|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2018 Solarflare Communications Inc. | 
|  | * Copyright 2019-2022 Xilinx Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include "ef100_nic.h" | 
|  | #include "efx_common.h" | 
|  | #include "efx_channels.h" | 
|  | #include "io.h" | 
|  | #include "selftest.h" | 
|  | #include "ef100_regs.h" | 
|  | #include "mcdi.h" | 
|  | #include "mcdi_pcol.h" | 
|  | #include "mcdi_port_common.h" | 
|  | #include "mcdi_functions.h" | 
|  | #include "mcdi_filters.h" | 
|  | #include "ef100_rx.h" | 
|  | #include "ef100_tx.h" | 
|  | #include "ef100_sriov.h" | 
|  | #include "ef100_netdev.h" | 
|  | #include "tc.h" | 
|  | #include "mae.h" | 
|  | #include "rx_common.h" | 
|  |  | 
|  | #define EF100_MAX_VIS 4096 | 
|  | #define EF100_NUM_MCDI_BUFFERS	1 | 
|  | #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) | 
|  |  | 
|  | #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) | 
|  |  | 
|  | /*	MCDI | 
|  | */ | 
|  | static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | if (dma_addr) | 
|  | *dma_addr = nic_data->mcdi_buf.dma_addr + | 
|  | bufid * ALIGN(MCDI_BUF_LEN, 256); | 
|  | return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); | 
|  | } | 
|  |  | 
|  | static int ef100_get_warm_boot_count(struct efx_nic *efx) | 
|  | { | 
|  | efx_dword_t reg; | 
|  |  | 
|  | efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); | 
|  |  | 
|  | if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { | 
|  | netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); | 
|  | efx->state = STATE_DISABLED; | 
|  | return -ENETDOWN; | 
|  | } else { | 
|  | return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? | 
|  | EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ef100_mcdi_request(struct efx_nic *efx, | 
|  | const efx_dword_t *hdr, size_t hdr_len, | 
|  | const efx_dword_t *sdu, size_t sdu_len) | 
|  | { | 
|  | dma_addr_t dma_addr; | 
|  | u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); | 
|  |  | 
|  | memcpy(pdu, hdr, hdr_len); | 
|  | memcpy(pdu + hdr_len, sdu, sdu_len); | 
|  | wmb(); | 
|  |  | 
|  | /* The hardware provides 'low' and 'high' (doorbell) registers | 
|  | * for passing the 64-bit address of an MCDI request to | 
|  | * firmware.  However the dwords are swapped by firmware.  The | 
|  | * least significant bits of the doorbell are then 0 for all | 
|  | * MCDI requests due to alignment. | 
|  | */ | 
|  | _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD)); | 
|  | _efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD)); | 
|  | } | 
|  |  | 
|  | static bool ef100_mcdi_poll_response(struct efx_nic *efx) | 
|  | { | 
|  | const efx_dword_t hdr = | 
|  | *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); | 
|  |  | 
|  | rmb(); | 
|  | return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); | 
|  | } | 
|  |  | 
|  | static void ef100_mcdi_read_response(struct efx_nic *efx, | 
|  | efx_dword_t *outbuf, size_t offset, | 
|  | size_t outlen) | 
|  | { | 
|  | const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); | 
|  |  | 
|  | memcpy(outbuf, pdu + offset, outlen); | 
|  | } | 
|  |  | 
|  | static int ef100_mcdi_poll_reboot(struct efx_nic *efx) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | int rc; | 
|  |  | 
|  | rc = ef100_get_warm_boot_count(efx); | 
|  | if (rc < 0) { | 
|  | /* The firmware is presumably in the process of | 
|  | * rebooting.  However, we are supposed to report each | 
|  | * reboot just once, so we must only do that once we | 
|  | * can read and store the updated warm boot count. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rc == nic_data->warm_boot_count) | 
|  | return 0; | 
|  |  | 
|  | nic_data->warm_boot_count = rc; | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void ef100_mcdi_reboot_detected(struct efx_nic *efx) | 
|  | { | 
|  | } | 
|  |  | 
|  | /*	MCDI calls | 
|  | */ | 
|  | static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) | 
|  | return -EIO; | 
|  |  | 
|  | ether_addr_copy(mac_address, | 
|  | MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int efx_ef100_init_datapath_caps(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | u8 vi_window_mode; | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "unable to read datapath firmware capabilities\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | nic_data->datapath_caps = MCDI_DWORD(outbuf, | 
|  | GET_CAPABILITIES_OUT_FLAGS1); | 
|  | nic_data->datapath_caps2 = MCDI_DWORD(outbuf, | 
|  | GET_CAPABILITIES_V2_OUT_FLAGS2); | 
|  | if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) | 
|  | nic_data->datapath_caps3 = 0; | 
|  | else | 
|  | nic_data->datapath_caps3 = MCDI_DWORD(outbuf, | 
|  | GET_CAPABILITIES_V7_OUT_FLAGS3); | 
|  |  | 
|  | vi_window_mode = MCDI_BYTE(outbuf, | 
|  | GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); | 
|  | rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) { | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL | | 
|  | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | | 
|  | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM; | 
|  |  | 
|  | net_dev->features |= tso; | 
|  | net_dev->hw_features |= tso; | 
|  | net_dev->hw_enc_features |= tso; | 
|  | /* EF100 HW can only offload outer checksums if they are UDP, | 
|  | * so for GRE_CSUM we have to use GSO_PARTIAL. | 
|  | */ | 
|  | net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; | 
|  | } | 
|  | efx->num_mac_stats = MCDI_WORD(outbuf, | 
|  | GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "firmware reports num_mac_stats = %u\n", | 
