| // SPDX-License-Identifier: GPL-2.0 | 
 | /**************************************************************************** | 
 |  * | 
 |  * Driver for the IFX 6x60 spi modem. | 
 |  * | 
 |  * Copyright (C) 2008 Option International | 
 |  * Copyright (C) 2008 Filip Aben <[email protected]> | 
 |  *		      Denis Joseph Barrow <[email protected]> | 
 |  *		      Jan Dumon <[email protected]> | 
 |  * | 
 |  * Copyright (C) 2009, 2010 Intel Corp | 
 |  * Russ Gorby <[email protected]> | 
 |  * | 
 |  * Driver modified by Intel from Option gtm501l_spi.c | 
 |  * | 
 |  * Notes | 
 |  * o	The driver currently assumes a single device only. If you need to | 
 |  *	change this then look for saved_ifx_dev and add a device lookup | 
 |  * o	The driver is intended to be big-endian safe but has never been | 
 |  *	tested that way (no suitable hardware). There are a couple of FIXME | 
 |  *	notes by areas that may need addressing | 
 |  * o	Some of the GPIO naming/setup assumptions may need revisiting if | 
 |  *	you need to use this driver for another platform. | 
 |  * | 
 |  *****************************************************************************/ | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/module.h> | 
 | #include <linux/termios.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/device.h> | 
 | #include <linux/spi/spi.h> | 
 | #include <linux/kfifo.h> | 
 | #include <linux/tty_flip.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/serial.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/rfkill.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/dmapool.h> | 
 | #include <linux/gpio.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/time.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/spi/ifx_modem.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/reboot.h> | 
 |  | 
 | #include "ifx6x60.h" | 
 |  | 
 | #define IFX_SPI_MORE_MASK		0x10 | 
 | #define IFX_SPI_MORE_BIT		4	/* bit position in u8 */ | 
 | #define IFX_SPI_CTS_BIT			6	/* bit position in u8 */ | 
 | #define IFX_SPI_MODE			SPI_MODE_1 | 
 | #define IFX_SPI_TTY_ID			0 | 
 | #define IFX_SPI_TIMEOUT_SEC		2 | 
 | #define IFX_SPI_HEADER_0		(-1) | 
 | #define IFX_SPI_HEADER_F		(-2) | 
 |  | 
 | #define PO_POST_DELAY		200 | 
 | #define IFX_MDM_RST_PMU	4 | 
 |  | 
 | /* forward reference */ | 
 | static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev); | 
 | static int ifx_modem_reboot_callback(struct notifier_block *nfb, | 
 | 				unsigned long event, void *data); | 
 | static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev); | 
 |  | 
 | /* local variables */ | 
 | static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */ | 
 | static struct tty_driver *tty_drv; | 
 | static struct ifx_spi_device *saved_ifx_dev; | 
 | static struct lock_class_key ifx_spi_key; | 
 |  | 
 | static struct notifier_block ifx_modem_reboot_notifier_block = { | 
 | 	.notifier_call = ifx_modem_reboot_callback, | 
 | }; | 
 |  | 
 | static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	gpio_set_value(IFX_MDM_RST_PMU, 1); | 
 | 	msleep(PO_POST_DELAY); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ifx_modem_reboot_callback(struct notifier_block *nfb, | 
 | 				 unsigned long event, void *data) | 
 | { | 
 | 	if (saved_ifx_dev) | 
 | 		ifx_modem_power_off(saved_ifx_dev); | 
 | 	else | 
 | 		pr_warn("no ifx modem active;\n"); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* GPIO/GPE settings */ | 
 |  | 
 | /** | 
 |  *	mrdy_set_high		-	set MRDY GPIO | 
 |  *	@ifx: device we are controlling | 
 |  * | 
 |  */ | 
 | static inline void mrdy_set_high(struct ifx_spi_device *ifx) | 
 | { | 
 | 	gpio_set_value(ifx->gpio.mrdy, 1); | 
 | } | 
 |  | 
 | /** | 
 |  *	mrdy_set_low		-	clear MRDY GPIO | 
 |  *	@ifx: device we are controlling | 
 |  * | 
 |  */ | 
 | static inline void mrdy_set_low(struct ifx_spi_device *ifx) | 
 | { | 
 | 	gpio_set_value(ifx->gpio.mrdy, 0); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_power_state_set | 
 |  *	@ifx_dev: our SPI device | 
 |  *	@val: bits to set | 
 |  * | 
 |  *	Set bit in power status and signal power system if status becomes non-0 | 
 |  */ | 
 | static void | 
 | ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ifx_dev->power_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * if power status is already non-0, just update, else | 
 | 	 * tell power system | 
 | 	 */ | 
 | 	if (!ifx_dev->power_status) | 
 | 		pm_runtime_get(&ifx_dev->spi_dev->dev); | 
 | 	ifx_dev->power_status |= val; | 
 |  | 
 | 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_power_state_clear	-	clear power bit | 
 |  *	@ifx_dev: our SPI device | 
 |  *	@val: bits to clear | 
 |  * | 
 |  *	clear bit in power status and signal power system if status becomes 0 | 
 |  */ | 
 | static void | 
 | ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ifx_dev->power_lock, flags); | 
 |  | 
 | 	if (ifx_dev->power_status) { | 
 | 		ifx_dev->power_status &= ~val; | 
 | 		if (!ifx_dev->power_status) | 
 | 			pm_runtime_put(&ifx_dev->spi_dev->dev); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  *	swap_buf_8 | 
 |  *	@buf: our buffer | 
 |  *	@len : number of bytes (not words) in the buffer | 
 |  *	@end: end of buffer | 
 |  * | 
 |  *	Swap the contents of a buffer into big endian format | 
 |  */ | 
 | static inline void swap_buf_8(unsigned char *buf, int len, void *end) | 
 | { | 
 | 	/* don't swap buffer if SPI word width is 8 bits */ | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *	swap_buf_16 | 
 |  *	@buf: our buffer | 
 |  *	@len : number of bytes (not words) in the buffer | 
 |  *	@end: end of buffer | 
 |  * | 
