| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * An I2C driver for the Intersil ISL 12022 |
| * |
| * Author: Roman Fietze <[email protected]> |
| * |
| * Based on the Philips PCF8563 RTC |
| * by Alessandro Zummo <[email protected]>. |
| */ |
| |
| #include <linux/bcd.h> |
| #include <linux/bitfield.h> |
| #include <linux/clk-provider.h> |
| #include <linux/err.h> |
| #include <linux/hwmon.h> |
| #include <linux/i2c.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/rtc.h> |
| #include <linux/slab.h> |
| |
| #include <asm/byteorder.h> |
| |
| /* RTC - Real time clock registers */ |
| #define ISL12022_REG_SC 0x00 |
| #define ISL12022_REG_MN 0x01 |
| #define ISL12022_REG_HR 0x02 |
| #define ISL12022_REG_DT 0x03 |
| #define ISL12022_REG_MO 0x04 |
| #define ISL12022_REG_YR 0x05 |
| #define ISL12022_REG_DW 0x06 |
| |
| /* CSR - Control and status registers */ |
| #define ISL12022_REG_SR 0x07 |
| #define ISL12022_REG_INT 0x08 |
| #define ISL12022_REG_PWR_VBAT 0x0a |
| #define ISL12022_REG_BETA 0x0d |
| |
| /* ALARM - Alarm registers */ |
| #define ISL12022_REG_SCA0 0x10 |
| #define ISL12022_REG_MNA0 0x11 |
| #define ISL12022_REG_HRA0 0x12 |
| #define ISL12022_REG_DTA0 0x13 |
| #define ISL12022_REG_MOA0 0x14 |
| #define ISL12022_REG_DWA0 0x15 |
| #define ISL12022_ALARM ISL12022_REG_SCA0 |
| #define ISL12022_ALARM_LEN (ISL12022_REG_DWA0 - ISL12022_REG_SCA0 + 1) |
| |
| /* TEMP - Temperature sensor registers */ |
| #define ISL12022_REG_TEMP_L 0x28 |
| |
| /* ISL register bits */ |
| #define ISL12022_HR_MIL (1 << 7) /* military or 24 hour time */ |
| |
| #define ISL12022_SR_ALM (1 << 4) |
| #define ISL12022_SR_LBAT85 (1 << 2) |
| #define ISL12022_SR_LBAT75 (1 << 1) |
| |
| #define ISL12022_INT_ARST (1 << 7) |
| #define ISL12022_INT_WRTC (1 << 6) |
| #define ISL12022_INT_IM (1 << 5) |
| #define ISL12022_INT_FOBATB (1 << 4) |
| #define ISL12022_INT_FO_MASK GENMASK(3, 0) |
| #define ISL12022_INT_FO_OFF 0x0 |
| #define ISL12022_INT_FO_32K 0x1 |
| |
| #define ISL12022_REG_VB85_MASK GENMASK(5, 3) |
| #define ISL12022_REG_VB75_MASK GENMASK(2, 0) |
| |
| #define ISL12022_ALARM_ENABLE (1 << 7) /* for all ALARM registers */ |
| |
| #define ISL12022_BETA_TSE (1 << 7) |
| |
| static struct i2c_driver isl12022_driver; |
| |
| struct isl12022 { |
| struct rtc_device *rtc; |
| struct regmap *regmap; |
| int irq; |
| bool irq_enabled; |
| }; |
| |
| static umode_t isl12022_hwmon_is_visible(const void *data, |
| enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| if (type == hwmon_temp && attr == hwmon_temp_input) |
| return 0444; |
| |
| return 0; |
| } |
| |
| /* |
| * A user-initiated temperature conversion is not started by this function, |
| * so the temperature is updated once every ~60 seconds. |
| */ |
| static int isl12022_hwmon_read_temp(struct device *dev, long *mC) |
| { |
| struct regmap *regmap = dev_get_drvdata(dev); |
| int temp, ret; |
| __le16 buf; |
| |
| ret = regmap_bulk_read(regmap, ISL12022_REG_TEMP_L, &buf, sizeof(buf)); |
| if (ret) |
| return ret; |
| /* |
| * Temperature is represented as a 10-bit number, unit half-Kelvins. |
| */ |
| temp = le16_to_cpu(buf); |
| temp *= 500; |
| temp -= 273000; |
| |
| *mC = temp; |
| |
| return 0; |
| } |
| |
| static int isl12022_hwmon_read(struct device *dev, |
| enum hwmon_sensor_types type, |
| u32 attr, int channel, long *val) |
| { |
| if (type == hwmon_temp && attr == hwmon_temp_input) |
| return isl12022_hwmon_read_temp(dev, val); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct hwmon_channel_info * const isl12022_hwmon_info[] = { |
| HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT), |
| NULL |
| }; |
| |
| static const struct hwmon_ops isl12022_hwmon_ops = { |
| .is_visible = isl12022_hwmon_is_visible, |
| .read = isl12022_hwmon_read, |
| }; |
| |
| static const struct hwmon_chip_info isl12022_hwmon_chip_info = { |
| .ops = &isl12022_hwmon_ops, |
| .info = isl12022_hwmon_info, |
| }; |
| |
| static void isl12022_hwmon_register(struct device *dev) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| struct device *hwmon; |
| int ret; |
| |
| if (!IS_REACHABLE(CONFIG_HWMON)) |
| return; |
| |
| ret = regmap_update_bits(regmap, ISL12022_REG_BETA, |
| ISL12022_BETA_TSE, ISL12022_BETA_TSE); |
| if (ret) { |
| dev_warn(dev, "unable to enable temperature sensor\n"); |
| return; |
| } |
| |
| hwmon = devm_hwmon_device_register_with_info(dev, "isl12022", regmap, |
| &isl12022_hwmon_chip_info, |
| NULL); |
| if (IS_ERR(hwmon)) |
| dev_warn(dev, "unable to register hwmon device: %pe\n", hwmon); |
| } |
| |
| /* |
| * In the routines that deal directly with the isl12022 hardware, we use |
| * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch. |
| */ |
| static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| u8 buf[ISL12022_REG_INT + 1]; |
| int ret; |
| |
| ret = regmap_bulk_read(regmap, ISL12022_REG_SC, buf, sizeof(buf)); |
| if (ret) |
| return ret; |
| |
| dev_dbg(dev, |
| "raw data is sec=%02x, min=%02x, hr=%02x, mday=%02x, mon=%02x, year=%02x, wday=%02x, sr=%02x, int=%02x", |
| buf[ISL12022_REG_SC], |
| buf[ISL12022_REG_MN], |
| buf[ISL12022_REG_HR], |
| buf[ISL12022_REG_DT], |
| buf[ISL12022_REG_MO], |
| buf[ISL12022_REG_YR], |
| buf[ISL12022_REG_DW], |
| buf[ISL12022_REG_SR], |
| buf[ISL12022_REG_INT]); |
| |
| tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F); |
| tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F); |
| tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F); |
| tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F); |
| tm->tm_wday = buf[ISL12022_REG_DW] & 0x07; |
| tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1; |
| tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100; |
| |
| dev_dbg(dev, "%s: %ptR\n", __func__, tm); |
| |
| return 0; |
| } |
| |
| static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| int ret; |
| u8 buf[ISL12022_REG_DW + 1]; |
| |
| dev_dbg(dev, "%s: %ptR\n", __func__, tm); |
| |
| /* Ensure the write enable bit is set. */ |
| ret = regmap_update_bits(regmap, ISL12022_REG_INT, |
| ISL12022_INT_WRTC, ISL12022_INT_WRTC); |
| if (ret) |
| return ret; |
| |
| /* hours, minutes and seconds */ |
| buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec); |
| buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min); |
| buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL; |
| |
| buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday); |
| |
| /* month, 1 - 12 */ |
| buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1); |
| |
| /* year and century */ |
| buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100); |
| |
| buf[ISL12022_REG_DW] = tm->tm_wday & 0x07; |
| |
| return regmap_bulk_write(regmap, ISL12022_REG_SC, buf, sizeof(buf)); |
| } |
| |
| static int isl12022_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct rtc_time *tm = &alarm->time; |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| u8 buf[ISL12022_ALARM_LEN]; |
| unsigned int i, yr; |
| int ret; |
| |
| ret = regmap_bulk_read(regmap, ISL12022_ALARM, buf, sizeof(buf)); |
| if (ret) { |
| dev_dbg(dev, "%s: reading ALARM registers failed\n", |
