blob: 59965f43c2fb0e3335855902ad8b8649f7208e53 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
// Copyright(c) 2015-2020 Intel Corporation.
/*
* Bandwidth management algorithm based on 2^n gears
*
*/
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <linux/soundwire/sdw.h>
#include "bus.h"
#define SDW_STRM_RATE_GROUPING 1
struct sdw_group_params {
unsigned int rate;
unsigned int lane;
int full_bw;
int payload_bw;
int hwidth;
};
struct sdw_group {
unsigned int count;
unsigned int max_size;
unsigned int *rates;
unsigned int *lanes;
};
void sdw_compute_slave_ports(struct sdw_master_runtime *m_rt,
struct sdw_transport_data *t_data)
{
struct sdw_slave_runtime *s_rt = NULL;
struct sdw_port_runtime *p_rt;
int port_bo, sample_int;
unsigned int rate, bps, ch = 0;
unsigned int slave_total_ch;
struct sdw_bus_params *b_params = &m_rt->bus->params;
port_bo = t_data->block_offset;
list_for_each_entry(s_rt, &m_rt->slave_rt_list, m_rt_node) {
rate = m_rt->stream->params.rate;
bps = m_rt->stream->params.bps;
sample_int = (m_rt->bus->params.curr_dr_freq / rate);
slave_total_ch = 0;
list_for_each_entry(p_rt, &s_rt->port_list, port_node) {
if (p_rt->lane != t_data->lane)
continue;
ch = hweight32(p_rt->ch_mask);
sdw_fill_xport_params(&p_rt->transport_params,
p_rt->num, false,
SDW_BLK_GRP_CNT_1,
sample_int, port_bo, port_bo >> 8,
t_data->hstart,
t_data->hstop,
SDW_BLK_PKG_PER_PORT, p_rt->lane);
sdw_fill_port_params(&p_rt->port_params,
p_rt->num, bps,
SDW_PORT_FLOW_MODE_ISOCH,
b_params->s_data_mode);
port_bo += bps * ch;
slave_total_ch += ch;
}
if (m_rt->direction == SDW_DATA_DIR_TX &&
m_rt->ch_count == slave_total_ch) {
/*
* Slave devices were configured to access all channels
* of the stream, which indicates that they operate in
* 'mirror mode'. Make sure we reset the port offset for
* the next device in the list
*/
port_bo = t_data->block_offset;
}
}
}
EXPORT_SYMBOL(sdw_compute_slave_ports);
static void sdw_compute_master_ports(struct sdw_master_runtime *m_rt,
struct sdw_group_params *params,
int *port_bo, int hstop)
{
struct sdw_transport_data t_data = {0};
struct sdw_port_runtime *p_rt;
struct sdw_bus *bus = m_rt->bus;
struct sdw_bus_params *b_params = &bus->params;
int sample_int, hstart = 0;
unsigned int rate, bps, ch;
rate = m_rt->stream->params.rate;
bps = m_rt->stream->params.bps;
ch = m_rt->ch_count;
sample_int = (bus->params.curr_dr_freq / rate);
if (rate != params->rate)
return;
t_data.hstop = hstop;
hstart = hstop - params->hwidth + 1;
t_data.hstart = hstart;
list_for_each_entry(p_rt, &m_rt->port_list, port_node) {
if (p_rt->lane != params->lane)
continue;
sdw_fill_xport_params(&p_rt->transport_params, p_rt->num,
false, SDW_BLK_GRP_CNT_1, sample_int,
*port_bo, (*port_bo) >> 8, hstart, hstop,
SDW_BLK_PKG_PER_PORT, p_rt->lane);
sdw_fill_port_params(&p_rt->port_params,
p_rt->num, bps,
SDW_PORT_FLOW_MODE_ISOCH,
b_params->m_data_mode);
/* Check for first entry */
if (!(p_rt == list_first_entry(&m_rt->port_list,
struct sdw_port_runtime,
port_node))) {
(*port_bo) += bps * ch;
continue;
}
t_data.hstart = hstart;
t_data.hstop = hstop;
t_data.block_offset = *port_bo;
t_data.sub_block_offset = 0;
(*port_bo) += bps * ch;
}
t_data.lane = params->lane;
sdw_compute_slave_ports(m_rt, &t_data);
}
static void _sdw_compute_port_params(struct sdw_bus *bus,
struct sdw_group_params *params, int count)
{
struct sdw_master_runtime *m_rt;
int port_bo, i, l;
int hstop;
/* Run loop for all groups to compute transport parameters */
for (l = 0; l < SDW_MAX_LANES; l++) {
if (l > 0 && !bus->lane_used_bandwidth[l])
continue;
/* reset hstop for each lane */
hstop = bus->params.col - 1;
for (i = 0; i < count; i++) {
if (params[i].lane != l)
continue;
port_bo = 1;
list_for_each_entry(m_rt, &bus->m_rt_list, bus_node) {
sdw_compute_master_ports(m_rt, &params[i], &port_bo, hstop);
}
hstop = hstop - params[i].hwidth;
}
}
}
static int sdw_compute_group_params(struct sdw_bus *bus,
struct sdw_stream_runtime *stream,
struct sdw_group_params *params,
