|  | /* | 
|  | *  linux/fs/ext4/dir.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card ([email protected]) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/dir.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  ext4 directory handling functions | 
|  | * | 
|  | *  Big-endian to little-endian byte-swapping/bitmaps by | 
|  | *        David S. Miller ([email protected]), 1995 | 
|  | * | 
|  | * Hash Tree Directory indexing (c) 2001  Daniel Phillips | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/jbd2.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include "ext4.h" | 
|  | #include "xattr.h" | 
|  |  | 
|  | static int ext4_dx_readdir(struct file *, struct dir_context *); | 
|  |  | 
|  | /** | 
|  | * Check if the given dir-inode refers to an htree-indexed directory | 
|  | * (or a directory which chould potentially get coverted to use htree | 
|  | * indexing). | 
|  | * | 
|  | * Return 1 if it is a dx dir, 0 if not | 
|  | */ | 
|  | static int is_dx_dir(struct inode *inode) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (EXT4_HAS_COMPAT_FEATURE(inode->i_sb, | 
|  | EXT4_FEATURE_COMPAT_DIR_INDEX) && | 
|  | ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) || | 
|  | ((inode->i_size >> sb->s_blocksize_bits) == 1) || | 
|  | ext4_has_inline_data(inode))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 if the directory entry is OK, and 1 if there is a problem | 
|  | * | 
|  | * Note: this is the opposite of what ext2 and ext3 historically returned... | 
|  | * | 
|  | * bh passed here can be an inode block or a dir data block, depending | 
|  | * on the inode inline data flag. | 
|  | */ | 
|  | int __ext4_check_dir_entry(const char *function, unsigned int line, | 
|  | struct inode *dir, struct file *filp, | 
|  | struct ext4_dir_entry_2 *de, | 
|  | struct buffer_head *bh, char *buf, int size, | 
|  | unsigned int offset) | 
|  | { | 
|  | const char *error_msg = NULL; | 
|  | const int rlen = ext4_rec_len_from_disk(de->rec_len, | 
|  | dir->i_sb->s_blocksize); | 
|  |  | 
|  | if (unlikely(rlen < EXT4_DIR_REC_LEN(1))) | 
|  | error_msg = "rec_len is smaller than minimal"; | 
|  | else if (unlikely(rlen % 4 != 0)) | 
|  | error_msg = "rec_len % 4 != 0"; | 
|  | else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len))) | 
|  | error_msg = "rec_len is too small for name_len"; | 
|  | else if (unlikely(((char *) de - buf) + rlen > size)) | 
|  | error_msg = "directory entry across range"; | 
|  | else if (unlikely(le32_to_cpu(de->inode) > | 
|  | le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count))) | 
|  | error_msg = "inode out of bounds"; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | if (filp) | 
|  | ext4_error_file(filp, function, line, bh->b_blocknr, | 
|  | "bad entry in directory: %s - offset=%u(%u), " | 
|  | "inode=%u, rec_len=%d, name_len=%d", | 
|  | error_msg, (unsigned) (offset % size), | 
|  | offset, le32_to_cpu(de->inode), | 
|  | rlen, de->name_len); | 
|  | else | 
|  | ext4_error_inode(dir, function, line, bh->b_blocknr, | 
|  | "bad entry in directory: %s - offset=%u(%u), " | 
|  | "inode=%u, rec_len=%d, name_len=%d", | 
|  | error_msg, (unsigned) (offset % size), | 
|  | offset, le32_to_cpu(de->inode), | 
|  | rlen, de->name_len); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ext4_readdir(struct file *file, struct dir_context *ctx) | 
|  | { | 
|  | unsigned int offset; | 
|  | int i, stored; | 
|  | struct ext4_dir_entry_2 *de; | 
|  | int err; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int dir_has_error = 0; | 
|  |  | 
|  | if (is_dx_dir(inode)) { | 
|  | err = ext4_dx_readdir(file, ctx); | 
|  | if (err != ERR_BAD_DX_DIR) { | 
|  | return err; | 
|  | } | 
|  | /* | 
|  | * We don't set the inode dirty flag since it's not | 
