|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Request reply cache. This is currently a global cache, but this may | 
|  | * change in the future and be a per-client cache. | 
|  | * | 
|  | * This code is heavily inspired by the 44BSD implementation, although | 
|  | * it does things a bit differently. | 
|  | * | 
|  | * Copyright (C) 1995, 1996 Olaf Kirch <[email protected]> | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sunrpc/addr.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/hash.h> | 
|  | #include <net/checksum.h> | 
|  |  | 
|  | #include "nfsd.h" | 
|  | #include "cache.h" | 
|  |  | 
|  | #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE | 
|  |  | 
|  | /* | 
|  | * We use this value to determine the number of hash buckets from the max | 
|  | * cache size, the idea being that when the cache is at its maximum number | 
|  | * of entries, then this should be the average number of entries per bucket. | 
|  | */ | 
|  | #define TARGET_BUCKET_SIZE	64 | 
|  |  | 
|  | struct nfsd_drc_bucket { | 
|  | struct list_head lru_head; | 
|  | spinlock_t cache_lock; | 
|  | }; | 
|  |  | 
|  | static struct nfsd_drc_bucket	*drc_hashtbl; | 
|  | static struct kmem_cache	*drc_slab; | 
|  |  | 
|  | /* max number of entries allowed in the cache */ | 
|  | static unsigned int		max_drc_entries; | 
|  |  | 
|  | /* number of significant bits in the hash value */ | 
|  | static unsigned int		maskbits; | 
|  | static unsigned int		drc_hashsize; | 
|  |  | 
|  | /* | 
|  | * Stats and other tracking of on the duplicate reply cache. All of these and | 
|  | * the "rc" fields in nfsdstats are protected by the cache_lock | 
|  | */ | 
|  |  | 
|  | /* total number of entries */ | 
|  | static atomic_t			num_drc_entries; | 
|  |  | 
|  | /* cache misses due only to checksum comparison failures */ | 
|  | static unsigned int		payload_misses; | 
|  |  | 
|  | /* amount of memory (in bytes) currently consumed by the DRC */ | 
|  | static unsigned int		drc_mem_usage; | 
|  |  | 
|  | /* longest hash chain seen */ | 
|  | static unsigned int		longest_chain; | 
|  |  | 
|  | /* size of cache when we saw the longest hash chain */ | 
|  | static unsigned int		longest_chain_cachesize; | 
|  |  | 
|  | static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); | 
|  | static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc); | 
|  | static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc); | 
|  |  | 
|  | static struct shrinker nfsd_reply_cache_shrinker = { | 
|  | .scan_objects = nfsd_reply_cache_scan, | 
|  | .count_objects = nfsd_reply_cache_count, | 
|  | .seeks	= 1, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Put a cap on the size of the DRC based on the amount of available | 
|  | * low memory in the machine. | 
|  | * | 
|  | *  64MB:    8192 | 
|  | * 128MB:   11585 | 
|  | * 256MB:   16384 | 
|  | * 512MB:   23170 | 
|  | *   1GB:   32768 | 
|  | *   2GB:   46340 | 
|  | *   4GB:   65536 | 
|  | *   8GB:   92681 | 
|  | *  16GB:  131072 | 
|  | * | 
|  | * ...with a hard cap of 256k entries. In the worst case, each entry will be | 
|  | * ~1k, so the above numbers should give a rough max of the amount of memory | 
|  | * used in k. | 
|  | */ | 
|  | static unsigned int | 
|  | nfsd_cache_size_limit(void) | 
|  | { | 
|  | unsigned int limit; | 
|  | unsigned long low_pages = totalram_pages - totalhigh_pages; | 
|  |  | 
|  | limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); | 
|  | return min_t(unsigned int, limit, 256*1024); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the number of hash buckets we need. Divide the max cachesize by | 
|  | * the "target" max bucket size, and round up to next power of two. | 
|  | */ | 
|  | static unsigned int | 
|  | nfsd_hashsize(unsigned int limit) | 
