| /* | 
 |  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC | 
 |  * | 
 |  * Copyright (C) 2013-2015 Corentin LABBE <[email protected]> | 
 |  * | 
 |  * This file add support for MD5 and SHA1. | 
 |  * | 
 |  * You could find the datasheet in Documentation/arm/sunxi/README | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  */ | 
 | #include "sun4i-ss.h" | 
 | #include <linux/scatterlist.h> | 
 |  | 
 | /* This is a totally arbitrary value */ | 
 | #define SS_TIMEOUT 100 | 
 |  | 
 | int sun4i_hash_crainit(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); | 
 | 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); | 
 | 	struct sun4i_ss_alg_template *algt; | 
 |  | 
 | 	memset(op, 0, sizeof(struct sun4i_tfm_ctx)); | 
 |  | 
 | 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); | 
 | 	op->ss = algt->ss; | 
 |  | 
 | 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), | 
 | 				 sizeof(struct sun4i_req_ctx)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* sun4i_hash_init: initialize request context */ | 
 | int sun4i_hash_init(struct ahash_request *areq) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); | 
 | 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); | 
 | 	struct sun4i_ss_alg_template *algt; | 
 |  | 
 | 	memset(op, 0, sizeof(struct sun4i_req_ctx)); | 
 |  | 
 | 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); | 
 | 	op->mode = algt->mode; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sun4i_hash_export_md5(struct ahash_request *areq, void *out) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	struct md5_state *octx = out; | 
 | 	int i; | 
 |  | 
 | 	octx->byte_count = op->byte_count + op->len; | 
 |  | 
 | 	memcpy(octx->block, op->buf, op->len); | 
 |  | 
 | 	if (op->byte_count) { | 
 | 		for (i = 0; i < 4; i++) | 
 | 			octx->hash[i] = op->hash[i]; | 
 | 	} else { | 
 | 		octx->hash[0] = SHA1_H0; | 
 | 		octx->hash[1] = SHA1_H1; | 
 | 		octx->hash[2] = SHA1_H2; | 
 | 		octx->hash[3] = SHA1_H3; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sun4i_hash_import_md5(struct ahash_request *areq, const void *in) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	const struct md5_state *ictx = in; | 
 | 	int i; | 
 |  | 
 | 	sun4i_hash_init(areq); | 
 |  | 
 | 	op->byte_count = ictx->byte_count & ~0x3F; | 
 | 	op->len = ictx->byte_count & 0x3F; | 
 |  | 
 | 	memcpy(op->buf, ictx->block, op->len); | 
 |  | 
 | 	for (i = 0; i < 4; i++) | 
 | 		op->hash[i] = ictx->hash[i]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sun4i_hash_export_sha1(struct ahash_request *areq, void *out) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	struct sha1_state *octx = out; | 
 | 	int i; | 
 |  | 
 | 	octx->count = op->byte_count + op->len; | 
 |  | 
 | 	memcpy(octx->buffer, op->buf, op->len); | 
 |  | 
 | 	if (op->byte_count) { | 
 | 		for (i = 0; i < 5; i++) | 
 | 			octx->state[i] = op->hash[i]; | 
 | 	} else { | 
 | 		octx->state[0] = SHA1_H0; | 
 | 		octx->state[1] = SHA1_H1; | 
 | 		octx->state[2] = SHA1_H2; | 
 | 		octx->state[3] = SHA1_H3; | 
 | 		octx->state[4] = SHA1_H4; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	const struct sha1_state *ictx = in; | 
 | 	int i; | 
 |  | 
 | 	sun4i_hash_init(areq); | 
 |  | 
 | 	op->byte_count = ictx->count & ~0x3F; | 
 | 	op->len = ictx->count & 0x3F; | 
 |  | 
 | 	memcpy(op->buf, ictx->buffer, op->len); | 
 |  | 
 | 	for (i = 0; i < 5; i++) | 
 | 		op->hash[i] = ictx->state[i]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define SS_HASH_UPDATE 1 | 
 | #define SS_HASH_FINAL 2 | 
 |  | 
 | /* | 
 |  * sun4i_hash_update: update hash engine | 
 |  * | 
 |  * Could be used for both SHA1 and MD5 | 
 |  * Write data by step of 32bits and put then in the SS. | 
 |  * | 
 |  * Since we cannot leave partial data and hash state in the engine, | 
 |  * we need to get the hash state at the end of this function. | 
 |  * We can get the hash state every 64 bytes | 
 |  * | 
 |  * So the first work is to get the number of bytes to write to SS modulo 64 | 
