| // SPDX-License-Identifier: (GPL-2.0 OR MIT) | 
 | /* Google virtual Ethernet (gve) driver | 
 |  * | 
 |  * Copyright (C) 2015-2021 Google, Inc. | 
 |  */ | 
 |  | 
 | #include "gve.h" | 
 | #include "gve_adminq.h" | 
 | #include "gve_utils.h" | 
 | #include <linux/etherdevice.h> | 
 |  | 
 | static void gve_rx_free_buffer(struct device *dev, | 
 | 			       struct gve_rx_slot_page_info *page_info, | 
 | 			       union gve_rx_data_slot *data_slot) | 
 | { | 
 | 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) & | 
 | 				      GVE_DATA_SLOT_ADDR_PAGE_MASK); | 
 |  | 
 | 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1); | 
 | 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx) | 
 | { | 
 | 	u32 slots = rx->mask + 1; | 
 | 	int i; | 
 |  | 
 | 	if (rx->data.raw_addressing) { | 
 | 		for (i = 0; i < slots; i++) | 
 | 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i], | 
 | 					   &rx->data.data_ring[i]); | 
 | 	} else { | 
 | 		for (i = 0; i < slots; i++) | 
 | 			page_ref_sub(rx->data.page_info[i].page, | 
 | 				     rx->data.page_info[i].pagecnt_bias - 1); | 
 | 		gve_unassign_qpl(priv, rx->data.qpl->id); | 
 | 		rx->data.qpl = NULL; | 
 | 	} | 
 | 	kvfree(rx->data.page_info); | 
 | 	rx->data.page_info = NULL; | 
 | } | 
 |  | 
 | static void gve_rx_free_ring(struct gve_priv *priv, int idx) | 
 | { | 
 | 	struct gve_rx_ring *rx = &priv->rx[idx]; | 
 | 	struct device *dev = &priv->pdev->dev; | 
 | 	u32 slots = rx->mask + 1; | 
 | 	size_t bytes; | 
 |  | 
 | 	gve_rx_remove_from_block(priv, idx); | 
 |  | 
 | 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt; | 
 | 	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus); | 
 | 	rx->desc.desc_ring = NULL; | 
 |  | 
 | 	dma_free_coherent(dev, sizeof(*rx->q_resources), | 
 | 			  rx->q_resources, rx->q_resources_bus); | 
 | 	rx->q_resources = NULL; | 
 |  | 
 | 	gve_rx_unfill_pages(priv, rx); | 
 |  | 
 | 	bytes = sizeof(*rx->data.data_ring) * slots; | 
 | 	dma_free_coherent(dev, bytes, rx->data.data_ring, | 
 | 			  rx->data.data_bus); | 
 | 	rx->data.data_ring = NULL; | 
 | 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx); | 
 | } | 
 |  | 
 | static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info, | 
 | 			     dma_addr_t addr, struct page *page, __be64 *slot_addr) | 
 | { | 
 | 	page_info->page = page; | 
 | 	page_info->page_offset = 0; | 
 | 	page_info->page_address = page_address(page); | 
 | 	*slot_addr = cpu_to_be64(addr); | 
 | 	/* The page already has 1 ref */ | 
 | 	page_ref_add(page, INT_MAX - 1); | 
 | 	page_info->pagecnt_bias = INT_MAX; | 
 | } | 
 |  | 
 | static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev, | 
 | 			       struct gve_rx_slot_page_info *page_info, | 
 | 			       union gve_rx_data_slot *data_slot) | 
 | { | 
 | 	struct page *page; | 
 | 	dma_addr_t dma; | 
 | 	int err; | 
 |  | 
 | 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE, | 
 | 			     GFP_ATOMIC); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gve_prefill_rx_pages(struct gve_rx_ring *rx) | 
 | { | 
 | 	struct gve_priv *priv = rx->gve; | 
 | 	u32 slots; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	/* Allocate one page per Rx queue slot. Each page is split into two | 