 |  *	Swap the contents of a buffer into big endian format | 
 |  */ | 
 | static inline void swap_buf_16(unsigned char *buf, int len, void *end) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	u16 *buf_16 = (u16 *)buf; | 
 | 	len = ((len + 1) >> 1); | 
 | 	if ((void *)&buf_16[len] > end) { | 
 | 		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!", | 
 | 		       &buf_16[len], end); | 
 | 		return; | 
 | 	} | 
 | 	for (n = 0; n < len; n++) { | 
 | 		*buf_16 = cpu_to_be16(*buf_16); | 
 | 		buf_16++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	swap_buf_32 | 
 |  *	@buf: our buffer | 
 |  *	@len : number of bytes (not words) in the buffer | 
 |  *	@end: end of buffer | 
 |  * | 
 |  *	Swap the contents of a buffer into big endian format | 
 |  */ | 
 | static inline void swap_buf_32(unsigned char *buf, int len, void *end) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	u32 *buf_32 = (u32 *)buf; | 
 | 	len = (len + 3) >> 2; | 
 |  | 
 | 	if ((void *)&buf_32[len] > end) { | 
 | 		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n", | 
 | 		       &buf_32[len], end); | 
 | 		return; | 
 | 	} | 
 | 	for (n = 0; n < len; n++) { | 
 | 		*buf_32 = cpu_to_be32(*buf_32); | 
 | 		buf_32++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	mrdy_assert		-	assert MRDY line | 
 |  *	@ifx_dev: our SPI device | 
 |  * | 
 |  *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low | 
 |  *	now. | 
 |  * | 
 |  *	FIXME: Can SRDY even go high as we are running this code ? | 
 |  */ | 
 | static void mrdy_assert(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	int val = gpio_get_value(ifx_dev->gpio.srdy); | 
 | 	if (!val) { | 
 | 		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING, | 
 | 				      &ifx_dev->flags)) { | 
 | 			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ); | 
 |  | 
 | 		} | 
 | 	} | 
 | 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING); | 
 | 	mrdy_set_high(ifx_dev); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_timeout		-	SPI timeout | 
 |  *	@arg: our SPI device | 
 |  * | 
 |  *	The SPI has timed out: hang up the tty. Users will then see a hangup | 
 |  *	and error events. | 
 |  */ | 
 | static void ifx_spi_timeout(struct timer_list *t) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer); | 
 |  | 
 | 	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***"); | 
 | 	tty_port_tty_hangup(&ifx_dev->tty_port, false); | 
 | 	mrdy_set_low(ifx_dev); | 
 | 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); | 
 | } | 
 |  | 
 | /* char/tty operations */ | 
 |  | 
 | /** | 
 |  *	ifx_spi_tiocmget	-	get modem lines | 
 |  *	@tty: our tty device | 
 |  *	@filp: file handle issuing the request | 
 |  * | 
 |  *	Map the signal state into Linux modem flags and report the value | 
 |  *	in Linux terms | 
 |  */ | 
 | static int ifx_spi_tiocmget(struct tty_struct *tty) | 
 | { | 
 | 	unsigned int value; | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 |  | 
 | 	value = | 
 | 	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) | | 
 | 	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) | | 
 | 	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) | | 
 | 	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) | | 
 | 	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) | | 
 | 	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0); | 
 | 	return value; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_tiocmset	-	set modem bits | 
 |  *	@tty: the tty structure | 
 |  *	@set: bits to set | 
 |  *	@clear: bits to clear | 
 |  * | 
 |  *	The IFX6x60 only supports DTR and RTS. Set them accordingly | 
 |  *	and flag that an update to the modem is needed. | 
 |  * | 
 |  *	FIXME: do we need to kick the tranfers when we do this ? | 
 |  */ | 
 | static int ifx_spi_tiocmset(struct tty_struct *tty, | 
 | 			    unsigned int set, unsigned int clear) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 |  | 
 | 	if (set & TIOCM_RTS) | 
 | 		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state); | 
 | 	if (set & TIOCM_DTR) | 
 | 		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state); | 
 | 	if (clear & TIOCM_RTS) | 
 | 		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state); | 
 | 	if (clear & TIOCM_DTR) | 
 | 		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state); | 
 |  | 
 | 	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_open	-	called on tty open | 
 |  *	@tty: our tty device | 
 |  *	@filp: file handle being associated with the tty | 
 |  * | 
 |  *	Open the tty interface. We let the tty_port layer do all the work | 
 |  *	for us. | 
 |  * | 
 |  *	FIXME: Remove single device assumption and saved_ifx_dev | 
 |  */ | 
 | static int ifx_spi_open(struct tty_struct *tty, struct file *filp) | 
 | { | 
 | 	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_close	-	called when our tty closes | 
 |  *	@tty: the tty being closed | 
 |  *	@filp: the file handle being closed | 
 |  * | 
 |  *	Perform the close of the tty. We use the tty_port layer to do all | 
 |  *	our hard work. | 
 |  */ | 
 | static void ifx_spi_close(struct tty_struct *tty, struct file *filp) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 | 	tty_port_close(&ifx_dev->tty_port, tty, filp); | 
 | 	/* FIXME: should we do an ifx_spi_reset here ? */ | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_decode_spi_header	-	decode received header | 
 |  *	@buffer: the received data | 
 |  *	@length: decoded length | 
 |  *	@more: decoded more flag | 
 |  *	@received_cts: status of cts we received | 
 |  * | 
 |  *	Note how received_cts is handled -- if header is all F it is left | 