| __func__); |
| return ret; |
| } |
| |
| /* The alarm doesn't store the year so get it from the rtc section */ |
| ret = regmap_read(regmap, ISL12022_REG_YR, &yr); |
| if (ret) { |
| dev_dbg(dev, "%s: reading YR register failed\n", __func__); |
| return ret; |
| } |
| |
| dev_dbg(dev, |
| "%s: sc=%02x, mn=%02x, hr=%02x, dt=%02x, mo=%02x, dw=%02x yr=%u\n", |
| __func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], yr); |
| |
| tm->tm_sec = bcd2bin(buf[ISL12022_REG_SCA0 - ISL12022_ALARM] & 0x7F); |
| tm->tm_min = bcd2bin(buf[ISL12022_REG_MNA0 - ISL12022_ALARM] & 0x7F); |
| tm->tm_hour = bcd2bin(buf[ISL12022_REG_HRA0 - ISL12022_ALARM] & 0x3F); |
| tm->tm_mday = bcd2bin(buf[ISL12022_REG_DTA0 - ISL12022_ALARM] & 0x3F); |
| tm->tm_mon = bcd2bin(buf[ISL12022_REG_MOA0 - ISL12022_ALARM] & 0x1F) - 1; |
| tm->tm_wday = buf[ISL12022_REG_DWA0 - ISL12022_ALARM] & 0x07; |
| tm->tm_year = bcd2bin(yr) + 100; |
| |
| for (i = 0; i < ISL12022_ALARM_LEN; i++) { |
| if (buf[i] & ISL12022_ALARM_ENABLE) { |
| alarm->enabled = 1; |
| break; |
| } |
| } |
| |
| dev_dbg(dev, "%s: %ptR\n", __func__, tm); |
| |
| return 0; |
| } |
| |
| static int isl12022_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct rtc_time *alarm_tm = &alarm->time; |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| u8 regs[ISL12022_ALARM_LEN] = { 0, }; |
| struct rtc_time rtc_tm; |
| int ret, enable, dw; |
| |
| ret = isl12022_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| return ret; |
| |
| /* If the alarm time is before the current time disable the alarm */ |
| if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0) |
| enable = 0; |
| else |
| enable = ISL12022_ALARM_ENABLE; |
| |
| /* |
| * Set non-matching day of the week to safeguard against early false |
| * matching while setting all the alarm registers (this rtc lacks a |
| * general alarm/irq enable/disable bit). |
| */ |
| ret = regmap_read(regmap, ISL12022_REG_DW, &dw); |
| if (ret) { |
| dev_dbg(dev, "%s: reading DW failed\n", __func__); |
| return ret; |
| } |
| /* ~4 days into the future should be enough to avoid match */ |
| dw = ((dw + 4) % 7) | ISL12022_ALARM_ENABLE; |
| ret = regmap_write(regmap, ISL12022_REG_DWA0, dw); |
| if (ret) { |
| dev_dbg(dev, "%s: writing DWA0 failed\n", __func__); |
| return ret; |
| } |
| |
| /* Program the alarm and enable it for each setting */ |
| regs[ISL12022_REG_SCA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_sec) | enable; |
| regs[ISL12022_REG_MNA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_min) | enable; |
| regs[ISL12022_REG_HRA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_hour) | enable; |
| regs[ISL12022_REG_DTA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mday) | enable; |
| regs[ISL12022_REG_MOA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mon + 1) | enable; |
| regs[ISL12022_REG_DWA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_wday & 7) | enable; |
| |
| /* write ALARM registers */ |
| ret = regmap_bulk_write(regmap, ISL12022_ALARM, ®s, sizeof(regs)); |
| if (ret) { |
| dev_dbg(dev, "%s: writing ALARM registers failed\n", __func__); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t isl12022_rtc_interrupt(int irq, void *data) |
| { |
| struct isl12022 *isl12022 = data; |
| struct rtc_device *rtc = isl12022->rtc; |
| struct device *dev = &rtc->dev; |
| struct regmap *regmap = isl12022->regmap; |
| u32 val = 0; |
| unsigned long events = 0; |
| int ret; |
| |
| ret = regmap_read(regmap, ISL12022_REG_SR, &val); |
| if (ret) { |