 | 	 * packet buffers, when possible we "page flip" between the two. | 
 | 	 */ | 
 | 	slots = rx->mask + 1; | 
 |  | 
 | 	rx->data.page_info = kvzalloc(slots * | 
 | 				      sizeof(*rx->data.page_info), GFP_KERNEL); | 
 | 	if (!rx->data.page_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!rx->data.raw_addressing) { | 
 | 		rx->data.qpl = gve_assign_rx_qpl(priv); | 
 | 		if (!rx->data.qpl) { | 
 | 			kvfree(rx->data.page_info); | 
 | 			rx->data.page_info = NULL; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < slots; i++) { | 
 | 		if (!rx->data.raw_addressing) { | 
 | 			struct page *page = rx->data.qpl->pages[i]; | 
 | 			dma_addr_t addr = i * PAGE_SIZE; | 
 |  | 
 | 			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page, | 
 | 					    &rx->data.data_ring[i].qpl_offset); | 
 | 			continue; | 
 | 		} | 
 | 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i], | 
 | 					  &rx->data.data_ring[i]); | 
 | 		if (err) | 
 | 			goto alloc_err; | 
 | 	} | 
 |  | 
 | 	return slots; | 
 | alloc_err: | 
 | 	while (i--) | 
 | 		gve_rx_free_buffer(&priv->pdev->dev, | 
 | 				   &rx->data.page_info[i], | 
 | 				   &rx->data.data_ring[i]); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx) | 
 | { | 
 | 	ctx->curr_frag_cnt = 0; | 
 | 	ctx->total_expected_size = 0; | 
 | 	ctx->expected_frag_cnt = 0; | 
 | 	ctx->skb_head = NULL; | 
 | 	ctx->skb_tail = NULL; | 
 | 	ctx->reuse_frags = false; | 
 | } | 
 |  | 
 | static int gve_rx_alloc_ring(struct gve_priv *priv, int idx) | 
 | { | 
 | 	struct gve_rx_ring *rx = &priv->rx[idx]; | 
 | 	struct device *hdev = &priv->pdev->dev; | 
 | 	u32 slots, npages; | 
 | 	int filled_pages; | 
 | 	size_t bytes; | 
 | 	int err; | 
 |  | 
 | 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n"); | 
 | 	/* Make sure everything is zeroed to start with */ | 
 | 	memset(rx, 0, sizeof(*rx)); | 
 |  | 
 | 	rx->gve = priv; | 
 | 	rx->q_num = idx; | 
 |  | 
 | 	slots = priv->rx_data_slot_cnt; | 
 | 	rx->mask = slots - 1; | 
 | 	rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT; | 
 |  | 
 | 	/* alloc rx data ring */ | 
 | 	bytes = sizeof(*rx->data.data_ring) * slots; | 
 | 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes, | 
 | 						&rx->data.data_bus, | 
 | 						GFP_KERNEL); | 
 | 	if (!rx->data.data_ring) | 
 | 		return -ENOMEM; | 
 | 	filled_pages = gve_prefill_rx_pages(rx); | 
 | 	if (filled_pages < 0) { | 
 | 		err = -ENOMEM; | 
 | 		goto abort_with_slots; | 
 | 	} | 
 | 	rx->fill_cnt = filled_pages; | 
 | 	/* Ensure data ring slots (packet buffers) are visible. */ | 
 | 	dma_wmb(); | 
 |  | 
 | 	/* Alloc gve_queue_resources */ | 
 | 	rx->q_resources = | 
 | 		dma_alloc_coherent(hdev, | 
 | 				   sizeof(*rx->q_resources), | 
 | 				   &rx->q_resources_bus, | 
 | 				   GFP_KERNEL); | 
 | 	if (!rx->q_resources) { | 
 | 		err = -ENOMEM; | 
 | 		goto abort_filled; | 
 | 	} | 
 | 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx, | 
 | 		  (unsigned long)rx->data.data_bus); | 
 |  | 
 | 	/* alloc rx desc ring */ | 
 | 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt; | 
 | 	npages = bytes / PAGE_SIZE; | 
 | 	if (npages * PAGE_SIZE != bytes) { | 
