|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/mm/mempool.c | 
|  | * | 
|  | *  memory buffer pool support. Such pools are mostly used | 
|  | *  for guaranteed, deadlock-free memory allocations during | 
|  | *  extreme VM load. | 
|  | * | 
|  | *  started by Ingo Molnar, Copyright (C) 2001 | 
|  | *  debugging by David Rientjes, Copyright (C) 2015 | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include "slab.h" | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) | 
|  | static void poison_error(mempool_t *pool, void *element, size_t size, | 
|  | size_t byte) | 
|  | { | 
|  | const int nr = pool->curr_nr; | 
|  | const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); | 
|  | const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); | 
|  | int i; | 
|  |  | 
|  | pr_err("BUG: mempool element poison mismatch\n"); | 
|  | pr_err("Mempool %p size %zu\n", pool, size); | 
|  | pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); | 
|  | for (i = start; i < end; i++) | 
|  | pr_cont("%x ", *(u8 *)(element + i)); | 
|  | pr_cont("%s\n", end < size ? "..." : ""); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void __check_element(mempool_t *pool, void *element, size_t size) | 
|  | { | 
|  | u8 *obj = element; | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; | 
|  |  | 
|  | if (obj[i] != exp) { | 
|  | poison_error(pool, element, size, i); | 
|  | return; | 
|  | } | 
|  | } | 
|  | memset(obj, POISON_INUSE, size); | 
|  | } | 
|  |  | 
|  | static void check_element(mempool_t *pool, void *element) | 
|  | { | 
|  | /* Mempools backed by slab allocator */ | 
|  | if (pool->free == mempool_free_slab || pool->free == mempool_kfree) { | 
|  | __check_element(pool, element, ksize(element)); | 
|  | } else if (pool->free == mempool_free_pages) { | 
|  | /* Mempools backed by page allocator */ | 
|  | int order = (int)(long)pool->pool_data; | 
|  | void *addr = kmap_atomic((struct page *)element); | 
|  |  | 
|  | __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); | 
|  | kunmap_atomic(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __poison_element(void *element, size_t size) | 
|  | { | 
|  | u8 *obj = element; | 
|  |  | 
|  | memset(obj, POISON_FREE, size - 1); | 
|  | obj[size - 1] = POISON_END; | 
|  | } | 
|  |  | 
|  | static void poison_element(mempool_t *pool, void *element) | 
|  | { | 
|  | /* Mempools backed by slab allocator */ | 
|  | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) { | 
|  | __poison_element(element, ksize(element)); | 
|  | } else if (pool->alloc == mempool_alloc_pages) { | 
|  | /* Mempools backed by page allocator */ | 
|  | int order = (int)(long)pool->pool_data; | 
|  | void *addr = kmap_atomic((struct page *)element); | 
|  |  | 
|  | __poison_element(addr, 1UL << (PAGE_SHIFT + order)); | 
|  | kunmap_atomic(addr); | 
|  | } | 
|  | } | 
|  | #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | 
|  | static inline void check_element(mempool_t *pool, void *element) | 
|  | { | 
|  | } | 
|  | static inline void poison_element(mempool_t *pool, void *element) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | 
|  |  | 
|  | static __always_inline void kasan_poison_element(mempool_t *pool, void *element) | 
|  | { | 
|  | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) | 
|  | kasan_slab_free_mempool(element); | 
|  | else if (pool->alloc == mempool_alloc_pages) | 
|  | kasan_poison_pages(element, (unsigned long)pool->pool_data, | 
|  | false); | 
|  | } | 
|  |  | 
|  | static void kasan_unpoison_element(mempool_t *pool, void *element) | 
|  | { | 
|  | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) | 
|  | kasan_unpoison_range(element, __ksize(element)); | 
|  | else if (pool->alloc == mempool_alloc_pages) | 
|  | kasan_unpoison_pages(element, (unsigned long)pool->pool_data, | 
|  | false); | 
|  | } | 
|  |  | 
|  | static __always_inline void add_element(mempool_t *pool, void *element) | 
|  | { | 
|  | BUG_ON(pool->curr_nr >= pool->min_nr); | 
|  | poison_element(pool, element); | 
|  | kasan_poison_element(pool, element); | 
|  | pool->elements[pool->curr_nr++] = element; | 
|  | } | 
|  |  | 
|  | static void *remove_element(mempool_t *pool) | 
|  | { | 
|  | void *element = pool->elements[--pool->curr_nr]; | 
|  |  | 
|  | BUG_ON(pool->curr_nr < 0); | 
|  | kasan_unpoison_element(pool, element); | 
|  | check_element(pool, element); | 