| dev_dbg(dev, "%s: reading SR failed\n", __func__); |
| return IRQ_HANDLED; |
| } |
| |
| if (val & ISL12022_SR_ALM) |
| events |= RTC_IRQF | RTC_AF; |
| |
| if (events & RTC_AF) |
| dev_dbg(dev, "alarm!\n"); |
| |
| if (!events) |
| return IRQ_NONE; |
| |
| rtc_update_irq(rtc, 1, events); |
| return IRQ_HANDLED; |
| } |
| |
| static int isl12022_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enabled) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| |
| /* Make sure enabled is 0 or 1 */ |
| enabled = !!enabled; |
| |
| if (isl12022->irq_enabled == enabled) |
| return 0; |
| |
| if (enabled) |
| enable_irq(isl12022->irq); |
| else |
| disable_irq(isl12022->irq); |
| |
| isl12022->irq_enabled = enabled; |
| |
| return 0; |
| } |
| |
| static int isl12022_setup_irq(struct device *dev, int irq) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| unsigned int reg_mask, reg_val; |
| u8 buf[ISL12022_ALARM_LEN] = { 0, }; |
| int ret; |
| |
| /* Clear and disable all alarm registers */ |
| ret = regmap_bulk_write(regmap, ISL12022_ALARM, buf, sizeof(buf)); |
| if (ret) |
| return ret; |
| |
| /* |
| * Enable automatic reset of ALM bit and enable single event interrupt |
| * mode. |
| */ |
| reg_mask = ISL12022_INT_ARST | ISL12022_INT_IM | ISL12022_INT_FO_MASK; |
| reg_val = ISL12022_INT_ARST | ISL12022_INT_FO_OFF; |
| ret = regmap_write_bits(regmap, ISL12022_REG_INT, |
| reg_mask, reg_val); |
| if (ret) |
| return ret; |
| |
| ret = devm_request_threaded_irq(dev, irq, NULL, |
| isl12022_rtc_interrupt, |
| IRQF_SHARED | IRQF_ONESHOT, |
| isl12022_driver.driver.name, |
| isl12022); |
| if (ret) |
| return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq); |
| |
| isl12022->irq = irq; |
| return 0; |
| } |
| |
| static int isl12022_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| u32 user, val; |
| int ret; |
| |
| switch (cmd) { |
| case RTC_VL_READ: |
| ret = regmap_read(regmap, ISL12022_REG_SR, &val); |
| if (ret) |
| return ret; |
| |
| user = 0; |
| if (val & ISL12022_SR_LBAT85) |
| user |= RTC_VL_BACKUP_LOW; |
| |
| if (val & ISL12022_SR_LBAT75) |
| user |= RTC_VL_BACKUP_EMPTY; |
| |
| return put_user(user, (u32 __user *)arg); |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| static const struct rtc_class_ops isl12022_rtc_ops = { |
| .ioctl = isl12022_rtc_ioctl, |
| .read_time = isl12022_rtc_read_time, |
| .set_time = isl12022_rtc_set_time, |
| .read_alarm = isl12022_rtc_read_alarm, |
| .set_alarm = isl12022_rtc_set_alarm, |
| .alarm_irq_enable = isl12022_rtc_alarm_irq_enable, |
| }; |
| |
| static const struct regmap_config regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .use_single_write = true, |
| }; |
| |
| static int isl12022_register_clock(struct device *dev) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| struct clk_hw *hw; |
| int ret; |
| |
| if (!device_property_present(dev, "#clock-cells")) { |
| /* |
| * Disabling the F_OUT pin reduces the power |
| * consumption in battery mode by ~25%. |
| */ |
| regmap_update_bits(regmap, ISL12022_REG_INT, ISL12022_INT_FO_MASK, |
| ISL12022_INT_FO_OFF); |
| |
| return 0; |
| } |
| |
| if (!IS_ENABLED(CONFIG_COMMON_CLK)) |
| return 0; |
| |
| /* |
| * For now, only support a fixed clock of 32768Hz (the reset default). |
| */ |
| ret = regmap_update_bits(regmap, ISL12022_REG_INT, |
| ISL12022_INT_FO_MASK, ISL12022_INT_FO_32K); |
| if (ret) |
| return ret; |
| |
| hw = devm_clk_hw_register_fixed_rate(dev, "isl12022", NULL, 0, 32768); |
| if (IS_ERR(hw)) |
| return PTR_ERR(hw); |
| |
| return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw); |