 | 		err = -EIO; | 
 | 		goto abort_with_q_resources; | 
 | 	} | 
 |  | 
 | 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus, | 
 | 						GFP_KERNEL); | 
 | 	if (!rx->desc.desc_ring) { | 
 | 		err = -ENOMEM; | 
 | 		goto abort_with_q_resources; | 
 | 	} | 
 | 	rx->cnt = 0; | 
 | 	rx->db_threshold = priv->rx_desc_cnt / 2; | 
 | 	rx->desc.seqno = 1; | 
 |  | 
 | 	/* Allocating half-page buffers allows page-flipping which is faster | 
 | 	 * than copying or allocating new pages. | 
 | 	 */ | 
 | 	rx->packet_buffer_size = PAGE_SIZE / 2; | 
 | 	gve_rx_ctx_clear(&rx->ctx); | 
 | 	gve_rx_add_to_block(priv, idx); | 
 |  | 
 | 	return 0; | 
 |  | 
 | abort_with_q_resources: | 
 | 	dma_free_coherent(hdev, sizeof(*rx->q_resources), | 
 | 			  rx->q_resources, rx->q_resources_bus); | 
 | 	rx->q_resources = NULL; | 
 | abort_filled: | 
 | 	gve_rx_unfill_pages(priv, rx); | 
 | abort_with_slots: | 
 | 	bytes = sizeof(*rx->data.data_ring) * slots; | 
 | 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus); | 
 | 	rx->data.data_ring = NULL; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int gve_rx_alloc_rings(struct gve_priv *priv) | 
 | { | 
 | 	int err = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->rx_cfg.num_queues; i++) { | 
 | 		err = gve_rx_alloc_ring(priv, i); | 
 | 		if (err) { | 
 | 			netif_err(priv, drv, priv->dev, | 
 | 				  "Failed to alloc rx ring=%d: err=%d\n", | 
 | 				  i, err); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	/* Unallocate if there was an error */ | 
 | 	if (err) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < i; j++) | 
 | 			gve_rx_free_ring(priv, j); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | void gve_rx_free_rings_gqi(struct gve_priv *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->rx_cfg.num_queues; i++) | 
 | 		gve_rx_free_ring(priv, i); | 
 | } | 
 |  | 
 | void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx) | 
 | { | 
 | 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index); | 
 |  | 
 | 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]); | 
 | } | 
 |  | 
 | static enum pkt_hash_types gve_rss_type(__be16 pkt_flags) | 
 | { | 
 | 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP))) | 
 | 		return PKT_HASH_TYPE_L4; | 
 | 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6)) | 
 | 		return PKT_HASH_TYPE_L3; | 
 | 	return PKT_HASH_TYPE_L2; | 
 | } | 
 |  | 
 | static u16 gve_rx_ctx_padding(struct gve_rx_ctx *ctx) | 
 | { | 
 | 	return (ctx->curr_frag_cnt == 0) ? GVE_RX_PAD : 0; | 
 | } | 
 |  | 
 | static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi, | 
 | 					struct gve_rx_slot_page_info *page_info, | 
 | 					u16 packet_buffer_size, u16 len, | 
 | 					struct gve_rx_ctx *ctx) | 
 | { | 
 | 	u32 offset = page_info->page_offset +  gve_rx_ctx_padding(ctx); | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	if (!ctx->skb_head) | 
 | 		ctx->skb_head = napi_get_frags(napi); | 
 |  | 
 | 	if (unlikely(!ctx->skb_head)) | 
 | 		return NULL; | 
 |  | 
 | 	skb = ctx->skb_head; | 
 | 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page_info->page, | 
 | 			offset, len, packet_buffer_size); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr) | 