|  | { | 
|  | return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | nfsd_cache_hash(__be32 xid) | 
|  | { | 
|  | return hash_32(be32_to_cpu(xid), maskbits); | 
|  | } | 
|  |  | 
|  | static struct svc_cacherep * | 
|  | nfsd_reply_cache_alloc(void) | 
|  | { | 
|  | struct svc_cacherep	*rp; | 
|  |  | 
|  | rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); | 
|  | if (rp) { | 
|  | rp->c_state = RC_UNUSED; | 
|  | rp->c_type = RC_NOCACHE; | 
|  | INIT_LIST_HEAD(&rp->c_lru); | 
|  | } | 
|  | return rp; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nfsd_reply_cache_free_locked(struct svc_cacherep *rp) | 
|  | { | 
|  | if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { | 
|  | drc_mem_usage -= rp->c_replvec.iov_len; | 
|  | kfree(rp->c_replvec.iov_base); | 
|  | } | 
|  | list_del(&rp->c_lru); | 
|  | atomic_dec(&num_drc_entries); | 
|  | drc_mem_usage -= sizeof(*rp); | 
|  | kmem_cache_free(drc_slab, rp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) | 
|  | { | 
|  | spin_lock(&b->cache_lock); | 
|  | nfsd_reply_cache_free_locked(rp); | 
|  | spin_unlock(&b->cache_lock); | 
|  | } | 
|  |  | 
|  | int nfsd_reply_cache_init(void) | 
|  | { | 
|  | unsigned int hashsize; | 
|  | unsigned int i; | 
|  | int status = 0; | 
|  |  | 
|  | max_drc_entries = nfsd_cache_size_limit(); | 
|  | atomic_set(&num_drc_entries, 0); | 
|  | hashsize = nfsd_hashsize(max_drc_entries); | 
|  | maskbits = ilog2(hashsize); | 
|  |  | 
|  | status = register_shrinker(&nfsd_reply_cache_shrinker); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), | 
|  | 0, 0, NULL); | 
|  | if (!drc_slab) | 
|  | goto out_nomem; | 
|  |  | 
|  | drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL); | 
|  | if (!drc_hashtbl) { | 
|  | drc_hashtbl = vzalloc(array_size(hashsize, | 
|  | sizeof(*drc_hashtbl))); | 
|  | if (!drc_hashtbl) | 
|  | goto out_nomem; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < hashsize; i++) { | 
|  | INIT_LIST_HEAD(&drc_hashtbl[i].lru_head); | 
|  | spin_lock_init(&drc_hashtbl[i].cache_lock); | 
|  | } | 
|  | drc_hashsize = hashsize; | 
|  |  | 
|  | return 0; | 
|  | out_nomem: | 
|  | printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); | 
|  | nfsd_reply_cache_shutdown(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void nfsd_reply_cache_shutdown(void) | 
|  | { | 
|  | struct svc_cacherep	*rp; | 
|  | unsigned int i; | 
|  |  | 
|  | unregister_shrinker(&nfsd_reply_cache_shrinker); | 
|  |  | 
|  | for (i = 0; i < drc_hashsize; i++) { | 
|  | struct list_head *head = &drc_hashtbl[i].lru_head; | 
|  | while (!list_empty(head)) { | 
|  | rp = list_first_entry(head, struct svc_cacherep, c_lru); | 
|  | nfsd_reply_cache_free_locked(rp); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvfree(drc_hashtbl); | 
|  | drc_hashtbl = NULL; | 
|  | drc_hashsize = 0; | 
|  |  | 
|  | kmem_cache_destroy(drc_slab); | 
|  | drc_slab = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move cache entry to end of LRU list, and queue the cleaner to run if it's | 
|  | * not already scheduled. | 
|  | */ | 
|  | static void | 
|  | lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) | 
|  | { | 
|  | rp->c_timestamp = jiffies; | 
|  | list_move_tail(&rp->c_lru, &b->lru_head); | 
|  | } | 
|  |  | 
|  | static long | 
|  | prune_bucket(struct nfsd_drc_bucket *b) | 
|  | { | 
|  | struct svc_cacherep *rp, *tmp; | 
|  | long freed = 0; | 
|  |  | 
|  | list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { | 
|  | /* | 
|  | * Don't free entries attached to calls that are still | 
|  | * in-progress, but do keep scanning the list. | 
|  | */ | 
|  | if (rp->c_state == RC_INPROG) | 
|  | continue; | 
|  | if (atomic_read(&num_drc_entries) <= max_drc_entries && | 