 |  *	the same as it was, if header is all 0 it is set to 0 otherwise it is | 
 |  *	taken from the incoming header. | 
 |  * | 
 |  *	FIXME: endianness | 
 |  */ | 
 | static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length, | 
 | 			unsigned char *more, unsigned char *received_cts) | 
 | { | 
 | 	u16 h1; | 
 | 	u16 h2; | 
 | 	u16 *in_buffer = (u16 *)buffer; | 
 |  | 
 | 	h1 = *in_buffer; | 
 | 	h2 = *(in_buffer+1); | 
 |  | 
 | 	if (h1 == 0 && h2 == 0) { | 
 | 		*received_cts = 0; | 
 | 		*more = 0; | 
 | 		return IFX_SPI_HEADER_0; | 
 | 	} else if (h1 == 0xffff && h2 == 0xffff) { | 
 | 		*more = 0; | 
 | 		/* spi_slave_cts remains as it was */ | 
 | 		return IFX_SPI_HEADER_F; | 
 | 	} | 
 |  | 
 | 	*length = h1 & 0xfff;	/* upper bits of byte are flags */ | 
 | 	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1; | 
 | 	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_setup_spi_header	-	set header fields | 
 |  *	@txbuffer: pointer to start of SPI buffer | 
 |  *	@tx_count: bytes | 
 |  *	@more: indicate if more to follow | 
 |  * | 
 |  *	Format up an SPI header for a transfer | 
 |  * | 
 |  *	FIXME: endianness? | 
 |  */ | 
 | static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count, | 
 | 					unsigned char more) | 
 | { | 
 | 	*(u16 *)(txbuffer) = tx_count; | 
 | 	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE; | 
 | 	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame | 
 |  *	@ifx_dev: our SPI device | 
 |  * | 
 |  *	The transmit buffr needs a header and various other bits of | 
 |  *	information followed by as much data as we can pull from the FIFO | 
 |  *	and transfer. This function formats up a suitable buffer in the | 
 |  *	ifx_dev->tx_buffer | 
 |  * | 
 |  *	FIXME: performance - should we wake the tty when the queue is half | 
 |  *			     empty ? | 
 |  */ | 
 | static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	int temp_count; | 
 | 	int queue_length; | 
 | 	int tx_count; | 
 | 	unsigned char *tx_buffer; | 
 |  | 
 | 	tx_buffer = ifx_dev->tx_buffer; | 
 |  | 
 | 	/* make room for required SPI header */ | 
 | 	tx_buffer += IFX_SPI_HEADER_OVERHEAD; | 
 | 	tx_count = IFX_SPI_HEADER_OVERHEAD; | 
 |  | 
 | 	/* clear to signal no more data if this turns out to be the | 
 | 	 * last buffer sent in a sequence */ | 
 | 	ifx_dev->spi_more = 0; | 
 |  | 
 | 	/* if modem cts is set, just send empty buffer */ | 
 | 	if (!ifx_dev->spi_slave_cts) { | 
 | 		/* see if there's tx data */ | 
 | 		queue_length = kfifo_len(&ifx_dev->tx_fifo); | 
 | 		if (queue_length != 0) { | 
 | 			/* data to mux -- see if there's room for it */ | 
 | 			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE); | 
 | 			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo, | 
 | 					tx_buffer, temp_count, | 
 | 					&ifx_dev->fifo_lock); | 
 |  | 
 | 			/* update buffer pointer and data count in message */ | 
 | 			tx_buffer += temp_count; | 
 | 			tx_count += temp_count; | 
 | 			if (temp_count == queue_length) | 
 | 				/* poke port to get more data */ | 
 | 				tty_port_tty_wakeup(&ifx_dev->tty_port); | 
 | 			else /* more data in port, use next SPI message */ | 
 | 				ifx_dev->spi_more = 1; | 
 | 		} | 
 | 	} | 
 | 	/* have data and info for header -- set up SPI header in buffer */ | 
 | 	/* spi header needs payload size, not entire buffer size */ | 
 | 	ifx_spi_setup_spi_header(ifx_dev->tx_buffer, | 
 | 					tx_count-IFX_SPI_HEADER_OVERHEAD, | 
 | 					ifx_dev->spi_more); | 
 | 	/* swap actual data in the buffer */ | 
 | 	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count, | 
 | 		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]); | 
 | 	return tx_count; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_write		-	line discipline write | 
 |  *	@tty: our tty device | 
 |  *	@buf: pointer to buffer to write (kernel space) | 
 |  *	@count: size of buffer | 
 |  * | 
 |  *	Write the characters we have been given into the FIFO. If the device | 
 |  *	is not active then activate it, when the SRDY line is asserted back | 
 |  *	this will commence I/O | 
 |  */ | 
 | static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf, | 
 | 			 int count) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 | 	unsigned char *tmp_buf = (unsigned char *)buf; | 
 | 	unsigned long flags; | 
 | 	bool is_fifo_empty; | 
 | 	int tx_count; | 
 |  | 
 | 	spin_lock_irqsave(&ifx_dev->fifo_lock, flags); | 
 | 	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo); | 
 | 	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count); | 
 | 	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags); | 
 | 	if (is_fifo_empty) | 
 | 		mrdy_assert(ifx_dev); | 
 |  | 
 | 	return tx_count; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_chars_in_buffer	-	line discipline helper | 
 |  *	@tty: our tty device | 
 |  * | 
 |  *	Report how much data we can accept before we drop bytes. As we use | 
 |  *	a simple FIFO this is nice and easy. | 
 |  */ | 
 | static int ifx_spi_write_room(struct tty_struct *tty) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 | 	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_chars_in_buffer	-	line discipline helper | 
 |  *	@tty: our tty device | 
 |  * | 
 |  *	Report how many characters we have buffered. In our case this is the | 
 |  *	number of bytes sitting in our transmit FIFO. | 
 |  */ | 
 | static int ifx_spi_chars_in_buffer(struct tty_struct *tty) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 | 	return kfifo_len(&ifx_dev->tx_fifo); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_port_hangup | 
 |  *	@port: our tty port | 
 |  * | 