 |  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes | 
 |  * | 
 |  * So at the begin of update() | 
 |  * if op->len + areq->nbytes < 64 | 
 |  * => all data will be written to wait buffer (op->buf) and end=0 | 
 |  * if not, write all data from op->buf to the device and position end to | 
 |  * complete to 64bytes | 
 |  * | 
 |  * example 1: | 
 |  * update1 60o => op->len=60 | 
 |  * update2 60o => need one more word to have 64 bytes | 
 |  * end=4 | 
 |  * so write all data from op->buf and one word of SGs | 
 |  * write remaining data in op->buf | 
 |  * final state op->len=56 | 
 |  */ | 
 | static int sun4i_hash(struct ahash_request *areq) | 
 | { | 
 | 	/* | 
 | 	 * i is the total bytes read from SGs, to be compared to areq->nbytes | 
 | 	 * i is important because we cannot rely on SG length since the sum of | 
 | 	 * SG->length could be greater than areq->nbytes | 
 | 	 * | 
 | 	 * end is the position when we need to stop writing to the device, | 
 | 	 * to be compared to i | 
 | 	 * | 
 | 	 * in_i: advancement in the current SG | 
 | 	 */ | 
 | 	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo; | 
 | 	unsigned int in_i = 0; | 
 | 	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0; | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); | 
 | 	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm); | 
 | 	struct sun4i_ss_ctx *ss = tfmctx->ss; | 
 | 	struct scatterlist *in_sg = areq->src; | 
 | 	struct sg_mapping_iter mi; | 
 | 	int in_r, err = 0; | 
 | 	size_t copied = 0; | 
 |  | 
 | 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x", | 
 | 		__func__, crypto_tfm_alg_name(areq->base.tfm), | 
 | 		op->byte_count, areq->nbytes, op->mode, | 
 | 		op->len, op->hash[0]); | 
 |  | 
 | 	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL)) | 
 | 		return 0; | 
 |  | 
 | 	/* protect against overflow */ | 
 | 	if (unlikely(areq->nbytes > UINT_MAX - op->len)) { | 
 | 		dev_err(ss->dev, "Cannot process too large request\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) { | 
 | 		/* linearize data to op->buf */ | 
 | 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), | 
 | 					    op->buf + op->len, areq->nbytes, 0); | 
 | 		op->len += copied; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&ss->slock); | 
 |  | 
 | 	/* | 
 | 	 * if some data have been processed before, | 
 | 	 * we need to restore the partial hash state | 
 | 	 */ | 
 | 	if (op->byte_count) { | 
 | 		ivmode = SS_IV_ARBITRARY; | 
 | 		for (i = 0; i < 5; i++) | 
 | 			writel(op->hash[i], ss->base + SS_IV0 + i * 4); | 
 | 	} | 
 | 	/* Enable the device */ | 
 | 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); | 
 |  | 
 | 	if (!(op->flags & SS_HASH_UPDATE)) | 
 | 		goto hash_final; | 
 |  | 
 | 	/* start of handling data */ | 
 | 	if (!(op->flags & SS_HASH_FINAL)) { | 
 | 		end = ((areq->nbytes + op->len) / 64) * 64 - op->len; | 
 |  | 
 | 		if (end > areq->nbytes || areq->nbytes - end > 63) { | 
 | 			dev_err(ss->dev, "ERROR: Bound error %u %u\n", | 
 | 				end, areq->nbytes); | 
 | 			err = -EINVAL; | 
 | 			goto release_ss; | 
 | 		} | 
 | 	} else { | 
 | 		/* Since we have the flag final, we can go up to modulo 4 */ | 
 | 		end = ((areq->nbytes + op->len) / 4) * 4 - op->len; | 
 | 	} | 
 |  | 
 | 	/* TODO if SGlen % 4 and !op->len then DMA */ | 
 | 	i = 1; | 
 | 	while (in_sg && i == 1) { | 
 | 		if (in_sg->length % 4) | 
 | 			i = 0; | 
 | 		in_sg = sg_next(in_sg); | 
 | 	} | 
 | 	if (i == 1 && !op->len && areq->nbytes) | 
 | 		dev_dbg(ss->dev, "We can DMA\n"); | 
 |  | 
 | 	i = 0; | 
 | 	sg_miter_start(&mi, areq->src, sg_nents(areq->src), | 
 | 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC); | 
 | 	sg_miter_next(&mi); | 
 | 	in_i = 0; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * we need to linearize in two case: | 
 | 		 * - the buffer is already used | 
 | 		 * - the SG does not have enough byte remaining ( < 4) | 
 | 		 */ | 
 | 		if (op->len || (mi.length - in_i) < 4) { | 
 | 			/* | 