 | { | 
 | 	const __be64 offset = cpu_to_be64(PAGE_SIZE / 2); | 
 |  | 
 | 	/* "flip" to other packet buffer on this page */ | 
 | 	page_info->page_offset ^= PAGE_SIZE / 2; | 
 | 	*(slot_addr) ^= offset; | 
 | } | 
 |  | 
 | static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info) | 
 | { | 
 | 	int pagecount = page_count(page_info->page); | 
 |  | 
 | 	/* This page is not being used by any SKBs - reuse */ | 
 | 	if (pagecount == page_info->pagecnt_bias) | 
 | 		return 1; | 
 | 	/* This page is still being used by an SKB - we can't reuse */ | 
 | 	else if (pagecount > page_info->pagecnt_bias) | 
 | 		return 0; | 
 | 	WARN(pagecount < page_info->pagecnt_bias, | 
 | 	     "Pagecount should never be less than the bias."); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static struct sk_buff * | 
 | gve_rx_raw_addressing(struct device *dev, struct net_device *netdev, | 
 | 		      struct gve_rx_slot_page_info *page_info, u16 len, | 
 | 		      struct napi_struct *napi, | 
 | 		      union gve_rx_data_slot *data_slot, | 
 | 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx) | 
 | { | 
 | 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx); | 
 |  | 
 | 	if (!skb) | 
 | 		return NULL; | 
 |  | 
 | 	/* Optimistically stop the kernel from freeing the page. | 
 | 	 * We will check again in refill to determine if we need to alloc a | 
 | 	 * new page. | 
 | 	 */ | 
 | 	gve_dec_pagecnt_bias(page_info); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static struct sk_buff * | 
 | gve_rx_qpl(struct device *dev, struct net_device *netdev, | 
 | 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info, | 
 | 	   u16 len, struct napi_struct *napi, | 
 | 	   union gve_rx_data_slot *data_slot) | 
 | { | 
 | 	struct gve_rx_ctx *ctx = &rx->ctx; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	/* if raw_addressing mode is not enabled gvnic can only receive into | 
 | 	 * registered segments. If the buffer can't be recycled, our only | 
 | 	 * choice is to copy the data out of it so that we can return it to the | 
 | 	 * device. | 
 | 	 */ | 
 | 	if (ctx->reuse_frags) { | 
 | 		skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx); | 
 | 		/* No point in recycling if we didn't get the skb */ | 
 | 		if (skb) { | 
 | 			/* Make sure that the page isn't freed. */ | 
 | 			gve_dec_pagecnt_bias(page_info); | 
 | 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset); | 
 | 		} | 
 | 	} else { | 
 | 		const u16 padding = gve_rx_ctx_padding(ctx); | 
 |  | 
 | 		skb = gve_rx_copy(netdev, napi, page_info, len, padding, ctx); | 
 | 		if (skb) { | 
 | 			u64_stats_update_begin(&rx->statss); | 
 | 			rx->rx_frag_copy_cnt++; | 
 | 			u64_stats_update_end(&rx->statss); | 
 | 		} | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x)) | 
 | static u16 gve_rx_get_fragment_size(struct gve_rx_ctx *ctx, struct gve_rx_desc *desc) | 
 | { | 
 | 	return be16_to_cpu(desc->len) - gve_rx_ctx_padding(ctx); | 
 | } | 
 |  | 
 | static bool gve_rx_ctx_init(struct gve_rx_ctx *ctx, struct gve_rx_ring *rx) | 
 | { | 
 | 	bool qpl_mode = !rx->data.raw_addressing, packet_size_error = false; | 
 | 	bool buffer_error = false, desc_error = false, seqno_error = false; | 