|  | * critical that it get flushed back to the disk. | 
|  | */ | 
|  | ext4_clear_inode_flag(file_inode(file), | 
|  | EXT4_INODE_INDEX); | 
|  | } | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | int has_inline_data = 1; | 
|  | int ret = ext4_read_inline_dir(file, ctx, | 
|  | &has_inline_data); | 
|  | if (has_inline_data) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | stored = 0; | 
|  | offset = ctx->pos & (sb->s_blocksize - 1); | 
|  |  | 
|  | while (ctx->pos < inode->i_size) { | 
|  | struct ext4_map_blocks map; | 
|  | struct buffer_head *bh = NULL; | 
|  |  | 
|  | map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb); | 
|  | map.m_len = 1; | 
|  | err = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (err > 0) { | 
|  | pgoff_t index = map.m_pblk >> | 
|  | (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | if (!ra_has_index(&file->f_ra, index)) | 
|  | page_cache_sync_readahead( | 
|  | sb->s_bdev->bd_inode->i_mapping, | 
|  | &file->f_ra, file, | 
|  | index, 1); | 
|  | file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; | 
|  | bh = ext4_bread(NULL, inode, map.m_lblk, 0, &err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We ignore I/O errors on directories so users have a chance | 
|  | * of recovering data when there's a bad sector | 
|  | */ | 
|  | if (!bh) { | 
|  | if (!dir_has_error) { | 
|  | EXT4_ERROR_FILE(file, 0, | 
|  | "directory contains a " | 
|  | "hole at offset %llu", | 
|  | (unsigned long long) ctx->pos); | 
|  | dir_has_error = 1; | 
|  | } | 
|  | /* corrupt size?  Maybe no more blocks to read */ | 
|  | if (ctx->pos > inode->i_blocks << 9) | 
|  | break; | 
|  | ctx->pos += sb->s_blocksize - offset; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Check the checksum */ | 
|  | if (!buffer_verified(bh) && | 
|  | !ext4_dirent_csum_verify(inode, | 
|  | (struct ext4_dir_entry *)bh->b_data)) { | 
|  | EXT4_ERROR_FILE(file, 0, "directory fails checksum " | 
|  | "at offset %llu", | 
|  | (unsigned long long)ctx->pos); | 
|  | ctx->pos += sb->s_blocksize - offset; | 
|  | brelse(bh); | 
|  | continue; | 
|  | } | 
|  | set_buffer_verified(bh); | 
|  |  | 
|  | /* If the dir block has changed since the last call to | 
|  | * readdir(2), then we might be pointing to an invalid | 
|  | * dirent right now.  Scan from the start of the block | 
|  | * to make sure. */ | 
|  | if (file->f_version != inode->i_version) { | 
|  | for (i = 0; i < sb->s_blocksize && i < offset; ) { | 
|  | de = (struct ext4_dir_entry_2 *) | 
|  | (bh->b_data + i); | 
|  | /* It's too expensive to do a full | 
|  | * dirent test each time round this | 
|  | * loop, but we do have to test at | 
|  | * least that it is non-zero.  A | 
|  | * failure will be detected in the | 
|  | * dirent test below. */ | 
|  | if (ext4_rec_len_from_disk(de->rec_len, | 
|  | sb->s_blocksize) < EXT4_DIR_REC_LEN(1)) | 
|  | break; | 
|  | i += ext4_rec_len_from_disk(de->rec_len, | 
|  | sb->s_blocksize); | 
|  | } | 
|  | offset = i; | 
|  | ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1)) | 
|  | | offset; | 
|  | file->f_version = inode->i_version; | 
|  | } | 
|  |  | 
|  | while (ctx->pos < inode->i_size | 
|  | && offset < sb->s_blocksize) { | 
|  | de = (struct ext4_dir_entry_2 *) (bh->b_data + offset); | 
|  | if (ext4_check_dir_entry(inode, file, de, bh, | 
|  | bh->b_data, bh->b_size, | 
|  | offset)) { | 
|  | /* | 
|  | * On error, skip to the next block | 
|  | */ | 
|  | ctx->pos = (ctx->pos | | 
|  | (sb->s_blocksize - 1)) + 1; | 
|  | break; | 
|  | } | 
|  | offset += ext4_rec_len_from_disk(de->rec_len, | 
|  | sb->s_blocksize); | 
|  | if (le32_to_cpu(de->inode)) { | 
|  | if (!dir_emit(ctx, de->name, | 
|  | de->name_len, | 
|  | le32_to_cpu(de->inode), | 
|  | get_dtype(sb, de->file_type))) { | 