 | 			 * if we have entered here we have two reason to stop | 
 | 			 * - the buffer is full | 
 | 			 * - reach the end | 
 | 			 */ | 
 | 			while (op->len < 64 && i < end) { | 
 | 				/* how many bytes we can read from current SG */ | 
 | 				in_r = min3(mi.length - in_i, end - i, | 
 | 					    64 - op->len); | 
 | 				memcpy(op->buf + op->len, mi.addr + in_i, in_r); | 
 | 				op->len += in_r; | 
 | 				i += in_r; | 
 | 				in_i += in_r; | 
 | 				if (in_i == mi.length) { | 
 | 					sg_miter_next(&mi); | 
 | 					in_i = 0; | 
 | 				} | 
 | 			} | 
 | 			if (op->len > 3 && !(op->len % 4)) { | 
 | 				/* write buf to the device */ | 
 | 				writesl(ss->base + SS_RXFIFO, op->buf, | 
 | 					op->len / 4); | 
 | 				op->byte_count += op->len; | 
 | 				op->len = 0; | 
 | 			} | 
 | 		} | 
 | 		if (mi.length - in_i > 3 && i < end) { | 
 | 			/* how many bytes we can read from current SG */ | 
 | 			in_r = min3(mi.length - in_i, areq->nbytes - i, | 
 | 				    ((mi.length - in_i) / 4) * 4); | 
 | 			/* how many bytes we can write in the device*/ | 
 | 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4); | 
 | 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo); | 
 | 			op->byte_count += todo * 4; | 
 | 			i += todo * 4; | 
 | 			in_i += todo * 4; | 
 | 			rx_cnt -= todo; | 
 | 			if (!rx_cnt) { | 
 | 				spaces = readl(ss->base + SS_FCSR); | 
 | 				rx_cnt = SS_RXFIFO_SPACES(spaces); | 
 | 			} | 
 | 			if (in_i == mi.length) { | 
 | 				sg_miter_next(&mi); | 
 | 				in_i = 0; | 
 | 			} | 
 | 		} | 
 | 	} while (i < end); | 
 |  | 
 | 	/* | 
 | 	 * Now we have written to the device all that we can, | 
 | 	 * store the remaining bytes in op->buf | 
 | 	 */ | 
 | 	if ((areq->nbytes - i) < 64) { | 
 | 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) { | 
 | 			/* how many bytes we can read from current SG */ | 
 | 			in_r = min3(mi.length - in_i, areq->nbytes - i, | 
 | 				    64 - op->len); | 
 | 			memcpy(op->buf + op->len, mi.addr + in_i, in_r); | 
 | 			op->len += in_r; | 
 | 			i += in_r; | 
 | 			in_i += in_r; | 
 | 			if (in_i == mi.length) { | 
 | 				sg_miter_next(&mi); | 
 | 				in_i = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sg_miter_stop(&mi); | 
 |  | 
 | 	/* | 
 | 	 * End of data process | 
 | 	 * Now if we have the flag final go to finalize part | 
 | 	 * If not, store the partial hash | 
 | 	 */ | 
 | 	if (op->flags & SS_HASH_FINAL) | 
 | 		goto hash_final; | 
 |  | 
 | 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); | 
 | 	i = 0; | 
 | 	do { | 
 | 		v = readl(ss->base + SS_CTL); | 
 | 		i++; | 
 | 	} while (i < SS_TIMEOUT && (v & SS_DATA_END)); | 
 | 	if (unlikely(i >= SS_TIMEOUT)) { | 
 | 		dev_err_ratelimited(ss->dev, | 
 | 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", | 
 | 				    i, SS_TIMEOUT, v, areq->nbytes); | 
 | 		err = -EIO; | 
 | 		goto release_ss; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The datasheet isn't very clear about when to retrieve the digest. The | 
 | 	 * bit SS_DATA_END is cleared when the engine has processed the data and | 
 | 	 * when the digest is computed *but* it doesn't mean the digest is | 
 | 	 * available in the digest registers. Hence the delay to be sure we can | 
 | 	 * read it. | 
 | 	 */ | 
 | 	ndelay(1); | 
 |  | 
 | 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) | 
 | 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4); | 
 |  | 
 | 	goto release_ss; | 
 |  | 
 | /* | 
 |  * hash_final: finalize hashing operation | 
 |  * | 
 |  * If we have some remaining bytes, we write them. | 
 |  * Then ask the SS for finalizing the hashing operation | 
 |  * | 
 |  * I do not check RX FIFO size in this function since the size is 32 | 
 |  * after each enabling and this function neither write more than 32 words. | 
 |  * If we come from the update part, we cannot have more than | 
 |  * 3 remaining bytes to write and SS is fast enough to not care about it. | 
 |  */ | 
 |  | 
 | hash_final: | 
 |  | 
 | 	/* write the remaining words of the wait buffer */ | 