|  | return element; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mempool_exit - exit a mempool initialized with mempool_init() | 
|  | * @pool:      pointer to the memory pool which was initialized with | 
|  | *             mempool_init(). | 
|  | * | 
|  | * Free all reserved elements in @pool and @pool itself.  This function | 
|  | * only sleeps if the free_fn() function sleeps. | 
|  | * | 
|  | * May be called on a zeroed but uninitialized mempool (i.e. allocated with | 
|  | * kzalloc()). | 
|  | */ | 
|  | void mempool_exit(mempool_t *pool) | 
|  | { | 
|  | while (pool->curr_nr) { | 
|  | void *element = remove_element(pool); | 
|  | pool->free(element, pool->pool_data); | 
|  | } | 
|  | kfree(pool->elements); | 
|  | pool->elements = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_exit); | 
|  |  | 
|  | /** | 
|  | * mempool_destroy - deallocate a memory pool | 
|  | * @pool:      pointer to the memory pool which was allocated via | 
|  | *             mempool_create(). | 
|  | * | 
|  | * Free all reserved elements in @pool and @pool itself.  This function | 
|  | * only sleeps if the free_fn() function sleeps. | 
|  | */ | 
|  | void mempool_destroy(mempool_t *pool) | 
|  | { | 
|  | if (unlikely(!pool)) | 
|  | return; | 
|  |  | 
|  | mempool_exit(pool); | 
|  | kfree(pool); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_destroy); | 
|  |  | 
|  | int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, | 
|  | mempool_free_t *free_fn, void *pool_data, | 
|  | gfp_t gfp_mask, int node_id) | 
|  | { | 
|  | spin_lock_init(&pool->lock); | 
|  | pool->min_nr	= min_nr; | 
|  | pool->pool_data = pool_data; | 
|  | pool->alloc	= alloc_fn; | 
|  | pool->free	= free_fn; | 
|  | init_waitqueue_head(&pool->wait); | 
|  |  | 
|  | pool->elements = kmalloc_array_node(min_nr, sizeof(void *), | 
|  | gfp_mask, node_id); | 
|  | if (!pool->elements) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * First pre-allocate the guaranteed number of buffers. | 
|  | */ | 
|  | while (pool->curr_nr < pool->min_nr) { | 
|  | void *element; | 
|  |  | 
|  | element = pool->alloc(gfp_mask, pool->pool_data); | 
|  | if (unlikely(!element)) { | 
|  | mempool_exit(pool); | 
|  | return -ENOMEM; | 
|  | } | 
|  | add_element(pool, element); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_init_node); | 
|  |  | 
|  | /** | 
|  | * mempool_init - initialize a memory pool | 
|  | * @pool:      pointer to the memory pool that should be initialized | 
|  | * @min_nr:    the minimum number of elements guaranteed to be | 
|  | *             allocated for this pool. | 
|  | * @alloc_fn:  user-defined element-allocation function. | 
|  | * @free_fn:   user-defined element-freeing function. | 
|  | * @pool_data: optional private data available to the user-defined functions. | 
|  | * | 
|  | * Like mempool_create(), but initializes the pool in (i.e. embedded in another | 
|  | * structure). | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, | 
|  | mempool_free_t *free_fn, void *pool_data) | 
|  | { | 
|  | return mempool_init_node(pool, min_nr, alloc_fn, free_fn, | 
|  | pool_data, GFP_KERNEL, NUMA_NO_NODE); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_init); | 
|  |  | 
|  | /** | 
|  | * mempool_create - create a memory pool | 
|  | * @min_nr:    the minimum number of elements guaranteed to be | 
|  | *             allocated for this pool. | 
|  | * @alloc_fn:  user-defined element-allocation function. | 
|  | * @free_fn:   user-defined element-freeing function. | 
|  | * @pool_data: optional private data available to the user-defined functions. | 
|  | * | 
|  | * this function creates and allocates a guaranteed size, preallocated | 
|  | * memory pool. The pool can be used from the mempool_alloc() and mempool_free() | 
|  | * functions. This function might sleep. Both the alloc_fn() and the free_fn() | 
|  | * functions might sleep - as long as the mempool_alloc() function is not called | 
|  | * from IRQ contexts. | 
|  | * | 
|  | * Return: pointer to the created memory pool object or %NULL on error. | 
|  | */ | 
|  | mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, | 
|  | mempool_free_t *free_fn, void *pool_data) | 
|  | { | 
|  | return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data, | 
|  | GFP_KERNEL, NUMA_NO_NODE); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_create); | 
|  |  | 
|  | mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, | 
|  | mempool_free_t *free_fn, void *pool_data, | 