|  | efx->num_mac_stats); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*	Event handling | 
|  | */ | 
|  | static int ef100_ev_probe(struct efx_channel *channel) | 
|  | { | 
|  | /* Allocate an extra descriptor for the QMDA status completion entry */ | 
|  | return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, | 
|  | (channel->eventq_mask + 2) * | 
|  | sizeof(efx_qword_t), | 
|  | GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static int ef100_ev_init(struct efx_channel *channel) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = channel->efx->nic_data; | 
|  |  | 
|  | /* initial phase is 0 */ | 
|  | clear_bit(channel->channel, nic_data->evq_phases); | 
|  |  | 
|  | return efx_mcdi_ev_init(channel, false, false); | 
|  | } | 
|  |  | 
|  | static void ef100_ev_read_ack(struct efx_channel *channel) | 
|  | { | 
|  | efx_dword_t evq_prime; | 
|  |  | 
|  | EFX_POPULATE_DWORD_2(evq_prime, | 
|  | ERF_GZ_EVQ_ID, channel->channel, | 
|  | ERF_GZ_IDX, channel->eventq_read_ptr & | 
|  | channel->eventq_mask); | 
|  |  | 
|  | efx_writed(channel->efx, &evq_prime, | 
|  | efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); | 
|  | } | 
|  |  | 
|  | #define EFX_NAPI_MAX_TX 512 | 
|  |  | 
|  | static int ef100_ev_process(struct efx_channel *channel, int quota) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct ef100_nic_data *nic_data; | 
|  | bool evq_phase, old_evq_phase; | 
|  | unsigned int read_ptr; | 
|  | efx_qword_t *p_event; | 
|  | int spent_tx = 0; | 
|  | int spent = 0; | 
|  | bool ev_phase; | 
|  | int ev_type; | 
|  |  | 
|  | if (unlikely(!channel->enabled)) | 
|  | return 0; | 
|  |  | 
|  | nic_data = efx->nic_data; | 
|  | evq_phase = test_bit(channel->channel, nic_data->evq_phases); | 
|  | old_evq_phase = evq_phase; | 
|  | read_ptr = channel->eventq_read_ptr; | 
|  | BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); | 
|  |  | 
|  | while (spent < quota) { | 
|  | p_event = efx_event(channel, read_ptr); | 
|  |  | 
|  | ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); | 
|  | if (ev_phase != evq_phase) | 
|  | break; | 
|  |  | 
|  | netif_vdbg(efx, drv, efx->net_dev, | 
|  | "processing event on %d " EFX_QWORD_FMT "\n", | 
|  | channel->channel, EFX_QWORD_VAL(*p_event)); | 
|  |  | 
|  | ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); | 
|  |  | 
|  | switch (ev_type) { | 
|  | case ESE_GZ_EF100_EV_RX_PKTS: | 
|  | efx_ef100_ev_rx(channel, p_event); | 
|  | ++spent; | 
|  | break; | 
|  | case ESE_GZ_EF100_EV_MCDI: | 
|  | efx_mcdi_process_event(channel, p_event); | 
|  | break; | 
|  | case ESE_GZ_EF100_EV_TX_COMPLETION: | 
|  | spent_tx += ef100_ev_tx(channel, p_event); | 
|  | if (spent_tx >= EFX_NAPI_MAX_TX) | 
|  | spent = quota; | 
|  | break; | 
|  | case ESE_GZ_EF100_EV_DRIVER: | 
|  | netif_info(efx, drv, efx->net_dev, | 
|  | "Driver initiated event " EFX_QWORD_FMT "\n", | 
|  | EFX_QWORD_VAL(*p_event)); | 
|  | break; | 
|  | default: | 
|  | netif_info(efx, drv, efx->net_dev, | 
|  | "Unhandled event " EFX_QWORD_FMT "\n", | 
|  | EFX_QWORD_VAL(*p_event)); | 
|  | } | 
|  |  | 
|  | ++read_ptr; | 
|  | if ((read_ptr & channel->eventq_mask) == 0) | 
|  | evq_phase = !evq_phase; | 
|  | } | 
|  |  | 
|  | channel->eventq_read_ptr = read_ptr; | 
|  | if (evq_phase != old_evq_phase) | 
|  | change_bit(channel->channel, nic_data->evq_phases); | 
|  |  | 
|  | return spent; | 
|  | } | 
|  |  | 
|  | static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_msi_context *context = dev_id; | 
|  | struct efx_nic *efx = context->efx; | 
|  |  | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); | 
|  |  | 
|  | if (likely(READ_ONCE(efx->irq_soft_enabled))) { | 
|  | /* Note test interrupts */ | 
|  | if (context->index == efx->irq_level) | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  |  | 
|  | /* Schedule processing of the channel */ | 
|  | efx_schedule_channel_irq(efx->channel[context->index]); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | int ef100_phy_probe(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_phy_data *phy_data; | 
|  | int rc; | 
|  |  | 
|  | /* Probe for the PHY */ | 
|  | efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); | 
|  | if (!efx->phy_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Populate driver and ethtool settings */ | 
|  | phy_data = efx->phy_data; | 
|  | mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, | 
|  | efx->link_advertising); | 
|  | efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, | 
|  | false); | 
|  |  | 
|  | /* Default to Autonegotiated flow control if the PHY supports it */ | 
|  | efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; | 
|  | if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) | 
|  | efx->wanted_fc |= EFX_FC_AUTO; | 
|  | efx_link_set_wanted_fc(efx, efx->wanted_fc); | 
|  |  | 
|  | /* Push settings to the PHY. Failure is not fatal, the user can try to | 
|  | * fix it using ethtool. | 
|  | */ | 
|  | rc = efx_mcdi_port_reconfigure(efx); | 
|  | if (rc && rc != -EPERM) | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "could not initialise PHY settings\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ef100_filter_table_probe(struct efx_nic *efx) | 
|  | { | 
|  | return efx_mcdi_filter_table_probe(efx, true); | 
|  | } | 
|  |  | 
|  | static int ef100_filter_table_up(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | down_write(&efx->filter_sem); | 
|  | rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); | 
|  | if (rc) | 
|  | goto fail_unspec; | 
|  |  | 
|  | rc = efx_mcdi_filter_add_vlan(efx, 0); | 
|  | if (rc) | 
|  | goto fail_vlan0; | 