 |  *	tty port hang up. Called when tty_hangup processing is invoked either | 
 |  *	by loss of carrier, or by software (eg vhangup). Serialized against | 
 |  *	activate/shutdown by the tty layer. | 
 |  */ | 
 | static void ifx_spi_hangup(struct tty_struct *tty) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = tty->driver_data; | 
 | 	tty_port_hangup(&ifx_dev->tty_port); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_port_activate | 
 |  *	@port: our tty port | 
 |  * | 
 |  *	tty port activate method - called for first open. Serialized | 
 |  *	with hangup and shutdown by the tty layer. | 
 |  */ | 
 | static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = | 
 | 		container_of(port, struct ifx_spi_device, tty_port); | 
 |  | 
 | 	/* clear any old data; can't do this in 'close' */ | 
 | 	kfifo_reset(&ifx_dev->tx_fifo); | 
 |  | 
 | 	/* clear any flag which may be set in port shutdown procedure */ | 
 | 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags); | 
 | 	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags); | 
 |  | 
 | 	/* put port data into this tty */ | 
 | 	tty->driver_data = ifx_dev; | 
 |  | 
 | 	/* allows flip string push from int context */ | 
 | 	port->low_latency = 1; | 
 |  | 
 | 	/* set flag to allows data transfer */ | 
 | 	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_port_shutdown | 
 |  *	@port: our tty port | 
 |  * | 
 |  *	tty port shutdown method - called for last port close. Serialized | 
 |  *	with hangup and activate by the tty layer. | 
 |  */ | 
 | static void ifx_port_shutdown(struct tty_port *port) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = | 
 | 		container_of(port, struct ifx_spi_device, tty_port); | 
 |  | 
 | 	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags); | 
 | 	mrdy_set_low(ifx_dev); | 
 | 	del_timer(&ifx_dev->spi_timer); | 
 | 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); | 
 | 	tasklet_kill(&ifx_dev->io_work_tasklet); | 
 | } | 
 |  | 
 | static const struct tty_port_operations ifx_tty_port_ops = { | 
 | 	.activate = ifx_port_activate, | 
 | 	.shutdown = ifx_port_shutdown, | 
 | }; | 
 |  | 
 | static const struct tty_operations ifx_spi_serial_ops = { | 
 | 	.open = ifx_spi_open, | 
 | 	.close = ifx_spi_close, | 
 | 	.write = ifx_spi_write, | 
 | 	.hangup = ifx_spi_hangup, | 
 | 	.write_room = ifx_spi_write_room, | 
 | 	.chars_in_buffer = ifx_spi_chars_in_buffer, | 
 | 	.tiocmget = ifx_spi_tiocmget, | 
 | 	.tiocmset = ifx_spi_tiocmset, | 
 | }; | 
 |  | 
 | /** | 
 |  *	ifx_spi_insert_fip_string	-	queue received data | 
 |  *	@ifx_ser: our SPI device | 
 |  *	@chars: buffer we have received | 
 |  *	@size: number of chars reeived | 
 |  * | 
 |  *	Queue bytes to the tty assuming the tty side is currently open. If | 
 |  *	not the discard the data. | 
 |  */ | 
 | static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev, | 
 | 				    unsigned char *chars, size_t size) | 
 | { | 
 | 	tty_insert_flip_string(&ifx_dev->tty_port, chars, size); | 
 | 	tty_flip_buffer_push(&ifx_dev->tty_port); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_complete	-	SPI transfer completed | 
 |  *	@ctx: our SPI device | 
 |  * | 
 |  *	An SPI transfer has completed. Process any received data and kick off | 
 |  *	any further transmits we can commence. | 
 |  */ | 
 | static void ifx_spi_complete(void *ctx) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = ctx; | 
 | 	int length; | 
 | 	int actual_length; | 
 | 	unsigned char more = 0; | 
 | 	unsigned char cts; | 
 | 	int local_write_pending = 0; | 
 | 	int queue_length; | 
 | 	int srdy; | 
 | 	int decode_result; | 
 |  | 
 | 	mrdy_set_low(ifx_dev); | 
 |  | 
 | 	if (!ifx_dev->spi_msg.status) { | 
 | 		/* check header validity, get comm flags */ | 
 | 		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD, | 
 | 			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]); | 
 | 		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer, | 
 | 				&length, &more, &cts); | 
 | 		if (decode_result == IFX_SPI_HEADER_0) { | 
 | 			dev_dbg(&ifx_dev->spi_dev->dev, | 
 | 				"ignore input: invalid header 0"); | 
 | 			ifx_dev->spi_slave_cts = 0; | 
 | 			goto complete_exit; | 
 | 		} else if (decode_result == IFX_SPI_HEADER_F) { | 
 | 			dev_dbg(&ifx_dev->spi_dev->dev, | 
 | 				"ignore input: invalid header F"); | 
 | 			goto complete_exit; | 
 | 		} | 
 |  | 
 | 		ifx_dev->spi_slave_cts = cts; | 
 |  | 
 | 		actual_length = min((unsigned int)length, | 
 | 					ifx_dev->spi_msg.actual_length); | 
 | 		ifx_dev->swap_buf( | 
 | 			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD), | 
 | 			 actual_length, | 
 | 			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]); | 
 | 		ifx_spi_insert_flip_string( | 
 | 			ifx_dev, | 
 | 			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD, | 
 | 			(size_t)actual_length); | 
 | 	} else { | 
 | 		more = 0; | 
 | 		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d", | 
 | 		       ifx_dev->spi_msg.status); | 
 | 	} | 
 |  | 
 | complete_exit: | 
 | 	if (ifx_dev->write_pending) { | 
 | 		ifx_dev->write_pending = 0; | 
 | 		local_write_pending = 1; | 
 | 	} | 
 |  | 
 | 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags)); | 
 |  | 
 | 	queue_length = kfifo_len(&ifx_dev->tx_fifo); | 
 | 	srdy = gpio_get_value(ifx_dev->gpio.srdy); | 
 | 	if (!srdy) | 
 | 		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY); | 
 |  | 
 | 	/* schedule output if there is more to do */ | 
 | 	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags)) | 
 | 		tasklet_schedule(&ifx_dev->io_work_tasklet); | 
 | 	else { | 
 | 		if (more || ifx_dev->spi_more || queue_length > 0 || | 