|  | gfp_t gfp_mask, int node_id) | 
|  | { | 
|  | mempool_t *pool; | 
|  |  | 
|  | pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, | 
|  | gfp_mask, node_id)) { | 
|  | kfree(pool); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_create_node); | 
|  |  | 
|  | /** | 
|  | * mempool_resize - resize an existing memory pool | 
|  | * @pool:       pointer to the memory pool which was allocated via | 
|  | *              mempool_create(). | 
|  | * @new_min_nr: the new minimum number of elements guaranteed to be | 
|  | *              allocated for this pool. | 
|  | * | 
|  | * This function shrinks/grows the pool. In the case of growing, | 
|  | * it cannot be guaranteed that the pool will be grown to the new | 
|  | * size immediately, but new mempool_free() calls will refill it. | 
|  | * This function may sleep. | 
|  | * | 
|  | * Note, the caller must guarantee that no mempool_destroy is called | 
|  | * while this function is running. mempool_alloc() & mempool_free() | 
|  | * might be called (eg. from IRQ contexts) while this function executes. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int mempool_resize(mempool_t *pool, int new_min_nr) | 
|  | { | 
|  | void *element; | 
|  | void **new_elements; | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON(new_min_nr <= 0); | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | if (new_min_nr <= pool->min_nr) { | 
|  | while (new_min_nr < pool->curr_nr) { | 
|  | element = remove_element(pool); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | pool->free(element, pool->pool_data); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | } | 
|  | pool->min_nr = new_min_nr; | 
|  | goto out_unlock; | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | /* Grow the pool */ | 
|  | new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), | 
|  | GFP_KERNEL); | 
|  | if (!new_elements) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | if (unlikely(new_min_nr <= pool->min_nr)) { | 
|  | /* Raced, other resize will do our work */ | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | kfree(new_elements); | 
|  | goto out; | 
|  | } | 
|  | memcpy(new_elements, pool->elements, | 
|  | pool->curr_nr * sizeof(*new_elements)); | 
|  | kfree(pool->elements); | 
|  | pool->elements = new_elements; | 
|  | pool->min_nr = new_min_nr; | 
|  |  | 
|  | while (pool->curr_nr < pool->min_nr) { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | element = pool->alloc(GFP_KERNEL, pool->pool_data); | 
|  | if (!element) | 
|  | goto out; | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | if (pool->curr_nr < pool->min_nr) { | 
|  | add_element(pool, element); | 
|  | } else { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | pool->free(element, pool->pool_data);	/* Raced */ | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_resize); | 
|  |  | 
|  | /** | 
|  | * mempool_alloc - allocate an element from a specific memory pool | 
|  | * @pool:      pointer to the memory pool which was allocated via | 
|  | *             mempool_create(). | 
|  | * @gfp_mask:  the usual allocation bitmask. | 
|  | * | 
|  | * this function only sleeps if the alloc_fn() function sleeps or | 
|  | * returns NULL. Note that due to preallocation, this function | 
|  | * *never* fails when called from process contexts. (it might | 
|  | * fail if called from an IRQ context.) | 
|  | * Note: using __GFP_ZERO is not supported. | 
|  | * | 
|  | * Return: pointer to the allocated element or %NULL on error. | 
|  | */ | 
|  | void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) | 
|  | { | 
|  | void *element; | 
|  | unsigned long flags; | 
|  | wait_queue_entry_t wait; | 
|  | gfp_t gfp_temp; | 
|  |  | 
|  | VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); | 
|  | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); | 
|  |  | 
|  | gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */ | 
|  | gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */ | 
|  | gfp_mask |= __GFP_NOWARN;	/* failures are OK */ | 
|  |  | 
|  | gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); | 
|  |  | 
|  | repeat_alloc: | 
|  |  | 
|  | element = pool->alloc(gfp_temp, pool->pool_data); | 
|  | if (likely(element != NULL)) | 
|  | return element; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | if (likely(pool->curr_nr)) { | 
|  | element = remove_element(pool); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | /* paired with rmb in mempool_free(), read comment there */ | 