|  | /* Drop the lock: we've finished altering table existence, and | 
|  | * filter insertion will need to take the lock for read. | 
|  | */ | 
|  | up_write(&efx->filter_sem); | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | rc = efx_tc_insert_rep_filters(efx); | 
|  | /* Rep filter failure is nonfatal */ | 
|  | if (rc) | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "Failed to insert representor filters, rc %d\n", | 
|  | rc); | 
|  | #endif | 
|  | return 0; | 
|  |  | 
|  | fail_vlan0: | 
|  | efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); | 
|  | fail_unspec: | 
|  | efx_mcdi_filter_table_down(efx); | 
|  | up_write(&efx->filter_sem); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void ef100_filter_table_down(struct efx_nic *efx) | 
|  | { | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | efx_tc_remove_rep_filters(efx); | 
|  | #endif | 
|  | down_write(&efx->filter_sem); | 
|  | efx_mcdi_filter_del_vlan(efx, 0); | 
|  | efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); | 
|  | efx_mcdi_filter_table_down(efx); | 
|  | up_write(&efx->filter_sem); | 
|  | } | 
|  |  | 
|  | /*	Other | 
|  | */ | 
|  | static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  |  | 
|  | efx_mcdi_filter_sync_rx_mode(efx); | 
|  |  | 
|  | if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) | 
|  | return efx_mcdi_set_mtu(efx); | 
|  | return efx_mcdi_set_mac(efx); | 
|  | } | 
|  |  | 
|  | static enum reset_type ef100_map_reset_reason(enum reset_type reason) | 
|  | { | 
|  | if (reason == RESET_TYPE_TX_WATCHDOG) | 
|  | return reason; | 
|  | return RESET_TYPE_DISABLE; | 
|  | } | 
|  |  | 
|  | static int ef100_map_reset_flags(u32 *flags) | 
|  | { | 
|  | /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ | 
|  | if ((*flags & EF100_RESET_PORT)) { | 
|  | *flags &= ~EF100_RESET_PORT; | 
|  | return RESET_TYPE_ALL; | 
|  | } | 
|  | if (*flags & ETH_RESET_MGMT) { | 
|  | *flags &= ~ETH_RESET_MGMT; | 
|  | return RESET_TYPE_DISABLE; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | dev_close(efx->net_dev); | 
|  |  | 
|  | if (reset_type == RESET_TYPE_TX_WATCHDOG) { | 
|  | netif_device_attach(efx->net_dev); | 
|  | __clear_bit(reset_type, &efx->reset_pending); | 
|  | rc = dev_open(efx->net_dev, NULL); | 
|  | } else if (reset_type == RESET_TYPE_ALL) { | 
|  | rc = efx_mcdi_reset(efx, reset_type); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | netif_device_attach(efx->net_dev); | 
|  |  | 
|  | rc = dev_open(efx->net_dev, NULL); | 
|  | } else { | 
|  | rc = 1;	/* Leave the device closed */ | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void ef100_common_stat_mask(unsigned long *mask) | 
|  | { | 
|  | __set_bit(EF100_STAT_port_rx_packets, mask); | 
|  | __set_bit(EF100_STAT_port_tx_packets, mask); | 
|  | __set_bit(EF100_STAT_port_rx_bytes, mask); | 
|  | __set_bit(EF100_STAT_port_tx_bytes, mask); | 
|  | __set_bit(EF100_STAT_port_rx_multicast, mask); | 
|  | __set_bit(EF100_STAT_port_rx_bad, mask); | 
|  | __set_bit(EF100_STAT_port_rx_align_error, mask); | 
|  | __set_bit(EF100_STAT_port_rx_overflow, mask); | 
|  | } | 
|  |  | 
|  | static void ef100_ethtool_stat_mask(unsigned long *mask) | 
|  | { | 
|  | __set_bit(EF100_STAT_port_tx_pause, mask); | 
|  | __set_bit(EF100_STAT_port_tx_unicast, mask); | 
|  | __set_bit(EF100_STAT_port_tx_multicast, mask); | 
|  | __set_bit(EF100_STAT_port_tx_broadcast, mask); | 
|  | __set_bit(EF100_STAT_port_tx_lt64, mask); | 
|  | __set_bit(EF100_STAT_port_tx_64, mask); | 
|  | __set_bit(EF100_STAT_port_tx_65_to_127, mask); | 
|  | __set_bit(EF100_STAT_port_tx_128_to_255, mask); | 
|  | __set_bit(EF100_STAT_port_tx_256_to_511, mask); | 
|  | __set_bit(EF100_STAT_port_tx_512_to_1023, mask); | 
|  | __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); | 
|  | __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); | 
|  | __set_bit(EF100_STAT_port_rx_good, mask); | 
|  | __set_bit(EF100_STAT_port_rx_pause, mask); | 
|  | __set_bit(EF100_STAT_port_rx_unicast, mask); | 
|  | __set_bit(EF100_STAT_port_rx_broadcast, mask); | 
|  | __set_bit(EF100_STAT_port_rx_lt64, mask); | 
|  | __set_bit(EF100_STAT_port_rx_64, mask); | 
|  | __set_bit(EF100_STAT_port_rx_65_to_127, mask); | 
|  | __set_bit(EF100_STAT_port_rx_128_to_255, mask); | 
|  | __set_bit(EF100_STAT_port_rx_256_to_511, mask); | 
|  | __set_bit(EF100_STAT_port_rx_512_to_1023, mask); | 
|  | __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); | 
|  | __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); | 
|  | __set_bit(EF100_STAT_port_rx_gtjumbo, mask); | 
|  | __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); | 
|  | __set_bit(EF100_STAT_port_rx_length_error, mask); | 
|  | __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); | 
|  | __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); | 
|  | __set_bit(GENERIC_STAT_rx_noskb_drops, mask); | 
|  | } | 
|  |  | 
|  | #define EF100_DMA_STAT(ext_name, mcdi_name)			\ | 
|  | [EF100_STAT_ ## ext_name] =				\ | 
|  | { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } | 
|  |  | 
|  | static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { | 
|  | EF100_DMA_STAT(port_tx_bytes, TX_BYTES), | 
|  | EF100_DMA_STAT(port_tx_packets, TX_PKTS), | 
|  | EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), | 
|  | EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), | 
|  | EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), | 
|  | EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), | 
|  | EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), | 
|  | EF100_DMA_STAT(port_tx_64, TX_64_PKTS), | 