|  | time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) | 
|  | break; | 
|  | nfsd_reply_cache_free_locked(rp); | 
|  | freed++; | 
|  | } | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the LRU list and prune off entries that are older than RC_EXPIRE. | 
|  | * Also prune the oldest ones when the total exceeds the max number of entries. | 
|  | */ | 
|  | static long | 
|  | prune_cache_entries(void) | 
|  | { | 
|  | unsigned int i; | 
|  | long freed = 0; | 
|  |  | 
|  | for (i = 0; i < drc_hashsize; i++) { | 
|  | struct nfsd_drc_bucket *b = &drc_hashtbl[i]; | 
|  |  | 
|  | if (list_empty(&b->lru_head)) | 
|  | continue; | 
|  | spin_lock(&b->cache_lock); | 
|  | freed += prune_bucket(b); | 
|  | spin_unlock(&b->cache_lock); | 
|  | } | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | return atomic_read(&num_drc_entries); | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | return prune_cache_entries(); | 
|  | } | 
|  | /* | 
|  | * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes | 
|  | */ | 
|  | static __wsum | 
|  | nfsd_cache_csum(struct svc_rqst *rqstp) | 
|  | { | 
|  | int idx; | 
|  | unsigned int base; | 
|  | __wsum csum; | 
|  | struct xdr_buf *buf = &rqstp->rq_arg; | 
|  | const unsigned char *p = buf->head[0].iov_base; | 
|  | size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, | 
|  | RC_CSUMLEN); | 
|  | size_t len = min(buf->head[0].iov_len, csum_len); | 
|  |  | 
|  | /* rq_arg.head first */ | 
|  | csum = csum_partial(p, len, 0); | 
|  | csum_len -= len; | 
|  |  | 
|  | /* Continue into page array */ | 
|  | idx = buf->page_base / PAGE_SIZE; | 
|  | base = buf->page_base & ~PAGE_MASK; | 
|  | while (csum_len) { | 
|  | p = page_address(buf->pages[idx]) + base; | 
|  | len = min_t(size_t, PAGE_SIZE - base, csum_len); | 
|  | csum = csum_partial(p, len, csum); | 
|  | csum_len -= len; | 
|  | base = 0; | 
|  | ++idx; | 
|  | } | 
|  | return csum; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp) | 
|  | { | 
|  | /* Check RPC XID first */ | 
|  | if (rqstp->rq_xid != rp->c_xid) | 
|  | return false; | 
|  | /* compare checksum of NFS data */ | 
|  | if (csum != rp->c_csum) { | 
|  | ++payload_misses; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Other discriminators */ | 
|  | if (rqstp->rq_proc != rp->c_proc || | 
|  | rqstp->rq_prot != rp->c_prot || | 
|  | rqstp->rq_vers != rp->c_vers || | 
|  | rqstp->rq_arg.len != rp->c_len || | 
|  | !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) || | 
|  | rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the request hash for an entry that matches the given rqstp. | 
|  | * Must be called with cache_lock held. Returns the found entry or | 
|  | * NULL on failure. | 
|  | */ | 
|  | static struct svc_cacherep * | 
|  | nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp, | 
|  | __wsum csum) | 
|  | { | 
|  | struct svc_cacherep	*rp, *ret = NULL; | 
|  | struct list_head 	*rh = &b->lru_head; | 
|  | unsigned int		entries = 0; | 
|  |  | 
|  | list_for_each_entry(rp, rh, c_lru) { | 
|  | ++entries; | 
|  | if (nfsd_cache_match(rqstp, csum, rp)) { | 
|  | ret = rp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* tally hash chain length stats */ | 
|  | if (entries > longest_chain) { | 
|  | longest_chain = entries; | 
|  | longest_chain_cachesize = atomic_read(&num_drc_entries); | 
|  | } else if (entries == longest_chain) { | 
|  | /* prefer to keep the smallest cachesize possible here */ | 
|  | longest_chain_cachesize = min_t(unsigned int, | 
|  | longest_chain_cachesize, | 
|  | atomic_read(&num_drc_entries)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to find an entry matching the current call in the cache. When none | 
|  | * is found, we try to grab the oldest expired entry off the LRU list. If | 