|  | brelse(bh); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | ctx->pos += ext4_rec_len_from_disk(de->rec_len, | 
|  | sb->s_blocksize); | 
|  | } | 
|  | offset = 0; | 
|  | brelse(bh); | 
|  | if (ctx->pos < inode->i_size) { | 
|  | if (!dir_relax(inode)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int is_32bit_api(void) | 
|  | { | 
|  | #ifdef CONFIG_COMPAT | 
|  | return is_compat_task(); | 
|  | #else | 
|  | return (BITS_PER_LONG == 32); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions convert from the major/minor hash to an f_pos | 
|  | * value for dx directories | 
|  | * | 
|  | * Upper layer (for example NFS) should specify FMODE_32BITHASH or | 
|  | * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted | 
|  | * directly on both 32-bit and 64-bit nodes, under such case, neither | 
|  | * FMODE_32BITHASH nor FMODE_64BITHASH is specified. | 
|  | */ | 
|  | static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor) | 
|  | { | 
|  | if ((filp->f_mode & FMODE_32BITHASH) || | 
|  | (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) | 
|  | return major >> 1; | 
|  | else | 
|  | return ((__u64)(major >> 1) << 32) | (__u64)minor; | 
|  | } | 
|  |  | 
|  | static inline __u32 pos2maj_hash(struct file *filp, loff_t pos) | 
|  | { | 
|  | if ((filp->f_mode & FMODE_32BITHASH) || | 
|  | (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) | 
|  | return (pos << 1) & 0xffffffff; | 
|  | else | 
|  | return ((pos >> 32) << 1) & 0xffffffff; | 
|  | } | 
|  |  | 
|  | static inline __u32 pos2min_hash(struct file *filp, loff_t pos) | 
|  | { | 
|  | if ((filp->f_mode & FMODE_32BITHASH) || | 
|  | (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) | 
|  | return 0; | 
|  | else | 
|  | return pos & 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 32- or 64-bit end-of-file for dx directories | 
|  | */ | 
|  | static inline loff_t ext4_get_htree_eof(struct file *filp) | 
|  | { | 
|  | if ((filp->f_mode & FMODE_32BITHASH) || | 
|  | (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) | 
|  | return EXT4_HTREE_EOF_32BIT; | 
|  | else | 
|  | return EXT4_HTREE_EOF_64BIT; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ext4_dir_llseek() calls generic_file_llseek_size to handle htree | 
|  | * directories, where the "offset" is in terms of the filename hash | 
|  | * value instead of the byte offset. | 
|  | * | 
|  | * Because we may return a 64-bit hash that is well beyond offset limits, | 
|  | * we need to pass the max hash as the maximum allowable offset in | 
|  | * the htree directory case. | 
|  | * | 
|  | * For non-htree, ext4_llseek already chooses the proper max offset. | 
|  | */ | 
|  | static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | int dx_dir = is_dx_dir(inode); | 
|  | loff_t htree_max = ext4_get_htree_eof(file); | 
|  |  | 
|  | if (likely(dx_dir)) | 
|  | return generic_file_llseek_size(file, offset, whence, | 
|  | htree_max, htree_max); | 
|  | else | 
|  | return ext4_llseek(file, offset, whence); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This structure holds the nodes of the red-black tree used to store | 
|  | * the directory entry in hash order. | 
|  | */ | 
|  | struct fname { | 
|  | __u32		hash; | 
|  | __u32		minor_hash; | 
|  | struct rb_node	rb_hash; | 
|  | struct fname	*next; | 
|  | __u32		inode; | 
|  | __u8		name_len; | 
|  | __u8		file_type; | 
|  | char		name[0]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This functoin implements a non-recursive way of freeing all of the | 
|  | * nodes in the red-black tree. | 
|  | */ | 
|  | static void free_rb_tree_fname(struct rb_root *root) | 
|  | { | 
|  | struct rb_node	*n = root->rb_node; | 
|  | struct rb_node	*parent; | 
|  | struct fname	*fname; | 
|  |  | 
|  | while (n) { | 