|  | EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), | 
|  | EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), | 
|  | EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), | 
|  | EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), | 
|  | EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), | 
|  | EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), | 
|  | EF100_DMA_STAT(port_rx_bytes, RX_BYTES), | 
|  | EF100_DMA_STAT(port_rx_packets, RX_PKTS), | 
|  | EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), | 
|  | EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), | 
|  | EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), | 
|  | EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), | 
|  | EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), | 
|  | EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), | 
|  | EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), | 
|  | EF100_DMA_STAT(port_rx_64, RX_64_PKTS), | 
|  | EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), | 
|  | EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), | 
|  | EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), | 
|  | EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), | 
|  | EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), | 
|  | EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), | 
|  | EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), | 
|  | EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), | 
|  | EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), | 
|  | EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), | 
|  | EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), | 
|  | EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), | 
|  | EFX_GENERIC_SW_STAT(rx_nodesc_trunc), | 
|  | EFX_GENERIC_SW_STAT(rx_noskb_drops), | 
|  | }; | 
|  |  | 
|  | static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) | 
|  | { | 
|  | DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; | 
|  |  | 
|  | ef100_ethtool_stat_mask(mask); | 
|  | return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, | 
|  | mask, names); | 
|  | } | 
|  |  | 
|  | static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, | 
|  | struct rtnl_link_stats64 *core_stats) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; | 
|  | size_t stats_count = 0, index; | 
|  | u64 *stats = nic_data->stats; | 
|  |  | 
|  | ef100_ethtool_stat_mask(mask); | 
|  |  | 
|  | if (full_stats) { | 
|  | for_each_set_bit(index, mask, EF100_STAT_COUNT) { | 
|  | if (ef100_stat_desc[index].name) { | 
|  | *full_stats++ = stats[index]; | 
|  | ++stats_count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!core_stats) | 
|  | return stats_count; | 
|  |  | 
|  | core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; | 
|  | core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; | 
|  | core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; | 
|  | core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; | 
|  | core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + | 
|  | stats[GENERIC_STAT_rx_nodesc_trunc] + | 
|  | stats[GENERIC_STAT_rx_noskb_drops]; | 
|  | core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; | 
|  | core_stats->rx_length_errors = | 
|  | stats[EF100_STAT_port_rx_gtjumbo] + | 
|  | stats[EF100_STAT_port_rx_length_error]; | 
|  | core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; | 
|  | core_stats->rx_frame_errors = | 
|  | stats[EF100_STAT_port_rx_align_error]; | 
|  | core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; | 
|  | core_stats->rx_errors = (core_stats->rx_length_errors + | 
|  | core_stats->rx_crc_errors + | 
|  | core_stats->rx_frame_errors); | 
|  |  | 
|  | return stats_count; | 
|  | } | 
|  |  | 
|  | static size_t ef100_update_stats(struct efx_nic *efx, | 
|  | u64 *full_stats, | 
|  | struct rtnl_link_stats64 *core_stats) | 
|  | { | 
|  | __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; | 
|  | u64 *stats = nic_data->stats; | 
|  |  | 
|  | ef100_common_stat_mask(mask); | 
|  | ef100_ethtool_stat_mask(mask); | 
|  |  | 
|  | if (!mc_stats) | 
|  | return 0; | 
|  |  | 
|  | efx_nic_copy_stats(efx, mc_stats); | 
|  | efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, | 
|  | stats, mc_stats, false); | 
|  |  | 
|  | kfree(mc_stats); | 
|  |  | 
|  | return ef100_update_stats_common(efx, full_stats, core_stats); | 
|  | } | 
|  |  | 
|  | static int efx_ef100_get_phys_port_id(struct efx_nic *efx, | 
|  | struct netdev_phys_item_id *ppid) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | if (!is_valid_ether_addr(nic_data->port_id)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ppid->id_len = ETH_ALEN; | 
|  | memcpy(ppid->id, nic_data->port_id, ppid->id_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_ef100_irq_test_generate(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); | 
|  | return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, | 
|  | inbuf, sizeof(inbuf), NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | #define EFX_EF100_TEST 1 | 
|  |  | 
|  | static void efx_ef100_ev_test_generate(struct efx_channel *channel) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); | 
|  | struct efx_nic *efx = channel->efx; | 
|  | efx_qword_t event; | 
|  | int rc; | 
|  |  | 
|  | EFX_POPULATE_QWORD_2(event, | 
|  | ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, | 
|  | ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); | 
|  |  | 
|  | /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has | 
|  | * already swapped the data to little-endian order. | 