|  | * a suitable one isn't there, then drop the cache_lock and allocate a | 
|  | * new one, then search again in case one got inserted while this thread | 
|  | * didn't hold the lock. | 
|  | */ | 
|  | int | 
|  | nfsd_cache_lookup(struct svc_rqst *rqstp) | 
|  | { | 
|  | struct svc_cacherep	*rp, *found; | 
|  | __be32			xid = rqstp->rq_xid; | 
|  | u32			proto =  rqstp->rq_prot, | 
|  | vers = rqstp->rq_vers, | 
|  | proc = rqstp->rq_proc; | 
|  | __wsum			csum; | 
|  | u32 hash = nfsd_cache_hash(xid); | 
|  | struct nfsd_drc_bucket *b = &drc_hashtbl[hash]; | 
|  | int type = rqstp->rq_cachetype; | 
|  | int rtn = RC_DOIT; | 
|  |  | 
|  | rqstp->rq_cacherep = NULL; | 
|  | if (type == RC_NOCACHE) { | 
|  | nfsdstats.rcnocache++; | 
|  | return rtn; | 
|  | } | 
|  |  | 
|  | csum = nfsd_cache_csum(rqstp); | 
|  |  | 
|  | /* | 
|  | * Since the common case is a cache miss followed by an insert, | 
|  | * preallocate an entry. | 
|  | */ | 
|  | rp = nfsd_reply_cache_alloc(); | 
|  | spin_lock(&b->cache_lock); | 
|  | if (likely(rp)) { | 
|  | atomic_inc(&num_drc_entries); | 
|  | drc_mem_usage += sizeof(*rp); | 
|  | } | 
|  |  | 
|  | /* go ahead and prune the cache */ | 
|  | prune_bucket(b); | 
|  |  | 
|  | found = nfsd_cache_search(b, rqstp, csum); | 
|  | if (found) { | 
|  | if (likely(rp)) | 
|  | nfsd_reply_cache_free_locked(rp); | 
|  | rp = found; | 
|  | goto found_entry; | 
|  | } | 
|  |  | 
|  | if (!rp) { | 
|  | dprintk("nfsd: unable to allocate DRC entry!\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nfsdstats.rcmisses++; | 
|  | rqstp->rq_cacherep = rp; | 
|  | rp->c_state = RC_INPROG; | 
|  | rp->c_xid = xid; | 
|  | rp->c_proc = proc; | 
|  | rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); | 
|  | rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); | 
|  | rp->c_prot = proto; | 
|  | rp->c_vers = vers; | 
|  | rp->c_len = rqstp->rq_arg.len; | 
|  | rp->c_csum = csum; | 
|  |  | 
|  | lru_put_end(b, rp); | 
|  |  | 
|  | /* release any buffer */ | 
|  | if (rp->c_type == RC_REPLBUFF) { | 
|  | drc_mem_usage -= rp->c_replvec.iov_len; | 
|  | kfree(rp->c_replvec.iov_base); | 
|  | rp->c_replvec.iov_base = NULL; | 
|  | } | 
|  | rp->c_type = RC_NOCACHE; | 
|  | out: | 
|  | spin_unlock(&b->cache_lock); | 
|  | return rtn; | 
|  |  | 
|  | found_entry: | 
|  | nfsdstats.rchits++; | 
|  | /* We found a matching entry which is either in progress or done. */ | 
|  | lru_put_end(b, rp); | 
|  |  | 
|  | rtn = RC_DROPIT; | 
|  | /* Request being processed */ | 
|  | if (rp->c_state == RC_INPROG) | 
|  | goto out; | 
|  |  | 
|  | /* From the hall of fame of impractical attacks: | 
|  | * Is this a user who tries to snoop on the cache? */ | 
|  | rtn = RC_DOIT; | 
|  | if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) | 
|  | goto out; | 
|  |  | 
|  | /* Compose RPC reply header */ | 
|  | switch (rp->c_type) { | 
|  | case RC_NOCACHE: | 
|  | break; | 
|  | case RC_REPLSTAT: | 
|  | svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); | 
|  | rtn = RC_REPLY; | 
|  | break; | 
|  | case RC_REPLBUFF: | 
|  | if (!nfsd_cache_append(rqstp, &rp->c_replvec)) | 
|  | goto out;	/* should not happen */ | 
|  | rtn = RC_REPLY; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); | 
|  | nfsd_reply_cache_free_locked(rp); | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update a cache entry. This is called from nfsd_dispatch when | 
|  | * the procedure has been executed and the complete reply is in | 
|  | * rqstp->rq_res. | 
|  | * | 
|  | * We're copying around data here rather than swapping buffers because | 
|  | * the toplevel loop requires max-sized buffers, which would be a waste | 
|  | * of memory for a cache with a max reply size of 100 bytes (diropokres). | 