 | 	struct gve_rx_slot_page_info *page_info; | 
 | 	struct gve_priv *priv = rx->gve; | 
 | 	u32 idx = rx->cnt & rx->mask; | 
 | 	bool reuse_frags, can_flip; | 
 | 	struct gve_rx_desc *desc; | 
 | 	u16 packet_size = 0; | 
 | 	u16 n_frags = 0; | 
 | 	int recycle; | 
 |  | 
 | 	/** In QPL mode, we only flip buffers when all buffers containing the packet | 
 | 	 * can be flipped. RDA can_flip decisions will be made later, per frag. | 
 | 	 */ | 
 | 	can_flip = qpl_mode; | 
 | 	reuse_frags = can_flip; | 
 | 	do { | 
 | 		u16 frag_size; | 
 |  | 
 | 		n_frags++; | 
 | 		desc = &rx->desc.desc_ring[idx]; | 
 | 		desc_error = unlikely(desc->flags_seq & GVE_RXF_ERR) || desc_error; | 
 | 		if (GVE_SEQNO(desc->flags_seq) != rx->desc.seqno) { | 
 | 			seqno_error = true; | 
 | 			netdev_warn(priv->dev, | 
 | 				    "RX seqno error: want=%d, got=%d, dropping packet and scheduling reset.", | 
 | 				    rx->desc.seqno, GVE_SEQNO(desc->flags_seq)); | 
 | 		} | 
 | 		frag_size = be16_to_cpu(desc->len); | 
 | 		packet_size += frag_size; | 
 | 		if (frag_size > rx->packet_buffer_size) { | 
 | 			packet_size_error = true; | 
 | 			netdev_warn(priv->dev, | 
 | 				    "RX fragment error: packet_buffer_size=%d, frag_size=%d, dropping packet.", | 
 | 				    rx->packet_buffer_size, be16_to_cpu(desc->len)); | 
 | 		} | 
 | 		page_info = &rx->data.page_info[idx]; | 
 | 		if (can_flip) { | 
 | 			recycle = gve_rx_can_recycle_buffer(page_info); | 
 | 			reuse_frags = reuse_frags && recycle > 0; | 
 | 			buffer_error = buffer_error || unlikely(recycle < 0); | 
 | 		} | 
 | 		idx = (idx + 1) & rx->mask; | 
 | 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno); | 
 | 	} while (GVE_PKTCONT_BIT_IS_SET(desc->flags_seq)); | 
 |  | 
 | 	prefetch(rx->desc.desc_ring + idx); | 
 |  | 
 | 	ctx->curr_frag_cnt = 0; | 
 | 	ctx->total_expected_size = packet_size - GVE_RX_PAD; | 
 | 	ctx->expected_frag_cnt = n_frags; | 
 | 	ctx->skb_head = NULL; | 
 | 	ctx->reuse_frags = reuse_frags; | 
 |  | 
 | 	if (ctx->expected_frag_cnt > 1) { | 
 | 		u64_stats_update_begin(&rx->statss); | 
 | 		rx->rx_cont_packet_cnt++; | 
 | 		u64_stats_update_end(&rx->statss); | 
 | 	} | 
 | 	if (ctx->total_expected_size > priv->rx_copybreak && !ctx->reuse_frags && qpl_mode) { | 
 | 		u64_stats_update_begin(&rx->statss); | 
 | 		rx->rx_copied_pkt++; | 
 | 		u64_stats_update_end(&rx->statss); | 
 | 	} | 
 |  | 
 | 	if (unlikely(buffer_error || seqno_error || packet_size_error)) { | 
 | 		gve_schedule_reset(priv); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (unlikely(desc_error)) { | 
 | 		u64_stats_update_begin(&rx->statss); | 
 | 		rx->rx_desc_err_dropped_pkt++; | 
 | 		u64_stats_update_end(&rx->statss); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx, | 
 | 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi, | 
 | 				  u16 len, union gve_rx_data_slot *data_slot) | 
 | { | 
 | 	struct net_device *netdev = priv->dev; | 
 | 	struct gve_rx_ctx *ctx = &rx->ctx; | 
 | 	struct sk_buff *skb = NULL; | 
 |  | 
 | 	if (len <= priv->rx_copybreak && ctx->expected_frag_cnt == 1) { | 
 | 		/* Just copy small packets */ | 
 | 		skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD, ctx); | 