|  | /* Do the node's children first */ | 
|  | if (n->rb_left) { | 
|  | n = n->rb_left; | 
|  | continue; | 
|  | } | 
|  | if (n->rb_right) { | 
|  | n = n->rb_right; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The node has no children; free it, and then zero | 
|  | * out parent's link to it.  Finally go to the | 
|  | * beginning of the loop and try to free the parent | 
|  | * node. | 
|  | */ | 
|  | parent = rb_parent(n); | 
|  | fname = rb_entry(n, struct fname, rb_hash); | 
|  | while (fname) { | 
|  | struct fname *old = fname; | 
|  | fname = fname->next; | 
|  | kfree(old); | 
|  | } | 
|  | if (!parent) | 
|  | *root = RB_ROOT; | 
|  | else if (parent->rb_left == n) | 
|  | parent->rb_left = NULL; | 
|  | else if (parent->rb_right == n) | 
|  | parent->rb_right = NULL; | 
|  | n = parent; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp, | 
|  | loff_t pos) | 
|  | { | 
|  | struct dir_private_info *p; | 
|  |  | 
|  | p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL); | 
|  | if (!p) | 
|  | return NULL; | 
|  | p->curr_hash = pos2maj_hash(filp, pos); | 
|  | p->curr_minor_hash = pos2min_hash(filp, pos); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | void ext4_htree_free_dir_info(struct dir_private_info *p) | 
|  | { | 
|  | free_rb_tree_fname(&p->root); | 
|  | kfree(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a directory entry, enter it into the fname rb tree. | 
|  | */ | 
|  | int ext4_htree_store_dirent(struct file *dir_file, __u32 hash, | 
|  | __u32 minor_hash, | 
|  | struct ext4_dir_entry_2 *dirent) | 
|  | { | 
|  | struct rb_node **p, *parent = NULL; | 
|  | struct fname *fname, *new_fn; | 
|  | struct dir_private_info *info; | 
|  | int len; | 
|  |  | 
|  | info = dir_file->private_data; | 
|  | p = &info->root.rb_node; | 
|  |  | 
|  | /* Create and allocate the fname structure */ | 
|  | len = sizeof(struct fname) + dirent->name_len + 1; | 
|  | new_fn = kzalloc(len, GFP_KERNEL); | 
|  | if (!new_fn) | 
|  | return -ENOMEM; | 
|  | new_fn->hash = hash; | 
|  | new_fn->minor_hash = minor_hash; | 
|  | new_fn->inode = le32_to_cpu(dirent->inode); | 
|  | new_fn->name_len = dirent->name_len; | 
|  | new_fn->file_type = dirent->file_type; | 
|  | memcpy(new_fn->name, dirent->name, dirent->name_len); | 
|  | new_fn->name[dirent->name_len] = 0; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | fname = rb_entry(parent, struct fname, rb_hash); | 
|  |  | 
|  | /* | 
|  | * If the hash and minor hash match up, then we put | 
|  | * them on a linked list.  This rarely happens... | 
|  | */ | 
|  | if ((new_fn->hash == fname->hash) && | 
|  | (new_fn->minor_hash == fname->minor_hash)) { | 
|  | new_fn->next = fname->next; | 
|  | fname->next = new_fn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (new_fn->hash < fname->hash) | 
|  | p = &(*p)->rb_left; | 
|  | else if (new_fn->hash > fname->hash) | 
|  | p = &(*p)->rb_right; | 
|  | else if (new_fn->minor_hash < fname->minor_hash) | 
|  | p = &(*p)->rb_left; | 
|  | else /* if (new_fn->minor_hash > fname->minor_hash) */ | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  |  | 
|  | rb_link_node(&new_fn->rb_hash, parent, p); | 
|  | rb_insert_color(&new_fn->rb_hash, &info->root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is a helper function for ext4_dx_readdir.  It calls filldir | 
|  | * for all entres on the fname linked list.  (Normally there is only | 
|  | * one entry on the linked list, unless there are 62 bit hash collisions.) | 
|  | */ | 
|  | static int call_filldir(struct file *file, struct dir_context *ctx, | 
|  | struct fname *fname) | 
|  | { | 
|  | struct dir_private_info *info = file->private_data; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (!fname) { | 