|  | */ | 
|  | memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], | 
|  | sizeof(efx_qword_t)); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | if (rc && (rc != -ENETDOWN)) | 
|  | goto fail; | 
|  |  | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | WARN_ON(true); | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | } | 
|  |  | 
|  | static unsigned int ef100_check_caps(const struct efx_nic *efx, | 
|  | u8 flag, u32 offset) | 
|  | { | 
|  | const struct ef100_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | switch (offset) { | 
|  | case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: | 
|  | return nic_data->datapath_caps & BIT_ULL(flag); | 
|  | case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: | 
|  | return nic_data->datapath_caps2 & BIT_ULL(flag); | 
|  | case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: | 
|  | return nic_data->datapath_caps3 & BIT_ULL(flag); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx) | 
|  | { | 
|  | /* Maximum link speed for Riverhead is 100G */ | 
|  | return 10 * EFX_RECYCLE_RING_SIZE_10G; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | static int efx_ef100_get_base_mport(struct efx_nic *efx) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | u32 selector, id; | 
|  | int rc; | 
|  |  | 
|  | /* Construct mport selector for "physical network port" */ | 
|  | efx_mae_mport_wire(efx, &selector); | 
|  | /* Look up actual mport ID */ | 
|  | rc = efx_mae_lookup_mport(efx, selector, &id); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* The ID should always fit in 16 bits, because that's how wide the | 
|  | * corresponding fields in the RX prefix & TX override descriptor are | 
|  | */ | 
|  | if (id >> 16) | 
|  | netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n", | 
|  | id); | 
|  | nic_data->base_mport = id; | 
|  | nic_data->have_mport = true; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int compare_versions(const char *a, const char *b) | 
|  | { | 
|  | int a_major, a_minor, a_point, a_patch; | 
|  | int b_major, b_minor, b_point, b_patch; | 
|  | int a_matched, b_matched; | 
|  |  | 
|  | a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); | 
|  | b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); | 
|  |  | 
|  | if (a_matched == 4 && b_matched != 4) | 
|  | return +1; | 
|  |  | 
|  | if (a_matched != 4 && b_matched == 4) | 
|  | return -1; | 
|  |  | 
|  | if (a_matched != 4 && b_matched != 4) | 
|  | return 0; | 
|  |  | 
|  | if (a_major != b_major) | 
|  | return a_major - b_major; | 
|  |  | 
|  | if (a_minor != b_minor) | 
|  | return a_minor - b_minor; | 
|  |  | 
|  | if (a_point != b_point) | 
|  | return a_point - b_point; | 
|  |  | 
|  | return a_patch - b_patch; | 
|  | } | 
|  |  | 
|  | enum ef100_tlv_state_machine { | 
|  | EF100_TLV_TYPE, | 
|  | EF100_TLV_TYPE_CONT, | 
|  | EF100_TLV_LENGTH, | 
|  | EF100_TLV_VALUE | 
|  | }; | 
|  |  | 
|  | struct ef100_tlv_state { | 
|  | enum ef100_tlv_state_machine state; | 
|  | u64 value; | 
|  | u32 value_offset; | 
|  | u16 type; | 
|  | u8 len; | 
|  | }; | 
|  |  | 
|  | static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) | 
|  | { | 
|  | switch (state->state) { | 
|  | case EF100_TLV_TYPE: | 
|  | state->type = byte & 0x7f; | 
|  | state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT | 
|  | : EF100_TLV_LENGTH; | 
|  | /* Clear ready to read in a new entry */ | 
|  | state->value = 0; | 
|  | state->value_offset = 0; | 
|  | return 0; | 
|  | case EF100_TLV_TYPE_CONT: | 
|  | state->type |= byte << 7; | 
|  | state->state = EF100_TLV_LENGTH; | 
|  | return 0; | 
|  | case EF100_TLV_LENGTH: | 
|  | state->len = byte; | 
|  | /* We only handle TLVs that fit in a u64 */ | 
|  | if (state->len > sizeof(state->value)) | 
|  | return -EOPNOTSUPP; | 
|  | /* len may be zero, implying a value of zero */ | 
|  | state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; | 
|  | return 0; | 
|  | case EF100_TLV_VALUE: | 
|  | state->value |= ((u64)byte) << (state->value_offset * 8); | 
|  | state->value_offset++; | 
|  | if (state->value_offset >= state->len) | 
|  | state->state = EF100_TLV_TYPE; | 
|  | return 0; | 
|  | default: /* state machine error, can't happen */ | 
|  | WARN_ON_ONCE(1); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ef100_process_design_param(struct efx_nic *efx, | 
|  | const struct ef100_tlv_state *reader) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | switch (reader->type) { | 
|  | case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: | 
|  | /* Driver doesn't support timestamping yet, so we don't care */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: | 
|  | /* Driver doesn't support unsolicited-event credits yet, so | 
|  | * we don't care | 
|  | */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: | 
|  | /* Driver doesn't manage the NMMU (so we don't care) */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: | 
|  | /* Driver uses CHECKSUM_COMPLETE, so we don't care about | 
|  | * protocol checksum validation | 
|  | */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: | 
|  | nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: | 
|  | /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ | 
|  | if (!reader->value) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "TSO_MAX_HDR_NUM_SEGS < 1\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: | 
|  | case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: | 
|  | /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by | 
|  | * EFX_MIN_DMAQ_SIZE, so we just need to check that | 