 | 		if (skb) { | 
 | 			u64_stats_update_begin(&rx->statss); | 
 | 			rx->rx_copied_pkt++; | 
 | 			rx->rx_frag_copy_cnt++; | 
 | 			rx->rx_copybreak_pkt++; | 
 | 			u64_stats_update_end(&rx->statss); | 
 | 		} | 
 | 	} else { | 
 | 		if (rx->data.raw_addressing) { | 
 | 			int recycle = gve_rx_can_recycle_buffer(page_info); | 
 |  | 
 | 			if (unlikely(recycle < 0)) { | 
 | 				gve_schedule_reset(priv); | 
 | 				return NULL; | 
 | 			} | 
 | 			page_info->can_flip = recycle; | 
 | 			if (page_info->can_flip) { | 
 | 				u64_stats_update_begin(&rx->statss); | 
 | 				rx->rx_frag_flip_cnt++; | 
 | 				u64_stats_update_end(&rx->statss); | 
 | 			} | 
 | 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev, | 
 | 						    page_info, len, napi, | 
 | 						    data_slot, | 
 | 						    rx->packet_buffer_size, ctx); | 
 | 		} else { | 
 | 			if (ctx->reuse_frags) { | 
 | 				u64_stats_update_begin(&rx->statss); | 
 | 				rx->rx_frag_flip_cnt++; | 
 | 				u64_stats_update_end(&rx->statss); | 
 | 			} | 
 | 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx, | 
 | 					 page_info, len, napi, data_slot); | 
 | 		} | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | static bool gve_rx(struct gve_rx_ring *rx, netdev_features_t feat, | 
 | 		   u64 *packet_size_bytes, u32 *work_done) | 
 | { | 
 | 	struct gve_rx_slot_page_info *page_info; | 
 | 	struct gve_rx_ctx *ctx = &rx->ctx; | 
 | 	union gve_rx_data_slot *data_slot; | 
 | 	struct gve_priv *priv = rx->gve; | 
 | 	struct gve_rx_desc *first_desc; | 
 | 	struct sk_buff *skb = NULL; | 
 | 	struct gve_rx_desc *desc; | 
 | 	struct napi_struct *napi; | 
 | 	dma_addr_t page_bus; | 
 | 	u32 work_cnt = 0; | 
 | 	void *va; | 
 | 	u32 idx; | 
 | 	u16 len; | 
 |  | 
 | 	idx = rx->cnt & rx->mask; | 
 | 	first_desc = &rx->desc.desc_ring[idx]; | 
 | 	desc = first_desc; | 
 | 	napi = &priv->ntfy_blocks[rx->ntfy_id].napi; | 
 |  | 
 | 	if (unlikely(!gve_rx_ctx_init(ctx, rx))) | 
 | 		goto skb_alloc_fail; | 
 |  | 
 | 	while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) { | 
 | 		/* Prefetch two packet buffers ahead, we will need it soon. */ | 
 | 		page_info = &rx->data.page_info[(idx + 2) & rx->mask]; | 
 | 		va = page_info->page_address + page_info->page_offset; | 
 |  | 
 | 		prefetch(page_info->page); /* Kernel page struct. */ | 
 | 		prefetch(va);              /* Packet header. */ | 
 | 		prefetch(va + 64);         /* Next cacheline too. */ | 
 |  | 
 | 		len = gve_rx_get_fragment_size(ctx, desc); | 
 |  | 
 | 		page_info = &rx->data.page_info[idx]; | 
 | 		data_slot = &rx->data.data_ring[idx]; | 
 | 		page_bus = rx->data.raw_addressing ? | 
 | 			   be64_to_cpu(data_slot->addr) - page_info->page_offset : | 
 | 			   rx->data.qpl->page_buses[idx]; | 
 | 		dma_sync_single_for_cpu(&priv->pdev->dev, page_bus, PAGE_SIZE, DMA_FROM_DEVICE); | 
 |  | 
 | 		skb = gve_rx_skb(priv, rx, page_info, napi, len, data_slot); | 
 | 		if (!skb) { | 
 | 			u64_stats_update_begin(&rx->statss); | 
 | 			rx->rx_skb_alloc_fail++; | 
 | 			u64_stats_update_end(&rx->statss); | 
 | 			goto skb_alloc_fail; | 
 | 		} | 
 |  | 
 | 		ctx->curr_frag_cnt++; | 
 | 		rx->cnt++; | 
 | 		idx = rx->cnt & rx->mask; | 