struct sdw_group *group)
{
struct sdw_master_runtime *m_rt;
struct sdw_port_runtime *p_rt;
int sel_col = bus->params.col;
unsigned int rate, bps, ch;
int i, l, column_needed;
/* Calculate bandwidth per group */
for (i = 0; i < group->count; i++) {
params[i].rate = group->rates[i];
params[i].lane = group->lanes[i];
params[i].full_bw = bus->params.curr_dr_freq / params[i].rate;
}
list_for_each_entry(m_rt, &bus->m_rt_list, bus_node) {
if (m_rt->stream == stream) {
/* Only runtime during prepare should be added */
if (stream->state != SDW_STREAM_CONFIGURED)
continue;
} else {
/*
* Include runtimes with running (ENABLED state) and paused (DISABLED state)
* streams
*/
if (m_rt->stream->state != SDW_STREAM_ENABLED &&
m_rt->stream->state != SDW_STREAM_DISABLED)
continue;
}
list_for_each_entry(p_rt, &m_rt->port_list, port_node) {
rate = m_rt->stream->params.rate;
bps = m_rt->stream->params.bps;
ch = hweight32(p_rt->ch_mask);
for (i = 0; i < group->count; i++) {
if (rate == params[i].rate && p_rt->lane == params[i].lane)
params[i].payload_bw += bps * ch;
}
}
}
for (l = 0; l < SDW_MAX_LANES; l++) {
if (l > 0 && !bus->lane_used_bandwidth[l])
continue;
/* reset column_needed for each lane */
column_needed = 0;
for (i = 0; i < group->count; i++) {
if (params[i].lane != l)
continue;
params[i].hwidth = (sel_col * params[i].payload_bw +
params[i].full_bw - 1) / params[i].full_bw;
column_needed += params[i].hwidth;
/* There is no control column for lane 1 and above */
if (column_needed > sel_col)
return -EINVAL;
/* Column 0 is control column on lane 0 */
if (params[i].lane == 0 && column_needed > sel_col - 1)
return -EINVAL;
}
}
return 0;
}
static int sdw_add_element_group_count(struct sdw_group *group,
unsigned int rate, unsigned int lane)
{
int num = group->count;
int i;
for (i = 0; i <= num; i++) {
if (rate == group->rates[i] && lane == group->lanes[i])
break;
if (i != num)
continue;
if (group->count >= group->max_size) {
unsigned int *rates;
unsigned int *lanes;
group->max_size += 1;
rates = krealloc(group->rates,
(sizeof(int) * group->max_size),
GFP_KERNEL);
if (!rates)
return -ENOMEM;
group->rates = rates;
lanes = krealloc(group->lanes,
(sizeof(int) * group->max_size),
GFP_KERNEL);
if (!lanes)
return -ENOMEM;
group->lanes = lanes;
}
group->rates[group->count] = rate;
group->lanes[group->count++] = lane;
}
return 0;
}
static int sdw_get_group_count(struct sdw_bus *bus,
struct sdw_group *group)
{
struct sdw_master_runtime *m_rt;
struct sdw_port_runtime *p_rt;
unsigned int rate;
int ret = 0;
group->count = 0;
group->max_size = SDW_STRM_RATE_GROUPING;
group->rates = kcalloc(group->max_size, sizeof(int), GFP_KERNEL);
if (!group->rates)
return -ENOMEM;
group->lanes = kcalloc(group->max_size, sizeof(int), GFP_KERNEL);
if (!group->lanes) {
kfree(group->rates);
group->rates = NULL;
return -ENOMEM;
}
list_for_each_entry(m_rt, &bus->m_rt_list, bus_node) {
if (m_rt->stream->state == SDW_STREAM_DEPREPARED)
continue;
rate = m_rt->stream->params.rate;
if (m_rt == list_first_entry(&bus->m_rt_list,
struct sdw_master_runtime,
bus_node)) {
group->rates[group->count++] = rate;
}
/*
* Different ports could use different lane, add group element
* even if m_rt is the first entry
*/
list_for_each_entry(p_rt, &m_rt->port_list, port_node) {
ret = sdw_add_element_group_count(group, rate, p_rt->lane);
if (ret < 0) {
kfree(group->rates);
kfree(group->lanes);
return ret;
}
}
}
return ret;
}
/**
* sdw_compute_port_params: Compute transport and port parameters
*
* @bus: SDW Bus instance
* @stream: Soundwire stream
*/
static int sdw_compute_port_params(struct sdw_bus *bus, struct sdw_stream_runtime *stream)
{
struct sdw_group_params *params = NULL;
struct sdw_group group;
int ret;
ret = sdw_get_group_count(bus, &group);
if (ret < 0)
return ret;
if (group.count == 0)
goto out;
params = kcalloc(group.count, sizeof(*params), GFP_KERNEL);
if (!params) {
ret = -ENOMEM;
goto out;
}
/* Compute transport parameters for grouped streams */