|  | * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. | 
|  | * This is very unlikely to fail. | 
|  | */ | 
|  | if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || | 
|  | EFX_MIN_DMAQ_SIZE % (u32)reader->value) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "%s size granularity is %llu, can't guarantee safety\n", | 
|  | reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", | 
|  | reader->value); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: | 
|  | nic_data->tso_max_payload_len = min_t(u64, reader->value, | 
|  | GSO_LEGACY_MAX_SIZE); | 
|  | netif_set_tso_max_size(efx->net_dev, | 
|  | nic_data->tso_max_payload_len); | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: | 
|  | nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); | 
|  | netif_set_tso_max_segs(efx->net_dev, | 
|  | nic_data->tso_max_payload_num_segs); | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: | 
|  | nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_COMPAT: | 
|  | if (reader->value) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", | 
|  | reader->value); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: | 
|  | /* Driver doesn't use mem2mem transfers */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: | 
|  | /* Driver doesn't currently use EVQ_TIMER */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: | 
|  | /* Driver doesn't manage the NMMU (so we don't care) */ | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_VI_STRIDES: | 
|  | /* We never try to set the VI stride, and we don't rely on | 
|  | * being able to find VIs past VI 0 until after we've learned | 
|  | * the current stride from MC_CMD_GET_CAPABILITIES. | 
|  | * So the value of this shouldn't matter. | 
|  | */ | 
|  | if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "NIC has other than default VI_STRIDES (mask " | 
|  | "%#llx), early probing might use wrong one\n", | 
|  | reader->value); | 
|  | return 0; | 
|  | case ESE_EF100_DP_GZ_RX_MAX_RUNT: | 
|  | /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't | 
|  | * care whether it indicates runt or overlength for any given | 
|  | * packet, so we don't care about this parameter. | 
|  | */ | 
|  | return 0; | 
|  | default: | 
|  | /* Host interface says "Drivers should ignore design parameters | 
|  | * that they do not recognise." | 
|  | */ | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "Ignoring unrecognised design parameter %u\n", | 
|  | reader->type); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ef100_check_design_params(struct efx_nic *efx) | 
|  | { | 
|  | struct ef100_tlv_state reader = {}; | 
|  | u32 total_len, offset = 0; | 
|  | efx_dword_t reg; | 
|  | int rc = 0, i; | 
|  | u32 data; | 
|  |  | 
|  | efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); | 
|  | total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); | 
|  | pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len); | 
|  | while (offset < total_len) { | 
|  | efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); | 
|  | data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); | 
|  | for (i = 0; i < sizeof(data); i++) { | 
|  | rc = ef100_tlv_feed(&reader, data); | 
|  | /* Got a complete value? */ | 
|  | if (!rc && reader.state == EF100_TLV_TYPE) | 
|  | rc = ef100_process_design_param(efx, &reader); | 
|  | if (rc) | 
|  | goto out; | 
|  | data >>= 8; | 
|  | offset++; | 
|  | } | 
|  | } | 
|  | /* Check we didn't end halfway through a TLV entry, which could either | 
|  | * mean that the TLV stream is truncated or just that it's corrupted | 
|  | * and our state machine is out of sync. | 
|  | */ | 
|  | if (reader.state != EF100_TLV_TYPE) { | 
|  | if (reader.state == EF100_TLV_TYPE_CONT) | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "truncated design parameter (incomplete type %u)\n", | 
|  | reader.type); | 
|  | else | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "truncated design parameter %u\n", | 
|  | reader.type); | 
|  | rc = -EIO; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /*	NIC probe and remove | 
|  | */ | 
|  | static int ef100_probe_main(struct efx_nic *efx) | 
|  | { | 
|  | unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); | 
|  | struct ef100_nic_data *nic_data; | 
|  | char fw_version[32]; | 
|  | u32 priv_mask = 0; | 
|  | int i, rc; | 
|  |  | 
|  | if (WARN_ON(bar_size == 0)) | 
|  | return -EIO; | 
|  |  | 
|  | nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); | 
|  | if (!nic_data) | 
|  | return -ENOMEM; | 
|  | efx->nic_data = nic_data; | 
|  | nic_data->efx = efx; | 
|  | efx->max_vis = EF100_MAX_VIS; | 
|  |  | 
|  | /* Populate design-parameter defaults */ | 
|  | nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; | 
|  | nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; | 
|  | nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; | 
|  | nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; | 
|  |  | 
|  | /* Read design parameters */ | 
|  | rc = ef100_check_design_params(efx); | 
|  | if (rc) { | 
|  | pci_err(efx->pci_dev, "Unsupported design parameters\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* we assume later that we can copy from this buffer in dwords */ | 
|  | BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); | 
|  |  | 
|  | /* MCDI buffers must be 256 byte aligned. */ | 
|  | rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, | 
|  | GFP_KERNEL); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | /* Get the MC's warm boot count.  In case it's rebooting right | 
|  | * now, be prepared to retry. | 
|  | */ | 
|  | i = 0; | 
|  | for (;;) { | 