 | 		work_cnt++; | 
 | 		desc = &rx->desc.desc_ring[idx]; | 
 | 	} | 
 |  | 
 | 	if (likely(feat & NETIF_F_RXCSUM)) { | 
 | 		/* NIC passes up the partial sum */ | 
 | 		if (first_desc->csum) | 
 | 			skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 		else | 
 | 			skb->ip_summed = CHECKSUM_NONE; | 
 | 		skb->csum = csum_unfold(first_desc->csum); | 
 | 	} | 
 |  | 
 | 	/* parse flags & pass relevant info up */ | 
 | 	if (likely(feat & NETIF_F_RXHASH) && | 
 | 	    gve_needs_rss(first_desc->flags_seq)) | 
 | 		skb_set_hash(skb, be32_to_cpu(first_desc->rss_hash), | 
 | 			     gve_rss_type(first_desc->flags_seq)); | 
 |  | 
 | 	*packet_size_bytes = skb->len + (skb->protocol ? ETH_HLEN : 0); | 
 | 	*work_done = work_cnt; | 
 | 	skb_record_rx_queue(skb, rx->q_num); | 
 | 	if (skb_is_nonlinear(skb)) | 
 | 		napi_gro_frags(napi); | 
 | 	else | 
 | 		napi_gro_receive(napi, skb); | 
 |  | 
 | 	gve_rx_ctx_clear(ctx); | 
 | 	return true; | 
 |  | 
 | skb_alloc_fail: | 
 | 	if (napi->skb) | 
 | 		napi_free_frags(napi); | 
 | 	*packet_size_bytes = 0; | 
 | 	*work_done = ctx->expected_frag_cnt; | 
 | 	while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) { | 
 | 		rx->cnt++; | 
 | 		ctx->curr_frag_cnt++; | 
 | 	} | 
 | 	gve_rx_ctx_clear(ctx); | 
 | 	return false; | 
 | } | 
 |  | 
 | bool gve_rx_work_pending(struct gve_rx_ring *rx) | 
 | { | 
 | 	struct gve_rx_desc *desc; | 
 | 	__be16 flags_seq; | 
 | 	u32 next_idx; | 
 |  | 
 | 	next_idx = rx->cnt & rx->mask; | 
 | 	desc = rx->desc.desc_ring + next_idx; | 
 |  | 
 | 	flags_seq = desc->flags_seq; | 
 |  | 
 | 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno); | 
 | } | 
 |  | 
 | static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx) | 
 | { | 
 | 	int refill_target = rx->mask + 1; | 
 | 	u32 fill_cnt = rx->fill_cnt; | 
 |  | 
 | 	while (fill_cnt - rx->cnt < refill_target) { | 
 | 		struct gve_rx_slot_page_info *page_info; | 
 | 		u32 idx = fill_cnt & rx->mask; | 
 |  | 
 | 		page_info = &rx->data.page_info[idx]; | 
 | 		if (page_info->can_flip) { | 
 | 			/* The other half of the page is free because it was | 
 | 			 * free when we processed the descriptor. Flip to it. | 
 | 			 */ | 
 | 			union gve_rx_data_slot *data_slot = | 
 | 						&rx->data.data_ring[idx]; | 
 |  | 
 | 			gve_rx_flip_buff(page_info, &data_slot->addr); | 
 | 			page_info->can_flip = 0; | 
 | 		} else { | 
 | 			/* It is possible that the networking stack has already | 
 | 			 * finished processing all outstanding packets in the buffer | 
 | 			 * and it can be reused. | 
 | 			 * Flipping is unnecessary here - if the networking stack still | 
 | 			 * owns half the page it is impossible to tell which half. Either | 
 | 			 * the whole page is free or it needs to be replaced. | 
 | 			 */ | 
 | 			int recycle = gve_rx_can_recycle_buffer(page_info); | 
 |  | 
 | 			if (recycle < 0) { | 
 | 				if (!rx->data.raw_addressing) | 
 | 					gve_schedule_reset(priv); | 
 | 				return false; | 
 | 			} | 
 | 			if (!recycle) { | 
 | 				/* We can't reuse the buffer - alloc a new one*/ | 
 | 				union gve_rx_data_slot *data_slot = | 
 | 						&rx->data.data_ring[idx]; | 
 | 				struct device *dev = &priv->pdev->dev; | 