 | 			local_write_pending) { | 
 | 			if (ifx_dev->spi_slave_cts) { | 
 | 				if (more) | 
 | 					mrdy_assert(ifx_dev); | 
 | 			} else | 
 | 				mrdy_assert(ifx_dev); | 
 | 		} else { | 
 | 			/* | 
 | 			 * poke line discipline driver if any for more data | 
 | 			 * may or may not get more data to write | 
 | 			 * for now, say not busy | 
 | 			 */ | 
 | 			ifx_spi_power_state_clear(ifx_dev, | 
 | 						  IFX_SPI_POWER_DATA_PENDING); | 
 | 			tty_port_tty_wakeup(&ifx_dev->tty_port); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spio_io		-	I/O tasklet | 
 |  *	@data: our SPI device | 
 |  * | 
 |  *	Queue data for transmission if possible and then kick off the | 
 |  *	transfer. | 
 |  */ | 
 | static void ifx_spi_io(unsigned long data) | 
 | { | 
 | 	int retval; | 
 | 	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data; | 
 |  | 
 | 	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) && | 
 | 		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) { | 
 | 		if (ifx_dev->gpio.unack_srdy_int_nb > 0) | 
 | 			ifx_dev->gpio.unack_srdy_int_nb--; | 
 |  | 
 | 		ifx_spi_prepare_tx_buffer(ifx_dev); | 
 |  | 
 | 		spi_message_init(&ifx_dev->spi_msg); | 
 | 		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue); | 
 |  | 
 | 		ifx_dev->spi_msg.context = ifx_dev; | 
 | 		ifx_dev->spi_msg.complete = ifx_spi_complete; | 
 |  | 
 | 		/* set up our spi transfer */ | 
 | 		/* note len is BYTES, not transfers */ | 
 | 		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE; | 
 | 		ifx_dev->spi_xfer.cs_change = 0; | 
 | 		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz; | 
 | 		/* ifx_dev->spi_xfer.speed_hz = 390625; */ | 
 | 		ifx_dev->spi_xfer.bits_per_word = | 
 | 			ifx_dev->spi_dev->bits_per_word; | 
 |  | 
 | 		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer; | 
 | 		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer; | 
 |  | 
 | 		/* | 
 | 		 * setup dma pointers | 
 | 		 */ | 
 | 		if (ifx_dev->use_dma) { | 
 | 			ifx_dev->spi_msg.is_dma_mapped = 1; | 
 | 			ifx_dev->tx_dma = ifx_dev->tx_bus; | 
 | 			ifx_dev->rx_dma = ifx_dev->rx_bus; | 
 | 			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma; | 
 | 			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma; | 
 | 		} else { | 
 | 			ifx_dev->spi_msg.is_dma_mapped = 0; | 
 | 			ifx_dev->tx_dma = (dma_addr_t)0; | 
 | 			ifx_dev->rx_dma = (dma_addr_t)0; | 
 | 			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0; | 
 | 			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0; | 
 | 		} | 
 |  | 
 | 		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg); | 
 |  | 
 | 		/* Assert MRDY. This may have already been done by the write | 
 | 		 * routine. | 
 | 		 */ | 
 | 		mrdy_assert(ifx_dev); | 
 |  | 
 | 		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg); | 
 | 		if (retval) { | 
 | 			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, | 
 | 				  &ifx_dev->flags); | 
 | 			tasklet_schedule(&ifx_dev->io_work_tasklet); | 
 | 			return; | 
 | 		} | 
 | 	} else | 
 | 		ifx_dev->write_pending = 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_free_port	-	free up the tty side | 
 |  *	@ifx_dev: IFX device going away | 
 |  * | 
 |  *	Unregister and free up a port when the device goes away | 
 |  */ | 
 | static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	if (ifx_dev->tty_dev) | 
 | 		tty_unregister_device(tty_drv, ifx_dev->minor); | 
 | 	tty_port_destroy(&ifx_dev->tty_port); | 
 | 	kfifo_free(&ifx_dev->tx_fifo); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_create_port	-	create a new port | 
 |  *	@ifx_dev: our spi device | 
 |  * | 
 |  *	Allocate and initialise the tty port that goes with this interface | 
 |  *	and add it to the tty layer so that it can be opened. | 
 |  */ | 
 | static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct tty_port *pport = &ifx_dev->tty_port; | 
 |  | 
 | 	spin_lock_init(&ifx_dev->fifo_lock); | 
 | 	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock, | 
 | 		&ifx_spi_key, 0); | 
 |  | 
 | 	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error_ret; | 
 | 	} | 
 |  | 
 | 	tty_port_init(pport); | 
 | 	pport->ops = &ifx_tty_port_ops; | 
 | 	ifx_dev->minor = IFX_SPI_TTY_ID; | 
 | 	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv, | 
 | 			ifx_dev->minor, &ifx_dev->spi_dev->dev); | 
 | 	if (IS_ERR(ifx_dev->tty_dev)) { | 
 | 		dev_dbg(&ifx_dev->spi_dev->dev, | 
 | 			"%s: registering tty device failed", __func__); | 
 | 		ret = PTR_ERR(ifx_dev->tty_dev); | 
 | 		goto error_port; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | error_port: | 
 | 	tty_port_destroy(pport); | 
 | error_ret: | 
 | 	ifx_spi_free_port(ifx_dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_handle_srdy		-	handle SRDY | 
 |  *	@ifx_dev: device asserting SRDY | 
 |  * | 
 |  *	Check our device state and see what we need to kick off when SRDY | 
 |  *	is asserted. This usually means killing the timer and firing off the | 
 |  *	I/O processing. | 
 |  */ | 
 | static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) { | 
 | 		del_timer(&ifx_dev->spi_timer); | 
 | 		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); | 
 | 	} | 
 |  | 
 | 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY); | 
 |  | 
 | 	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) | 
 | 		tasklet_schedule(&ifx_dev->io_work_tasklet); | 
 | 	else | 
 | 		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_srdy_interrupt	-	SRDY asserted | 
 |  *	@irq: our IRQ number | 
 |  *	@dev: our ifx device | 
 |  * | 
 |  *	The modem asserted SRDY. Handle the srdy event | 
 |  */ | 