| } |
| |
| static const u32 trip_levels[2][7] = { |
| { 2125000, 2295000, 2550000, 2805000, 3060000, 4250000, 4675000 }, |
| { 1875000, 2025000, 2250000, 2475000, 2700000, 3750000, 4125000 }, |
| }; |
| |
| static void isl12022_set_trip_levels(struct device *dev) |
| { |
| struct isl12022 *isl12022 = dev_get_drvdata(dev); |
| struct regmap *regmap = isl12022->regmap; |
| u32 levels[2] = {0, 0}; |
| int ret, i, j, x[2]; |
| u8 val, mask; |
| |
| device_property_read_u32_array(dev, "isil,battery-trip-levels-microvolt", |
| levels, 2); |
| |
| for (i = 0; i < 2; i++) { |
| for (j = 0; j < ARRAY_SIZE(trip_levels[i]) - 1; j++) { |
| if (levels[i] <= trip_levels[i][j]) |
| break; |
| } |
| x[i] = j; |
| } |
| |
| val = FIELD_PREP(ISL12022_REG_VB85_MASK, x[0]) | |
| FIELD_PREP(ISL12022_REG_VB75_MASK, x[1]); |
| mask = ISL12022_REG_VB85_MASK | ISL12022_REG_VB75_MASK; |
| |
| ret = regmap_update_bits(regmap, ISL12022_REG_PWR_VBAT, mask, val); |
| if (ret) |
| dev_warn(dev, "unable to set battery alarm levels: %d\n", ret); |
| |
| /* |
| * Force a write of the TSE bit in the BETA register, in order |
| * to trigger an update of the LBAT75 and LBAT85 bits in the |
| * status register. In battery backup mode, those bits have |
| * another meaning, so without this, they may contain stale |
| * values for up to a minute after power-on. |
| */ |
| regmap_write_bits(regmap, ISL12022_REG_BETA, |
| ISL12022_BETA_TSE, ISL12022_BETA_TSE); |
| } |
| |
| static int isl12022_probe(struct i2c_client *client) |
| { |
| struct isl12022 *isl12022; |
| struct rtc_device *rtc; |
| struct regmap *regmap; |
| int ret; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) |
| return -ENODEV; |
| |
| /* Allocate driver state */ |
| isl12022 = devm_kzalloc(&client->dev, sizeof(*isl12022), GFP_KERNEL); |
| if (!isl12022) |
| return -ENOMEM; |
| |
| regmap = devm_regmap_init_i2c(client, ®map_config); |
| if (IS_ERR(regmap)) |
| return dev_err_probe(&client->dev, PTR_ERR(regmap), "regmap allocation failed\n"); |
| isl12022->regmap = regmap; |
| |
| dev_set_drvdata(&client->dev, isl12022); |
| |
| ret = isl12022_register_clock(&client->dev); |
| if (ret) |
| return ret; |
| |
| isl12022_set_trip_levels(&client->dev); |
| isl12022_hwmon_register(&client->dev); |
| |
| rtc = devm_rtc_allocate_device(&client->dev); |
| if (IS_ERR(rtc)) |
| return PTR_ERR(rtc); |
| isl12022->rtc = rtc; |
| |
| rtc->ops = &isl12022_rtc_ops; |
| rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; |
| rtc->range_max = RTC_TIMESTAMP_END_2099; |
| |
| if (client->irq > 0) { |
| ret = isl12022_setup_irq(&client->dev, client->irq); |
| if (ret) |
| return ret; |
| } else { |
| clear_bit(RTC_FEATURE_ALARM, rtc->features); |
| } |
| |
| return devm_rtc_register_device(rtc); |
| } |
| |
| static const struct of_device_id isl12022_dt_match[] = { |
| { .compatible = "isl,isl12022" }, /* for backward compat., don't use */ |
| { .compatible = "isil,isl12022" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, isl12022_dt_match); |
| |
| static const struct i2c_device_id isl12022_id[] = { |
| { "isl12022" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, isl12022_id); |
| |
| static struct i2c_driver isl12022_driver = { |
| .driver = { |
| .name = "rtc-isl12022", |
| .of_match_table = isl12022_dt_match, |
| }, |
| .probe = isl12022_probe, |
| .id_table = isl12022_id, |
| }; |
| |
| module_i2c_driver(isl12022_driver); |
| |
| MODULE_AUTHOR("[email protected]"); |
| MODULE_DESCRIPTION("ISL 12022 RTC driver"); |
| MODULE_LICENSE("GPL"); |