 | 	if (op->len) { | 
 | 		nwait = op->len / 4; | 
 | 		if (nwait) { | 
 | 			writesl(ss->base + SS_RXFIFO, op->buf, nwait); | 
 | 			op->byte_count += 4 * nwait; | 
 | 		} | 
 |  | 
 | 		nbw = op->len - 4 * nwait; | 
 | 		if (nbw) { | 
 | 			wb = *(u32 *)(op->buf + nwait * 4); | 
 | 			wb &= GENMASK((nbw * 8) - 1, 0); | 
 |  | 
 | 			op->byte_count += nbw; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* write the remaining bytes of the nbw buffer */ | 
 | 	wb |= ((1 << 7) << (nbw * 8)); | 
 | 	bf[j++] = wb; | 
 |  | 
 | 	/* | 
 | 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) | 
 | 	 * I take the operations from other MD5/SHA1 implementations | 
 | 	 */ | 
 |  | 
 | 	/* last block size */ | 
 | 	fill = 64 - (op->byte_count % 64); | 
 | 	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32)); | 
 |  | 
 | 	/* if we can't fill all data, jump to the next 64 block */ | 
 | 	if (fill < min_fill) | 
 | 		fill += 64; | 
 |  | 
 | 	j += (fill - min_fill) / sizeof(u32); | 
 |  | 
 | 	/* write the length of data */ | 
 | 	if (op->mode == SS_OP_SHA1) { | 
 | 		__be64 bits = cpu_to_be64(op->byte_count << 3); | 
 | 		bf[j++] = lower_32_bits(bits); | 
 | 		bf[j++] = upper_32_bits(bits); | 
 | 	} else { | 
 | 		__le64 bits = op->byte_count << 3; | 
 | 		bf[j++] = lower_32_bits(bits); | 
 | 		bf[j++] = upper_32_bits(bits); | 
 | 	} | 
 | 	writesl(ss->base + SS_RXFIFO, bf, j); | 
 |  | 
 | 	/* Tell the SS to stop the hashing */ | 
 | 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); | 
 |  | 
 | 	/* | 
 | 	 * Wait for SS to finish the hash. | 
 | 	 * The timeout could happen only in case of bad overclocking | 
 | 	 * or driver bug. | 
 | 	 */ | 
 | 	i = 0; | 
 | 	do { | 
 | 		v = readl(ss->base + SS_CTL); | 
 | 		i++; | 
 | 	} while (i < SS_TIMEOUT && (v & SS_DATA_END)); | 
 | 	if (unlikely(i >= SS_TIMEOUT)) { | 
 | 		dev_err_ratelimited(ss->dev, | 
 | 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", | 
 | 				    i, SS_TIMEOUT, v, areq->nbytes); | 
 | 		err = -EIO; | 
 | 		goto release_ss; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The datasheet isn't very clear about when to retrieve the digest. The | 
 | 	 * bit SS_DATA_END is cleared when the engine has processed the data and | 
 | 	 * when the digest is computed *but* it doesn't mean the digest is | 
 | 	 * available in the digest registers. Hence the delay to be sure we can | 
 | 	 * read it. | 
 | 	 */ | 
 | 	ndelay(1); | 
 |  | 
 | 	/* Get the hash from the device */ | 
 | 	if (op->mode == SS_OP_SHA1) { | 
 | 		for (i = 0; i < 5; i++) { | 
 | 			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); | 
 | 			memcpy(areq->result + i * 4, &v, 4); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < 4; i++) { | 
 | 			v = readl(ss->base + SS_MD0 + i * 4); | 
 | 			memcpy(areq->result + i * 4, &v, 4); | 
 | 		} | 
 | 	} | 
 |  | 
 | release_ss: | 
 | 	writel(0, ss->base + SS_CTL); | 
 | 	spin_unlock_bh(&ss->slock); | 
 | 	return err; | 
 | } | 
 |  | 
 | int sun4i_hash_final(struct ahash_request *areq) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 |  | 
 | 	op->flags = SS_HASH_FINAL; | 
 | 	return sun4i_hash(areq); | 
 | } | 
 |  | 
 | int sun4i_hash_update(struct ahash_request *areq) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 |  | 
 | 	op->flags = SS_HASH_UPDATE; | 
 | 	return sun4i_hash(areq); | 
 | } | 
 |  | 
 | /* sun4i_hash_finup: finalize hashing operation after an update */ | 
 | int sun4i_hash_finup(struct ahash_request *areq) | 
 | { | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 |  | 
 | 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; | 
 | 	return sun4i_hash(areq); | 
 | } | 
 |  | 
 | /* combo of init/update/final functions */ | 
 | int sun4i_hash_digest(struct ahash_request *areq) | 
 | { | 
 | 	int err; | 
 | 	struct sun4i_req_ctx *op = ahash_request_ctx(areq); | 
 |  | 
 | 	err = sun4i_hash_init(areq); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; | 
 | 	return sun4i_hash(areq); | 
 | } |