|  | rc = ef100_get_warm_boot_count(efx); | 
|  | if (rc >= 0) | 
|  | break; | 
|  | if (++i == 5) | 
|  | goto fail; | 
|  | ssleep(1); | 
|  | } | 
|  | nic_data->warm_boot_count = rc; | 
|  |  | 
|  | /* In case we're recovering from a crash (kexec), we want to | 
|  | * cancel any outstanding request by the previous user of this | 
|  | * function.  We send a special message using the least | 
|  | * significant bits of the 'high' (doorbell) register. | 
|  | */ | 
|  | _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); | 
|  |  | 
|  | /* Post-IO section. */ | 
|  |  | 
|  | rc = efx_mcdi_init(efx); | 
|  | if (rc) | 
|  | goto fail; | 
|  | /* Reset (most) configuration for this function */ | 
|  | rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); | 
|  | if (rc) | 
|  | goto fail; | 
|  | /* Enable event logging */ | 
|  | rc = efx_mcdi_log_ctrl(efx, true, false, 0); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_get_pf_index(efx, &nic_data->pf_index); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_mcdi_port_get_number(efx); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | efx->port_num = rc; | 
|  |  | 
|  | efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); | 
|  | pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version); | 
|  |  | 
|  | rc = efx_mcdi_get_privilege_mask(efx, &priv_mask); | 
|  | if (rc) /* non-fatal, and priv_mask will still be 0 */ | 
|  | pci_info(efx->pci_dev, | 
|  | "Failed to get privilege mask from FW, rc %d\n", rc); | 
|  | nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE); | 
|  |  | 
|  | if (compare_versions(fw_version, "1.1.0.1000") < 0) { | 
|  | pci_info(efx->pci_dev, "Firmware uses old event descriptors\n"); | 
|  | rc = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { | 
|  | pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n"); | 
|  | rc = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ef100_probe_netdev_pf(struct efx_nic *efx) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | int rc; | 
|  |  | 
|  | rc = ef100_get_mac_address(efx, net_dev->perm_addr); | 
|  | if (rc) | 
|  | goto fail; | 
|  | /* Assign MAC address */ | 
|  | eth_hw_addr_set(net_dev, net_dev->perm_addr); | 
|  | memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN); | 
|  |  | 
|  | if (!nic_data->grp_mae) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | rc = efx_init_struct_tc(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = efx_ef100_get_base_mport(efx); | 
|  | if (rc) { | 
|  | netif_warn(efx, probe, net_dev, | 
|  | "Failed to probe base mport rc %d; representors will not function\n", | 
|  | rc); | 
|  | } | 
|  |  | 
|  | rc = efx_init_tc(efx); | 
|  | if (rc) { | 
|  | /* Either we don't have an MAE at all (i.e. legacy v-switching), | 
|  | * or we do but we failed to probe it.  In the latter case, we | 
|  | * may not have set up default rules, in which case we won't be | 
|  | * able to pass any traffic.  However, we don't fail the probe, | 
|  | * because the user might need to use the netdevice to apply | 
|  | * configuration changes to fix whatever's wrong with the MAE. | 
|  | */ | 
|  | netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n", | 
|  | rc); | 
|  | } else { | 
|  | net_dev->features |= NETIF_F_HW_TC; | 
|  | efx->fixed_features |= NETIF_F_HW_TC; | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ef100_probe_vf(struct efx_nic *efx) | 
|  | { | 
|  | return ef100_probe_main(efx); | 
|  | } | 
|  |  | 
|  | void ef100_remove(struct efx_nic *efx) | 
|  | { | 
|  | struct ef100_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | efx_mcdi_detach(efx); | 
|  | efx_mcdi_fini(efx); | 
|  | if (nic_data) | 
|  | efx_nic_free_buffer(efx, &nic_data->mcdi_buf); | 
|  | kfree(nic_data); | 
|  | efx->nic_data = NULL; | 
|  | } | 
|  |  | 
|  | /*	NIC level access functions | 
|  | */ | 
|  | #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\ | 
|  | NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \ | 
|  | NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ | 
|  | NETIF_F_HW_VLAN_CTAG_TX) | 
|  |  | 
|  | const struct efx_nic_type ef100_pf_nic_type = { | 
|  | .revision = EFX_REV_EF100, | 
|  | .is_vf = false, | 
|  | .probe = ef100_probe_main, | 
|  | .offload_features = EF100_OFFLOAD_FEATURES, | 
|  | .mcdi_max_ver = 2, | 
|  | .mcdi_request = ef100_mcdi_request, | 
|  | .mcdi_poll_response = ef100_mcdi_poll_response, | 
|  | .mcdi_read_response = ef100_mcdi_read_response, | 
|  | .mcdi_poll_reboot = ef100_mcdi_poll_reboot, | 
|  | .mcdi_reboot_detected = ef100_mcdi_reboot_detected, | 
|  | .irq_enable_master = efx_port_dummy_op_void, | 
|  | .irq_test_generate = efx_ef100_irq_test_generate, | 
|  | .irq_disable_non_ev = efx_port_dummy_op_void, | 
|  | .push_irq_moderation = efx_channel_dummy_op_void, | 
|  | .min_interrupt_mode = EFX_INT_MODE_MSIX, | 
|  | .map_reset_reason = ef100_map_reset_reason, | 
|  | .map_reset_flags = ef100_map_reset_flags, | 
|  | .reset = ef100_reset, | 
|  |  | 
|  | .check_caps = ef100_check_caps, | 
|  |  | 
|  | .ev_probe = ef100_ev_probe, | 
|  | .ev_init = ef100_ev_init, | 
|  | .ev_fini = efx_mcdi_ev_fini, | 
|  | .ev_remove = efx_mcdi_ev_remove, | 
|  | .irq_handle_msi = ef100_msi_interrupt, | 
|  | .ev_process = ef100_ev_process, | 
|  | .ev_read_ack = ef100_ev_read_ack, | 
|  | .ev_test_generate = efx_ef100_ev_test_generate, | 
|  | .tx_probe = ef100_tx_probe, | 
|  | .tx_init = ef100_tx_init, | 
|  | .tx_write = ef100_tx_write, | 
|  | .tx_enqueue = ef100_enqueue_skb, | 
|  | .rx_probe = efx_mcdi_rx_probe, | 
|  | .rx_init = efx_mcdi_rx_init, | 
|  | .rx_remove = efx_mcdi_rx_remove, | 