 | static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = dev; | 
 | 	ifx_dev->gpio.unack_srdy_int_nb++; | 
 | 	ifx_spi_handle_srdy(ifx_dev); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_reset_interrupt	-	Modem has changed reset state | 
 |  *	@irq: interrupt number | 
 |  *	@dev: our device pointer | 
 |  * | 
 |  *	The modem has either entered or left reset state. Check the GPIO | 
 |  *	line to see which. | 
 |  * | 
 |  *	FIXME: review locking on MR_INPROGRESS versus | 
 |  *	parallel unsolicited reset/solicited reset | 
 |  */ | 
 | static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = dev; | 
 | 	int val = gpio_get_value(ifx_dev->gpio.reset_out); | 
 | 	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state); | 
 |  | 
 | 	if (val == 0) { | 
 | 		/* entered reset */ | 
 | 		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state); | 
 | 		if (!solreset) { | 
 | 			/* unsolicited reset  */ | 
 | 			tty_port_tty_hangup(&ifx_dev->tty_port, false); | 
 | 		} | 
 | 	} else { | 
 | 		/* exited reset */ | 
 | 		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state); | 
 | 		if (solreset) { | 
 | 			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state); | 
 | 			wake_up(&ifx_dev->mdm_reset_wait); | 
 | 		} | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_free_device - free device | 
 |  *	@ifx_dev: device to free | 
 |  * | 
 |  *	Free the IFX device | 
 |  */ | 
 | static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	ifx_spi_free_port(ifx_dev); | 
 | 	dma_free_coherent(&ifx_dev->spi_dev->dev, | 
 | 				IFX_SPI_TRANSFER_SIZE, | 
 | 				ifx_dev->tx_buffer, | 
 | 				ifx_dev->tx_bus); | 
 | 	dma_free_coherent(&ifx_dev->spi_dev->dev, | 
 | 				IFX_SPI_TRANSFER_SIZE, | 
 | 				ifx_dev->rx_buffer, | 
 | 				ifx_dev->rx_bus); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_reset	-	reset modem | 
 |  *	@ifx_dev: modem to reset | 
 |  * | 
 |  *	Perform a reset on the modem | 
 |  */ | 
 | static int ifx_spi_reset(struct ifx_spi_device *ifx_dev) | 
 | { | 
 | 	int ret; | 
 | 	/* | 
 | 	 * set up modem power, reset | 
 | 	 * | 
 | 	 * delays are required on some platforms for the modem | 
 | 	 * to reset properly | 
 | 	 */ | 
 | 	set_bit(MR_START, &ifx_dev->mdm_reset_state); | 
 | 	gpio_set_value(ifx_dev->gpio.po, 0); | 
 | 	gpio_set_value(ifx_dev->gpio.reset, 0); | 
 | 	msleep(25); | 
 | 	gpio_set_value(ifx_dev->gpio.reset, 1); | 
 | 	msleep(1); | 
 | 	gpio_set_value(ifx_dev->gpio.po, 1); | 
 | 	msleep(1); | 
 | 	gpio_set_value(ifx_dev->gpio.po, 0); | 
 | 	ret = wait_event_timeout(ifx_dev->mdm_reset_wait, | 
 | 				 test_bit(MR_COMPLETE, | 
 | 					  &ifx_dev->mdm_reset_state), | 
 | 				 IFX_RESET_TIMEOUT); | 
 | 	if (!ret) | 
 | 		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)", | 
 | 			 ifx_dev->mdm_reset_state); | 
 |  | 
 | 	ifx_dev->mdm_reset_state = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_spi_probe	-	probe callback | 
 |  *	@spi: our possible matching SPI device | 
 |  * | 
 |  *	Probe for a 6x60 modem on SPI bus. Perform any needed device and | 
 |  *	GPIO setup. | 
 |  * | 
 |  *	FIXME: | 
 |  *	-	Support for multiple devices | 
 |  *	-	Split out MID specific GPIO handling eventually | 
 |  */ | 
 |  | 
 | static int ifx_spi_spi_probe(struct spi_device *spi) | 
 | { | 
 | 	int ret; | 
 | 	int srdy; | 
 | 	struct ifx_modem_platform_data *pl_data; | 
 | 	struct ifx_spi_device *ifx_dev; | 
 |  | 
 | 	if (saved_ifx_dev) { | 
 | 		dev_dbg(&spi->dev, "ignoring subsequent detection"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	pl_data = dev_get_platdata(&spi->dev); | 
 | 	if (!pl_data) { | 
 | 		dev_err(&spi->dev, "missing platform data!"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* initialize structure to hold our device variables */ | 
 | 	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL); | 
 | 	if (!ifx_dev) { | 
 | 		dev_err(&spi->dev, "spi device allocation failed"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	saved_ifx_dev = ifx_dev; | 
 | 	ifx_dev->spi_dev = spi; | 
 | 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags); | 
 | 	spin_lock_init(&ifx_dev->write_lock); | 
 | 	spin_lock_init(&ifx_dev->power_lock); | 
 | 	ifx_dev->power_status = 0; | 
 | 	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0); | 
 | 	ifx_dev->modem = pl_data->modem_type; | 
 | 	ifx_dev->use_dma = pl_data->use_dma; | 
 | 	ifx_dev->max_hz = pl_data->max_hz; | 
 | 	/* initialize spi mode, etc */ | 
 | 	spi->max_speed_hz = ifx_dev->max_hz; | 
 | 	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode); | 
 | 	spi->bits_per_word = spi_bpw; | 
 | 	ret = spi_setup(spi); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret); | 
 | 		kfree(ifx_dev); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* init swap_buf function according to word width configuration */ | 
 | 	if (spi->bits_per_word == 32) | 
 | 		ifx_dev->swap_buf = swap_buf_32; | 
 | 	else if (spi->bits_per_word == 16) | 
 | 		ifx_dev->swap_buf = swap_buf_16; | 
 | 	else | 
 | 		ifx_dev->swap_buf = swap_buf_8; | 
 |  | 
 | 	/* ensure SPI protocol flags are initialized to enable transfer */ | 
 | 	ifx_dev->spi_more = 0; | 
 | 	ifx_dev->spi_slave_cts = 0; | 
 |  | 
 | 	/*initialize transfer and dma buffers */ | 
 | 	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent, | 
 | 				IFX_SPI_TRANSFER_SIZE, | 
 | 				&ifx_dev->tx_bus, | 
 | 				GFP_KERNEL); | 
 | 	if (!ifx_dev->tx_buffer) { | 
 | 		dev_err(&spi->dev, "DMA-TX buffer allocation failed"); | 
 | 		ret = -ENOMEM; | 
 | 		goto error_ret; | 
 | 	} | 
 | 	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent, | 
 | 				IFX_SPI_TRANSFER_SIZE, | 