|  | * | 
|  | * If we should start to use different types of cache entries tailored | 
|  | * specifically for attrstat and fh's, we may save even more space. | 
|  | * | 
|  | * Also note that a cachetype of RC_NOCACHE can legally be passed when | 
|  | * nfsd failed to encode a reply that otherwise would have been cached. | 
|  | * In this case, nfsd_cache_update is called with statp == NULL. | 
|  | */ | 
|  | void | 
|  | nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) | 
|  | { | 
|  | struct svc_cacherep *rp = rqstp->rq_cacherep; | 
|  | struct kvec	*resv = &rqstp->rq_res.head[0], *cachv; | 
|  | u32		hash; | 
|  | struct nfsd_drc_bucket *b; | 
|  | int		len; | 
|  | size_t		bufsize = 0; | 
|  |  | 
|  | if (!rp) | 
|  | return; | 
|  |  | 
|  | hash = nfsd_cache_hash(rp->c_xid); | 
|  | b = &drc_hashtbl[hash]; | 
|  |  | 
|  | len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); | 
|  | len >>= 2; | 
|  |  | 
|  | /* Don't cache excessive amounts of data and XDR failures */ | 
|  | if (!statp || len > (256 >> 2)) { | 
|  | nfsd_reply_cache_free(b, rp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (cachetype) { | 
|  | case RC_REPLSTAT: | 
|  | if (len != 1) | 
|  | printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); | 
|  | rp->c_replstat = *statp; | 
|  | break; | 
|  | case RC_REPLBUFF: | 
|  | cachv = &rp->c_replvec; | 
|  | bufsize = len << 2; | 
|  | cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); | 
|  | if (!cachv->iov_base) { | 
|  | nfsd_reply_cache_free(b, rp); | 
|  | return; | 
|  | } | 
|  | cachv->iov_len = bufsize; | 
|  | memcpy(cachv->iov_base, statp, bufsize); | 
|  | break; | 
|  | case RC_NOCACHE: | 
|  | nfsd_reply_cache_free(b, rp); | 
|  | return; | 
|  | } | 
|  | spin_lock(&b->cache_lock); | 
|  | drc_mem_usage += bufsize; | 
|  | lru_put_end(b, rp); | 
|  | rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); | 
|  | rp->c_type = cachetype; | 
|  | rp->c_state = RC_DONE; | 
|  | spin_unlock(&b->cache_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy cached reply to current reply buffer. Should always fit. | 
|  | * FIXME as reply is in a page, we should just attach the page, and | 
|  | * keep a refcount.... | 
|  | */ | 
|  | static int | 
|  | nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) | 
|  | { | 
|  | struct kvec	*vec = &rqstp->rq_res.head[0]; | 
|  |  | 
|  | if (vec->iov_len + data->iov_len > PAGE_SIZE) { | 
|  | printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", | 
|  | data->iov_len); | 
|  | return 0; | 
|  | } | 
|  | memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); | 
|  | vec->iov_len += data->iov_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that fields may be added, removed or reordered in the future. Programs | 
|  | * scraping this file for info should test the labels to ensure they're | 
|  | * getting the correct field. | 
|  | */ | 
|  | static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) | 
|  | { | 
|  | seq_printf(m, "max entries:           %u\n", max_drc_entries); | 
|  | seq_printf(m, "num entries:           %u\n", | 
|  | atomic_read(&num_drc_entries)); | 
|  | seq_printf(m, "hash buckets:          %u\n", 1 << maskbits); | 
|  | seq_printf(m, "mem usage:             %u\n", drc_mem_usage); | 
|  | seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits); | 
|  | seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses); | 
|  | seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache); | 
|  | seq_printf(m, "payload misses:        %u\n", payload_misses); | 
|  | seq_printf(m, "longest chain len:     %u\n", longest_chain); | 
|  | seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, nfsd_reply_cache_stats_show, NULL); | 
|  | } |