ret = sdw_compute_group_params(bus, stream, params, &group);
if (ret < 0)
goto free_params;
_sdw_compute_port_params(bus, params, group.count);
free_params:
kfree(params);
out:
kfree(group.rates);
kfree(group.lanes);
return ret;
}
static int sdw_select_row_col(struct sdw_bus *bus, int clk_freq)
{
struct sdw_master_prop *prop = &bus->prop;
int r, c;
for (c = 0; c < SDW_FRAME_COLS; c++) {
for (r = 0; r < SDW_FRAME_ROWS; r++) {
if (sdw_rows[r] != prop->default_row ||
sdw_cols[c] != prop->default_col)
continue;
if (clk_freq * (sdw_cols[c] - 1) <
bus->params.bandwidth * sdw_cols[c])
continue;
bus->params.row = sdw_rows[r];
bus->params.col = sdw_cols[c];
return 0;
}
}
return -EINVAL;
}
static bool is_clock_scaling_supported(struct sdw_bus *bus)
{
struct sdw_master_runtime *m_rt;
struct sdw_slave_runtime *s_rt;
list_for_each_entry(m_rt, &bus->m_rt_list, bus_node)
list_for_each_entry(s_rt, &m_rt->slave_rt_list, m_rt_node)
if (!is_clock_scaling_supported_by_slave(s_rt->slave))
return false;
return true;
}
/**
* is_lane_connected_to_all_peripherals: Check if the given manager lane connects to all peripherals
* So that all peripherals can use the manager lane.
*
* @m_rt: Manager runtime
* @lane: Lane number
*/
static bool is_lane_connected_to_all_peripherals(struct sdw_master_runtime *m_rt, unsigned int lane)
{
struct sdw_slave_prop *slave_prop;
struct sdw_slave_runtime *s_rt;
int i;
list_for_each_entry(s_rt, &m_rt->slave_rt_list, m_rt_node) {
slave_prop = &s_rt->slave->prop;
for (i = 1; i < SDW_MAX_LANES; i++) {
if (slave_prop->lane_maps[i] == lane) {
dev_dbg(&s_rt->slave->dev,
"M lane %d is connected to P lane %d\n",
lane, i);
break;
}
}
if (i == SDW_MAX_LANES) {
dev_dbg(&s_rt->slave->dev, "M lane %d is not connected\n", lane);
return false;
}
}
return true;
}
static int get_manager_lane(struct sdw_bus *bus, struct sdw_master_runtime *m_rt,
struct sdw_slave_runtime *s_rt, unsigned int curr_dr_freq)
{
struct sdw_slave_prop *slave_prop = &s_rt->slave->prop;
struct sdw_port_runtime *m_p_rt;
unsigned int required_bandwidth;
int m_lane;
int l;
for (l = 1; l < SDW_MAX_LANES; l++) {
if (!slave_prop->lane_maps[l])
continue;
required_bandwidth = 0;
list_for_each_entry(m_p_rt, &m_rt->port_list, port_node) {
required_bandwidth += m_rt->stream->params.rate *
hweight32(m_p_rt->ch_mask) *
m_rt->stream->params.bps;
}
if (required_bandwidth <=
curr_dr_freq - bus->lane_used_bandwidth[l]) {
/* Check if m_lane is connected to all Peripherals */
if (!is_lane_connected_to_all_peripherals(m_rt,
slave_prop->lane_maps[l])) {
dev_dbg(bus->dev,
"Not all Peripherals are connected to M lane %d\n",
slave_prop->lane_maps[l]);
continue;
}
m_lane = slave_prop->lane_maps[l];
dev_dbg(&s_rt->slave->dev, "M lane %d is used\n", m_lane);
bus->lane_used_bandwidth[l] += required_bandwidth;
/*
* Use non-zero manager lane, subtract the lane 0
* bandwidth that is already calculated
*/
bus->params.bandwidth -= required_bandwidth;
return m_lane;
}
}
/* No available multi lane found, only lane 0 can be used */
return 0;
}
/**
* sdw_compute_bus_params: Compute bus parameters
*
* @bus: SDW Bus instance
*/
static int sdw_compute_bus_params(struct sdw_bus *bus)
{
struct sdw_master_prop *mstr_prop = &bus->prop;
struct sdw_slave_prop *slave_prop;
struct sdw_port_runtime *m_p_rt;
struct sdw_port_runtime *s_p_rt;
struct sdw_master_runtime *m_rt;
struct sdw_slave_runtime *s_rt;
unsigned int curr_dr_freq = 0;
int i, l, clk_values, ret;
bool is_gear = false;
int m_lane = 0;
u32 *clk_buf;
if (mstr_prop->num_clk_gears) {
clk_values = mstr_prop->num_clk_gears;
clk_buf = mstr_prop->clk_gears;
is_gear = true;
} else if (mstr_prop->num_clk_freq) {
clk_values = mstr_prop->num_clk_freq;
clk_buf = mstr_prop->clk_freq;
} else {
clk_values = 1;
clk_buf = NULL;
}
/* If dynamic scaling is not supported, don't try higher freq */
if (!is_clock_scaling_supported(bus))
clk_values = 1;
for (i = 0; i < clk_values; i++) {
if (!clk_buf)
curr_dr_freq = bus->params.max_dr_freq;
else
curr_dr_freq = (is_gear) ?