 | 				&ifx_dev->rx_bus, | 
 | 				GFP_KERNEL); | 
 | 	if (!ifx_dev->rx_buffer) { | 
 | 		dev_err(&spi->dev, "DMA-RX buffer allocation failed"); | 
 | 		ret = -ENOMEM; | 
 | 		goto error_ret; | 
 | 	} | 
 |  | 
 | 	/* initialize waitq for modem reset */ | 
 | 	init_waitqueue_head(&ifx_dev->mdm_reset_wait); | 
 |  | 
 | 	spi_set_drvdata(spi, ifx_dev); | 
 | 	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io, | 
 | 						(unsigned long)ifx_dev); | 
 |  | 
 | 	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags); | 
 |  | 
 | 	/* create our tty port */ | 
 | 	ret = ifx_spi_create_port(ifx_dev); | 
 | 	if (ret != 0) { | 
 | 		dev_err(&spi->dev, "create default tty port failed"); | 
 | 		goto error_ret; | 
 | 	} | 
 |  | 
 | 	ifx_dev->gpio.reset = pl_data->rst_pmu; | 
 | 	ifx_dev->gpio.po = pl_data->pwr_on; | 
 | 	ifx_dev->gpio.mrdy = pl_data->mrdy; | 
 | 	ifx_dev->gpio.srdy = pl_data->srdy; | 
 | 	ifx_dev->gpio.reset_out = pl_data->rst_out; | 
 |  | 
 | 	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d", | 
 | 		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy, | 
 | 		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out); | 
 |  | 
 | 	/* Configure gpios */ | 
 | 	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem"); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)", | 
 | 			ifx_dev->gpio.reset); | 
 | 		goto error_ret; | 
 | 	} | 
 | 	ret += gpio_direction_output(ifx_dev->gpio.reset, 0); | 
 | 	ret += gpio_export(ifx_dev->gpio.reset, 1); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)", | 
 | 			ifx_dev->gpio.reset); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret2; | 
 | 	} | 
 |  | 
 | 	ret = gpio_request(ifx_dev->gpio.po, "ifxModem"); | 
 | 	ret += gpio_direction_output(ifx_dev->gpio.po, 0); | 
 | 	ret += gpio_export(ifx_dev->gpio.po, 1); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)", | 
 | 			ifx_dev->gpio.po); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret3; | 
 | 	} | 
 |  | 
 | 	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem"); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)", | 
 | 			ifx_dev->gpio.mrdy); | 
 | 		goto error_ret3; | 
 | 	} | 
 | 	ret += gpio_export(ifx_dev->gpio.mrdy, 1); | 
 | 	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)", | 
 | 			ifx_dev->gpio.mrdy); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret4; | 
 | 	} | 
 |  | 
 | 	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem"); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)", | 
 | 			ifx_dev->gpio.srdy); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret4; | 
 | 	} | 
 | 	ret += gpio_export(ifx_dev->gpio.srdy, 1); | 
 | 	ret += gpio_direction_input(ifx_dev->gpio.srdy); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)", | 
 | 			ifx_dev->gpio.srdy); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret5; | 
 | 	} | 
 |  | 
 | 	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem"); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)", | 
 | 			ifx_dev->gpio.reset_out); | 
 | 		goto error_ret5; | 
 | 	} | 
 | 	ret += gpio_export(ifx_dev->gpio.reset_out, 1); | 
 | 	ret += gpio_direction_input(ifx_dev->gpio.reset_out); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)", | 
 | 			ifx_dev->gpio.reset_out); | 
 | 		ret = -EBUSY; | 
 | 		goto error_ret6; | 
 | 	} | 
 |  | 
 | 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out), | 
 | 			  ifx_spi_reset_interrupt, | 
 | 			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME, | 
 | 			  ifx_dev); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to get irq %x\n", | 
 | 			gpio_to_irq(ifx_dev->gpio.reset_out)); | 
 | 		goto error_ret6; | 
 | 	} | 
 |  | 
 | 	ret = ifx_spi_reset(ifx_dev); | 
 |  | 
 | 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy), | 
 | 			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME, | 
 | 			  ifx_dev); | 
 | 	if (ret) { | 
 | 		dev_err(&spi->dev, "Unable to get irq %x", | 
 | 			gpio_to_irq(ifx_dev->gpio.srdy)); | 
 | 		goto error_ret7; | 
 | 	} | 
 |  | 
 | 	/* set pm runtime power state and register with power system */ | 
 | 	pm_runtime_set_active(&spi->dev); | 
 | 	pm_runtime_enable(&spi->dev); | 
 |  | 
 | 	/* handle case that modem is already signaling SRDY */ | 
 | 	/* no outgoing tty open at this point, this just satisfies the | 
 | 	 * modem's read and should reset communication properly | 
 | 	 */ | 
 | 	srdy = gpio_get_value(ifx_dev->gpio.srdy); | 
 |  | 
 | 	if (srdy) { | 
 | 		mrdy_assert(ifx_dev); | 
 | 		ifx_spi_handle_srdy(ifx_dev); | 
 | 	} else | 
 | 		mrdy_set_low(ifx_dev); | 
 | 	return 0; | 
 |  | 
 | error_ret7: | 
 | 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev); | 
 | error_ret6: | 
 | 	gpio_free(ifx_dev->gpio.srdy); | 
 | error_ret5: | 
 | 	gpio_free(ifx_dev->gpio.mrdy); | 
 | error_ret4: | 
 | 	gpio_free(ifx_dev->gpio.reset); | 
 | error_ret3: | 
 | 	gpio_free(ifx_dev->gpio.po); | 
 | error_ret2: | 
 | 	gpio_free(ifx_dev->gpio.reset_out); | 
 | error_ret: | 
 | 	ifx_spi_free_device(ifx_dev); | 
 | 	saved_ifx_dev = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_spi_remove	-	SPI device was removed | 
 |  *	@spi: SPI device | 
 |  * | 
 |  *	FIXME: We should be shutting the device down here not in | 
 |  *	the module unload path. | 
 |  */ | 
 |  | 
 | static int ifx_spi_spi_remove(struct spi_device *spi) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi); | 
 | 	/* stop activity */ | 
 | 	tasklet_kill(&ifx_dev->io_work_tasklet); | 
 | 	/* free irq */ | 
 | 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev); | 
 | 	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev); | 
 |  | 