|  | .rx_write = ef100_rx_write, | 
|  | .rx_packet = __ef100_rx_packet, | 
|  | .rx_buf_hash_valid = ef100_rx_buf_hash_valid, | 
|  | .fini_dmaq = efx_fini_dmaq, | 
|  | .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, | 
|  | .filter_table_probe = ef100_filter_table_up, | 
|  | .filter_table_restore = efx_mcdi_filter_table_restore, | 
|  | .filter_table_remove = ef100_filter_table_down, | 
|  | .filter_insert = efx_mcdi_filter_insert, | 
|  | .filter_remove_safe = efx_mcdi_filter_remove_safe, | 
|  | .filter_get_safe = efx_mcdi_filter_get_safe, | 
|  | .filter_clear_rx = efx_mcdi_filter_clear_rx, | 
|  | .filter_count_rx_used = efx_mcdi_filter_count_rx_used, | 
|  | .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, | 
|  | .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  | .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, | 
|  | #endif | 
|  |  | 
|  | .get_phys_port_id = efx_ef100_get_phys_port_id, | 
|  |  | 
|  | .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, | 
|  | .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, | 
|  | .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, | 
|  | .rx_hash_key_size = 40, | 
|  | .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, | 
|  | .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, | 
|  | .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, | 
|  | .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, | 
|  | .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, | 
|  | .rx_recycle_ring_size = efx_ef100_recycle_ring_size, | 
|  |  | 
|  | .reconfigure_mac = ef100_reconfigure_mac, | 
|  | .reconfigure_port = efx_mcdi_port_reconfigure, | 
|  | .test_nvram = efx_new_mcdi_nvram_test_all, | 
|  | .describe_stats = ef100_describe_stats, | 
|  | .start_stats = efx_mcdi_mac_start_stats, | 
|  | .update_stats = ef100_update_stats, | 
|  | .pull_stats = efx_mcdi_mac_pull_stats, | 
|  | .stop_stats = efx_mcdi_mac_stop_stats, | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | .sriov_configure = efx_ef100_sriov_configure, | 
|  | #endif | 
|  |  | 
|  | /* Per-type bar/size configuration not used on ef100. Location of | 
|  | * registers is defined by extended capabilities. | 
|  | */ | 
|  | .mem_bar = NULL, | 
|  | .mem_map_size = NULL, | 
|  |  | 
|  | }; | 
|  |  | 
|  | const struct efx_nic_type ef100_vf_nic_type = { | 
|  | .revision = EFX_REV_EF100, | 
|  | .is_vf = true, | 
|  | .probe = ef100_probe_vf, | 
|  | .offload_features = EF100_OFFLOAD_FEATURES, | 
|  | .mcdi_max_ver = 2, | 
|  | .mcdi_request = ef100_mcdi_request, | 
|  | .mcdi_poll_response = ef100_mcdi_poll_response, | 
|  | .mcdi_read_response = ef100_mcdi_read_response, | 
|  | .mcdi_poll_reboot = ef100_mcdi_poll_reboot, | 
|  | .mcdi_reboot_detected = ef100_mcdi_reboot_detected, | 
|  | .irq_enable_master = efx_port_dummy_op_void, | 
|  | .irq_test_generate = efx_ef100_irq_test_generate, | 
|  | .irq_disable_non_ev = efx_port_dummy_op_void, | 
|  | .push_irq_moderation = efx_channel_dummy_op_void, | 
|  | .min_interrupt_mode = EFX_INT_MODE_MSIX, | 
|  | .map_reset_reason = ef100_map_reset_reason, | 
|  | .map_reset_flags = ef100_map_reset_flags, | 
|  | .reset = ef100_reset, | 
|  | .check_caps = ef100_check_caps, | 
|  | .ev_probe = ef100_ev_probe, | 
|  | .ev_init = ef100_ev_init, | 
|  | .ev_fini = efx_mcdi_ev_fini, | 
|  | .ev_remove = efx_mcdi_ev_remove, | 
|  | .irq_handle_msi = ef100_msi_interrupt, | 
|  | .ev_process = ef100_ev_process, | 
|  | .ev_read_ack = ef100_ev_read_ack, | 
|  | .ev_test_generate = efx_ef100_ev_test_generate, | 
|  | .tx_probe = ef100_tx_probe, | 
|  | .tx_init = ef100_tx_init, | 
|  | .tx_write = ef100_tx_write, | 
|  | .tx_enqueue = ef100_enqueue_skb, | 
|  | .rx_probe = efx_mcdi_rx_probe, | 
|  | .rx_init = efx_mcdi_rx_init, | 
|  | .rx_remove = efx_mcdi_rx_remove, | 
|  | .rx_write = ef100_rx_write, | 
|  | .rx_packet = __ef100_rx_packet, | 
|  | .rx_buf_hash_valid = ef100_rx_buf_hash_valid, | 
|  | .fini_dmaq = efx_fini_dmaq, | 
|  | .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, | 
|  | .filter_table_probe = ef100_filter_table_up, | 
|  | .filter_table_restore = efx_mcdi_filter_table_restore, | 
|  | .filter_table_remove = ef100_filter_table_down, | 
|  | .filter_insert = efx_mcdi_filter_insert, | 
|  | .filter_remove_safe = efx_mcdi_filter_remove_safe, | 
|  | .filter_get_safe = efx_mcdi_filter_get_safe, | 
|  | .filter_clear_rx = efx_mcdi_filter_clear_rx, | 
|  | .filter_count_rx_used = efx_mcdi_filter_count_rx_used, | 
|  | .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, | 
|  | .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  | .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, | 
|  | #endif | 
|  |  | 
|  | .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, | 
|  | .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, | 
|  | .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, | 
|  | .rx_hash_key_size = 40, | 
|  | .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, | 
|  | .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, | 
|  | .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, | 
|  | .rx_recycle_ring_size = efx_ef100_recycle_ring_size, | 
|  |  | 
|  | .reconfigure_mac = ef100_reconfigure_mac, | 
|  | .test_nvram = efx_new_mcdi_nvram_test_all, | 
|  | .describe_stats = ef100_describe_stats, | 
|  | .start_stats = efx_mcdi_mac_start_stats, | 
|  | .update_stats = ef100_update_stats, | 
|  | .pull_stats = efx_mcdi_mac_pull_stats, | 
|  | .stop_stats = efx_mcdi_mac_stop_stats, | 
|  |  | 
|  | .mem_bar = NULL, | 
|  | .mem_map_size = NULL, | 
|  |  | 
|  | }; |