(bus->params.max_dr_freq >> clk_buf[i]) :
clk_buf[i] * SDW_DOUBLE_RATE_FACTOR;
if (curr_dr_freq * (mstr_prop->default_col - 1) >=
bus->params.bandwidth * mstr_prop->default_col)
break;
list_for_each_entry(m_rt, &bus->m_rt_list, bus_node) {
/*
* Get the first s_rt that will be used to find the available lane that
* can be used. No need to check all Peripherals because we can't use
* multi-lane if we can't find any available lane for the first Peripheral.
*/
s_rt = list_first_entry(&m_rt->slave_rt_list,
struct sdw_slave_runtime, m_rt_node);
/*
* Find the available Manager lane that connected to the first Peripheral.
*/
m_lane = get_manager_lane(bus, m_rt, s_rt, curr_dr_freq);
if (m_lane > 0)
goto out;
}
/*
* TODO: Check all the Slave(s) port(s) audio modes and find
* whether given clock rate is supported with glitchless
* transition.
*/
}
if (i == clk_values) {
dev_err(bus->dev, "%s: could not find clock value for bandwidth %d\n",
__func__, bus->params.bandwidth);
return -EINVAL;
}
out:
/* multilane can be used */
if (m_lane > 0) {
/* Set Peripheral lanes */
list_for_each_entry(s_rt, &m_rt->slave_rt_list, m_rt_node) {
slave_prop = &s_rt->slave->prop;
for (l = 1; l < SDW_MAX_LANES; l++) {
if (slave_prop->lane_maps[l] == m_lane) {
list_for_each_entry(s_p_rt, &s_rt->port_list, port_node) {
s_p_rt->lane = l;
dev_dbg(&s_rt->slave->dev,
"Set P lane %d for port %d\n",
l, s_p_rt->num);
}
break;
}
}
}
/*
* Set Manager lanes. Configure the last m_rt in bus->m_rt_list only since
* we don't want to touch other m_rts that are already working.
*/
list_for_each_entry(m_p_rt, &m_rt->port_list, port_node) {
m_p_rt->lane = m_lane;
}
}
if (!mstr_prop->default_frame_rate || !mstr_prop->default_row)
return -EINVAL;
mstr_prop->default_col = curr_dr_freq / mstr_prop->default_frame_rate /
mstr_prop->default_row;
ret = sdw_select_row_col(bus, curr_dr_freq);
if (ret < 0) {
dev_err(bus->dev, "%s: could not find frame configuration for bus dr_freq %d\n",
__func__, curr_dr_freq);
return -EINVAL;
}
bus->params.curr_dr_freq = curr_dr_freq;
return 0;
}
/**
* sdw_compute_params: Compute bus, transport and port parameters
*
* @bus: SDW Bus instance
* @stream: Soundwire stream
*/
int sdw_compute_params(struct sdw_bus *bus, struct sdw_stream_runtime *stream)
{
int ret;
/* Computes clock frequency, frame shape and frame frequency */
ret = sdw_compute_bus_params(bus);
if (ret < 0)
return ret;
/* Compute transport and port params */
ret = sdw_compute_port_params(bus, stream);
if (ret < 0) {
dev_err(bus->dev, "Compute transport params failed: %d\n", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL(sdw_compute_params);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("SoundWire Generic Bandwidth Allocation");