 | 	gpio_free(ifx_dev->gpio.srdy); | 
 | 	gpio_free(ifx_dev->gpio.mrdy); | 
 | 	gpio_free(ifx_dev->gpio.reset); | 
 | 	gpio_free(ifx_dev->gpio.po); | 
 | 	gpio_free(ifx_dev->gpio.reset_out); | 
 |  | 
 | 	/* free allocations */ | 
 | 	ifx_spi_free_device(ifx_dev); | 
 |  | 
 | 	saved_ifx_dev = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_spi_shutdown	-	called on SPI shutdown | 
 |  *	@spi: SPI device | 
 |  * | 
 |  *	No action needs to be taken here | 
 |  */ | 
 |  | 
 | static void ifx_spi_spi_shutdown(struct spi_device *spi) | 
 | { | 
 | 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi); | 
 |  | 
 | 	ifx_modem_power_off(ifx_dev); | 
 | } | 
 |  | 
 | /* | 
 |  * various suspends and resumes have nothing to do | 
 |  * no hardware to save state for | 
 |  */ | 
 |  | 
 | /** | 
 |  *	ifx_spi_pm_suspend	-	suspend modem on system suspend | 
 |  *	@dev: device being suspended | 
 |  * | 
 |  *	Suspend the modem. No action needed on Intel MID platforms, may | 
 |  *	need extending for other systems. | 
 |  */ | 
 | static int ifx_spi_pm_suspend(struct device *dev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_pm_resume	-	resume modem on system resume | 
 |  *	@dev: device being suspended | 
 |  * | 
 |  *	Allow the modem to resume. No action needed. | 
 |  * | 
 |  *	FIXME: do we need to reset anything here ? | 
 |  */ | 
 | static int ifx_spi_pm_resume(struct device *dev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_pm_runtime_resume	-	suspend modem | 
 |  *	@dev: device being suspended | 
 |  * | 
 |  *	Allow the modem to resume. No action needed. | 
 |  */ | 
 | static int ifx_spi_pm_runtime_resume(struct device *dev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_pm_runtime_suspend	-	suspend modem | 
 |  *	@dev: device being suspended | 
 |  * | 
 |  *	Allow the modem to suspend and thus suspend to continue up the | 
 |  *	device tree. | 
 |  */ | 
 | static int ifx_spi_pm_runtime_suspend(struct device *dev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_pm_runtime_idle		-	check if modem idle | 
 |  *	@dev: our device | 
 |  * | 
 |  *	Check conditions and queue runtime suspend if idle. | 
 |  */ | 
 | static int ifx_spi_pm_runtime_idle(struct device *dev) | 
 | { | 
 | 	struct spi_device *spi = to_spi_device(dev); | 
 | 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi); | 
 |  | 
 | 	if (!ifx_dev->power_status) | 
 | 		pm_runtime_suspend(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops ifx_spi_pm = { | 
 | 	.resume = ifx_spi_pm_resume, | 
 | 	.suspend = ifx_spi_pm_suspend, | 
 | 	.runtime_resume = ifx_spi_pm_runtime_resume, | 
 | 	.runtime_suspend = ifx_spi_pm_runtime_suspend, | 
 | 	.runtime_idle = ifx_spi_pm_runtime_idle | 
 | }; | 
 |  | 
 | static const struct spi_device_id ifx_id_table[] = { | 
 | 	{"ifx6160", 0}, | 
 | 	{"ifx6260", 0}, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(spi, ifx_id_table); | 
 |  | 
 | /* spi operations */ | 
 | static struct spi_driver ifx_spi_driver = { | 
 | 	.driver = { | 
 | 		.name = DRVNAME, | 
 | 		.pm = &ifx_spi_pm, | 
 | 	}, | 
 | 	.probe = ifx_spi_spi_probe, | 
 | 	.shutdown = ifx_spi_spi_shutdown, | 
 | 	.remove = ifx_spi_spi_remove, | 
 | 	.id_table = ifx_id_table | 
 | }; | 
 |  | 
 | /** | 
 |  *	ifx_spi_exit	-	module exit | 
 |  * | 
 |  *	Unload the module. | 
 |  */ | 
 |  | 
 | static void __exit ifx_spi_exit(void) | 
 | { | 
 | 	/* unregister */ | 
 | 	spi_unregister_driver(&ifx_spi_driver); | 
 | 	tty_unregister_driver(tty_drv); | 
 | 	put_tty_driver(tty_drv); | 
 | 	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block); | 
 | } | 
 |  | 
 | /** | 
 |  *	ifx_spi_init		-	module entry point | 
 |  * | 
 |  *	Initialise the SPI and tty interfaces for the IFX SPI driver | 
 |  *	We need to initialize upper-edge spi driver after the tty | 
 |  *	driver because otherwise the spi probe will race | 
 |  */ | 
 |  | 
 | static int __init ifx_spi_init(void) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	tty_drv = alloc_tty_driver(1); | 
 | 	if (!tty_drv) { | 
 | 		pr_err("%s: alloc_tty_driver failed", DRVNAME); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	tty_drv->driver_name = DRVNAME; | 
 | 	tty_drv->name = TTYNAME; | 
 | 	tty_drv->minor_start = IFX_SPI_TTY_ID; | 
 | 	tty_drv->type = TTY_DRIVER_TYPE_SERIAL; | 
 | 	tty_drv->subtype = SERIAL_TYPE_NORMAL; | 
 | 	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; | 
 | 	tty_drv->init_termios = tty_std_termios; | 
 |  | 
 | 	tty_set_operations(tty_drv, &ifx_spi_serial_ops); | 
 |  | 
 | 	result = tty_register_driver(tty_drv); | 
 | 	if (result) { | 
 | 		pr_err("%s: tty_register_driver failed(%d)", | 
 | 			DRVNAME, result); | 
 | 		goto err_free_tty; | 
 | 	} | 
 |  | 
 | 	result = spi_register_driver(&ifx_spi_driver); | 
 | 	if (result) { | 
 | 		pr_err("%s: spi_register_driver failed(%d)", | 
 | 			DRVNAME, result); | 
 | 		goto err_unreg_tty; | 
 | 	} | 
 |  | 
 | 	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block); | 
 | 	if (result) { | 
 | 		pr_err("%s: register ifx modem reboot notifier failed(%d)", | 
 | 			DRVNAME, result); | 
 | 		goto err_unreg_spi; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | err_unreg_spi: | 
 | 	spi_unregister_driver(&ifx_spi_driver); | 
 | err_unreg_tty: | 
 | 	tty_unregister_driver(tty_drv); | 
 | err_free_tty: | 
 | 	put_tty_driver(tty_drv); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | module_init(ifx_spi_init); | 
 | module_exit(ifx_spi_exit); | 
 |  | 
 | MODULE_AUTHOR("Intel"); | 
 | MODULE_DESCRIPTION("IFX6x60 spi driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_INFO(Version, "0.1-IFX6x60"); |