 | 				gve_rx_free_buffer(dev, page_info, data_slot); | 
 | 				page_info->page = NULL; | 
 | 				if (gve_rx_alloc_buffer(priv, dev, page_info, | 
 | 							data_slot)) { | 
 | 					u64_stats_update_begin(&rx->statss); | 
 | 					rx->rx_buf_alloc_fail++; | 
 | 					u64_stats_update_end(&rx->statss); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		fill_cnt++; | 
 | 	} | 
 | 	rx->fill_cnt = fill_cnt; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget, | 
 | 			     netdev_features_t feat) | 
 | { | 
 | 	u32 work_done = 0, total_packet_cnt = 0, ok_packet_cnt = 0; | 
 | 	struct gve_priv *priv = rx->gve; | 
 | 	u32 idx = rx->cnt & rx->mask; | 
 | 	struct gve_rx_desc *desc; | 
 | 	u64 bytes = 0; | 
 |  | 
 | 	desc = &rx->desc.desc_ring[idx]; | 
 | 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) && | 
 | 	       work_done < budget) { | 
 | 		u64 packet_size_bytes = 0; | 
 | 		u32 work_cnt = 0; | 
 | 		bool dropped; | 
 |  | 
 | 		netif_info(priv, rx_status, priv->dev, | 
 | 			   "[%d] idx=%d desc=%p desc->flags_seq=0x%x\n", | 
 | 			   rx->q_num, idx, desc, desc->flags_seq); | 
 | 		netif_info(priv, rx_status, priv->dev, | 
 | 			   "[%d] seqno=%d rx->desc.seqno=%d\n", | 
 | 			   rx->q_num, GVE_SEQNO(desc->flags_seq), | 
 | 			   rx->desc.seqno); | 
 |  | 
 | 		dropped = !gve_rx(rx, feat, &packet_size_bytes, &work_cnt); | 
 | 		if (!dropped) { | 
 | 			bytes += packet_size_bytes; | 
 | 			ok_packet_cnt++; | 
 | 		} | 
 | 		total_packet_cnt++; | 
 | 		idx = rx->cnt & rx->mask; | 
 | 		desc = &rx->desc.desc_ring[idx]; | 
 | 		work_done += work_cnt; | 
 | 	} | 
 |  | 
 | 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold) | 
 | 		return 0; | 
 |  | 
 | 	if (work_done) { | 
 | 		u64_stats_update_begin(&rx->statss); | 
 | 		rx->rpackets += ok_packet_cnt; | 
 | 		rx->rbytes += bytes; | 
 | 		u64_stats_update_end(&rx->statss); | 
 | 	} | 
 |  | 
 | 	/* restock ring slots */ | 
 | 	if (!rx->data.raw_addressing) { | 
 | 		/* In QPL mode buffs are refilled as the desc are processed */ | 
 | 		rx->fill_cnt += work_done; | 
 | 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) { | 
 | 		/* In raw addressing mode buffs are only refilled if the avail | 
 | 		 * falls below a threshold. | 
 | 		 */ | 
 | 		if (!gve_rx_refill_buffers(priv, rx)) | 
 | 			return 0; | 
 |  | 
 | 		/* If we were not able to completely refill buffers, we'll want | 
 | 		 * to schedule this queue for work again to refill buffers. | 
 | 		 */ | 
 | 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) { | 
 | 			gve_rx_write_doorbell(priv, rx); | 
 | 			return budget; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	gve_rx_write_doorbell(priv, rx); | 
 | 	return total_packet_cnt; | 
 | } | 
 |  | 
 | int gve_rx_poll(struct gve_notify_block *block, int budget) | 
 | { | 
 | 	struct gve_rx_ring *rx = block->rx; | 
 | 	netdev_features_t feat; | 
 | 	int work_done = 0; | 
 |  | 
 | 	feat = block->napi.dev->features; | 
 |  | 
 | 	/* If budget is 0, do all the work */ | 
 | 	if (budget == 0) | 
 | 		budget = INT_MAX; | 
 |  | 
 | 	if (budget > 0) | 
 | 		work_done = gve_clean_rx_done(rx, budget, feat); | 
 |  | 
 | 	return work_done; | 
 | } |