | 
|  | pa[0]->count++; | 
|  | } | 
|  |  | 
|  | /* lookup for empty slot */ | 
|  | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | 
|  | if (t == IDA_BITMAP_BITS) { | 
|  | /* no empty slot after offset, continue to the next chunk */ | 
|  | idr_id++; | 
|  | offset = 0; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | id = idr_id * IDA_BITMAP_BITS + t; | 
|  | if (id >= MAX_IDR_BIT) | 
|  | return -ENOSPC; | 
|  |  | 
|  | __set_bit(t, bitmap->bitmap); | 
|  | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | 
|  | idr_mark_full(pa, idr_id); | 
|  |  | 
|  | *p_id = id; | 
|  |  | 
|  | /* Each leaf node can handle nearly a thousand slots and the | 
|  | * whole idea of ida is to have small memory foot print. | 
|  | * Throw away extra resources one by one after each successful | 
|  | * allocation. | 
|  | */ | 
|  | if (ida->idr.id_free_cnt || ida->free_bitmap) { | 
|  | struct idr_layer *p = get_from_free_list(&ida->idr); | 
|  | if (p) | 
|  | kmem_cache_free(idr_layer_cache, p); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(ida_get_new_above); | 
|  |  | 
|  | /** | 
|  | * ida_remove - remove the given ID | 
|  | * @ida:	ida handle | 
|  | * @id:		ID to free | 
|  | */ | 
|  | void ida_remove(struct ida *ida, int id) | 
|  | { | 
|  | struct idr_layer *p = ida->idr.top; | 
|  | int shift = (ida->idr.layers - 1) * IDR_BITS; | 
|  | int idr_id = id / IDA_BITMAP_BITS; | 
|  | int offset = id % IDA_BITMAP_BITS; | 
|  | int n; | 
|  | struct ida_bitmap *bitmap; | 
|  |  | 
|  | if (idr_id > idr_max(ida->idr.layers)) | 
|  | goto err; | 
|  |  | 
|  | /* clear full bits while looking up the leaf idr_layer */ | 
|  | while ((shift > 0) && p) { | 
|  | n = (idr_id >> shift) & IDR_MASK; | 
|  | __clear_bit(n, p->bitmap); | 
|  | p = p->ary[n]; | 
|  | shift -= IDR_BITS; | 
|  | } | 
|  |  | 
|  | if (p == NULL) | 
|  | goto err; | 
|  |  | 
|  | n = idr_id & IDR_MASK; | 
|  | __clear_bit(n, p->bitmap); | 
|  |  | 
|  | bitmap = (void *)p->ary[n]; | 
|  | if (!bitmap || !test_bit(offset, bitmap->bitmap)) | 
|  | goto err; | 
|  |  | 
|  | /* update bitmap and remove it if empty */ | 
|  | __clear_bit(offset, bitmap->bitmap); | 
|  | if (--bitmap->nr_busy == 0) { | 
|  | __set_bit(n, p->bitmap);	/* to please idr_remove() */ | 
|  | idr_remove(&ida->idr, idr_id); | 
|  | free_bitmap(ida, bitmap); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); | 
|  | } | 
|  | EXPORT_SYMBOL(ida_remove); | 
|  |  | 
|  | /** | 
|  | * ida_destroy - release all cached layers within an ida tree | 
|  | * @ida:		ida handle | 
|  | */ | 
|  | void ida_destroy(struct ida *ida) | 
|  | { | 
|  | idr_destroy(&ida->idr); | 
|  | kfree(ida->free_bitmap); | 
|  | } | 
|  | EXPORT_SYMBOL(ida_destroy); | 
|  |  | 
|  | /** | 
|  | * ida_simple_get - get a new id. | 
|  | * @ida: the (initialized) ida. | 
|  | * @start: the minimum id (inclusive, < 0x8000000) | 
|  | * @end: the maximum id (exclusive, < 0x8000000 or 0) | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * Allocates an id in the range start <= id < end, or returns -ENOSPC. | 
|  | * On memory allocation failure, returns -ENOMEM. | 
|  | * | 
|  | * Use ida_simple_remove() to get rid of an id. | 
|  | */ | 
|  | int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int ret, id; | 
|  | unsigned int max; | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON((int)start < 0); | 
|  | BUG_ON((int)end < 0); | 
|  |  | 
|  | if (end == 0) | 
|  | max = 0x80000000; | 
|  | else { | 
|  | BUG_ON(end < start); | 
|  | max = end - 1; | 
|  | } | 
|  |  | 
|  | again: | 
|  | if (!ida_pre_get(ida, gfp_mask)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_irqsave(&simple_ida_lock, flags); | 
|  | ret = ida_get_new_above(ida, start, &id); | 
|  | if (!ret) { | 
|  | if (id > max) { | 
|  | ida_remove(ida, id); | 
|  | ret = -ENOSPC; | 
|  | } else { | 
|  | ret = id; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&simple_ida_lock, flags); | 
|  |  | 
|  | if (unlikely(ret == -EAGAIN)) | 
|  | goto again; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ida_simple_get); | 
|  |  | 
|  | /** | 
|  | * ida_simple_remove - remove an allocated id. | 
|  | * @ida: the (initialized) ida. | 
|  | * @id: the id returned by ida_simple_get. | 
|  | */ | 
|  | void ida_simple_remove(struct ida *ida, unsigned int id) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON((int)id < 0); | 
|  | spin_lock_irqsave(&simple_ida_lock, flags); | 
|  | ida_remove(ida, id); | 
|  | spin_unlock_irqrestore(&simple_ida_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(ida_simple_remove); | 
|  |  | 
|  | /** | 
|  | * ida_init - initialize ida handle | 
|  | * @ida:	ida handle | 
|  | * | 
|  | * This function is use to set up the handle (@ida) that you will pass | 
|  | * to the rest of the functions. | 
|  | */ | 
|  | void ida_init(struct ida *ida) | 
|  | { | 
|  | memset(ida, 0, sizeof(struct ida)); | 
|  | idr_init(&ida->idr); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(ida_init); |