|  | ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: " | 
|  | "called with null fname?!?", __func__, __LINE__, | 
|  | inode->i_ino, current->comm); | 
|  | return 0; | 
|  | } | 
|  | ctx->pos = hash2pos(file, fname->hash, fname->minor_hash); | 
|  | while (fname) { | 
|  | if (!dir_emit(ctx, fname->name, | 
|  | fname->name_len, | 
|  | fname->inode, | 
|  | get_dtype(sb, fname->file_type))) { | 
|  | info->extra_fname = fname; | 
|  | return 1; | 
|  | } | 
|  | fname = fname->next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_dx_readdir(struct file *file, struct dir_context *ctx) | 
|  | { | 
|  | struct dir_private_info *info = file->private_data; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct fname *fname; | 
|  | int	ret; | 
|  |  | 
|  | if (!info) { | 
|  | info = ext4_htree_create_dir_info(file, ctx->pos); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  | file->private_data = info; | 
|  | } | 
|  |  | 
|  | if (ctx->pos == ext4_get_htree_eof(file)) | 
|  | return 0;	/* EOF */ | 
|  |  | 
|  | /* Some one has messed with f_pos; reset the world */ | 
|  | if (info->last_pos != ctx->pos) { | 
|  | free_rb_tree_fname(&info->root); | 
|  | info->curr_node = NULL; | 
|  | info->extra_fname = NULL; | 
|  | info->curr_hash = pos2maj_hash(file, ctx->pos); | 
|  | info->curr_minor_hash = pos2min_hash(file, ctx->pos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are any leftover names on the hash collision | 
|  | * chain, return them first. | 
|  | */ | 
|  | if (info->extra_fname) { | 
|  | if (call_filldir(file, ctx, info->extra_fname)) | 
|  | goto finished; | 
|  | info->extra_fname = NULL; | 
|  | goto next_node; | 
|  | } else if (!info->curr_node) | 
|  | info->curr_node = rb_first(&info->root); | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * Fill the rbtree if we have no more entries, | 
|  | * or the inode has changed since we last read in the | 
|  | * cached entries. | 
|  | */ | 
|  | if ((!info->curr_node) || | 
|  | (file->f_version != inode->i_version)) { | 
|  | info->curr_node = NULL; | 
|  | free_rb_tree_fname(&info->root); | 
|  | file->f_version = inode->i_version; | 
|  | ret = ext4_htree_fill_tree(file, info->curr_hash, | 
|  | info->curr_minor_hash, | 
|  | &info->next_hash); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 0) { | 
|  | ctx->pos = ext4_get_htree_eof(file); | 
|  | break; | 
|  | } | 
|  | info->curr_node = rb_first(&info->root); | 
|  | } | 
|  |  | 
|  | fname = rb_entry(info->curr_node, struct fname, rb_hash); | 
|  | info->curr_hash = fname->hash; | 
|  | info->curr_minor_hash = fname->minor_hash; | 
|  | if (call_filldir(file, ctx, fname)) | 
|  | break; | 
|  | next_node: | 
|  | info->curr_node = rb_next(info->curr_node); | 
|  | if (info->curr_node) { | 
|  | fname = rb_entry(info->curr_node, struct fname, | 
|  | rb_hash); | 
|  | info->curr_hash = fname->hash; | 
|  | info->curr_minor_hash = fname->minor_hash; | 
|  | } else { | 
|  | if (info->next_hash == ~0) { | 
|  | ctx->pos = ext4_get_htree_eof(file); | 
|  | break; | 
|  | } | 
|  | info->curr_hash = info->next_hash; | 
|  | info->curr_minor_hash = 0; | 
|  | } | 
|  | } | 
|  | finished: | 
|  | info->last_pos = ctx->pos; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_release_dir(struct inode *inode, struct file *filp) | 
|  | { | 
|  | if (filp->private_data) | 
|  | ext4_htree_free_dir_info(filp->private_data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct file_operations ext4_dir_operations = { | 
|  | .llseek		= ext4_dir_llseek, | 
|  | .read		= generic_read_dir, | 
|  | .iterate	= ext4_readdir, | 
|  | .unlocked_ioctl = ext4_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= ext4_compat_ioctl, | 
|  | #endif | 
|  | .fsync		= ext4_sync_file, | 
|  | .release	= ext4_release_dir, | 
|  | }; |