|  | smp_wmb(); | 
|  | /* | 
|  | * Update the allocation stack trace as this is more useful | 
|  | * for debugging. | 
|  | */ | 
|  | kmemleak_update_trace(element); | 
|  | return element; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use gfp mask w/o direct reclaim or IO for the first round.  If | 
|  | * alloc failed with that and @pool was empty, retry immediately. | 
|  | */ | 
|  | if (gfp_temp != gfp_mask) { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | gfp_temp = gfp_mask; | 
|  | goto repeat_alloc; | 
|  | } | 
|  |  | 
|  | /* We must not sleep if !__GFP_DIRECT_RECLAIM */ | 
|  | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Let's wait for someone else to return an element to @pool */ | 
|  | init_wait(&wait); | 
|  | prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | /* | 
|  | * FIXME: this should be io_schedule().  The timeout is there as a | 
|  | * workaround for some DM problems in 2.6.18. | 
|  | */ | 
|  | io_schedule_timeout(5*HZ); | 
|  |  | 
|  | finish_wait(&pool->wait, &wait); | 
|  | goto repeat_alloc; | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_alloc); | 
|  |  | 
|  | /** | 
|  | * mempool_free - return an element to the pool. | 
|  | * @element:   pool element pointer. | 
|  | * @pool:      pointer to the memory pool which was allocated via | 
|  | *             mempool_create(). | 
|  | * | 
|  | * this function only sleeps if the free_fn() function sleeps. | 
|  | */ | 
|  | void mempool_free(void *element, mempool_t *pool) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(element == NULL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Paired with the wmb in mempool_alloc().  The preceding read is | 
|  | * for @element and the following @pool->curr_nr.  This ensures | 
|  | * that the visible value of @pool->curr_nr is from after the | 
|  | * allocation of @element.  This is necessary for fringe cases | 
|  | * where @element was passed to this task without going through | 
|  | * barriers. | 
|  | * | 
|  | * For example, assume @p is %NULL at the beginning and one task | 
|  | * performs "p = mempool_alloc(...);" while another task is doing | 
|  | * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function | 
|  | * may end up using curr_nr value which is from before allocation | 
|  | * of @p without the following rmb. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* | 
|  | * For correctness, we need a test which is guaranteed to trigger | 
|  | * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr | 
|  | * without locking achieves that and refilling as soon as possible | 
|  | * is desirable. | 
|  | * | 
|  | * Because curr_nr visible here is always a value after the | 
|  | * allocation of @element, any task which decremented curr_nr below | 
|  | * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets | 
|  | * incremented to min_nr afterwards.  If curr_nr gets incremented | 
|  | * to min_nr after the allocation of @element, the elements | 
|  | * allocated after that are subject to the same guarantee. | 
|  | * | 
|  | * Waiters happen iff curr_nr is 0 and the above guarantee also | 
|  | * ensures that there will be frees which return elements to the | 
|  | * pool waking up the waiters. | 
|  | */ | 
|  | if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | if (likely(pool->curr_nr < pool->min_nr)) { | 
|  | add_element(pool, element); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | wake_up(&pool->wait); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  | pool->free(element, pool->pool_data); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_free); | 
|  |  | 
|  | /* | 
|  | * A commonly used alloc and free fn. | 
|  | */ | 
|  | void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) | 
|  | { | 
|  | struct kmem_cache *mem = pool_data; | 
|  | VM_BUG_ON(mem->ctor); | 
|  | return kmem_cache_alloc(mem, gfp_mask); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_alloc_slab); | 
|  |  | 
|  | void mempool_free_slab(void *element, void *pool_data) | 
|  | { | 
|  | struct kmem_cache *mem = pool_data; | 
|  | kmem_cache_free(mem, element); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_free_slab); | 
|  |  | 
|  | /* | 
|  | * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory | 
|  | * specified by pool_data | 
|  | */ | 
|  | void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) | 
|  | { | 
|  | size_t size = (size_t)pool_data; | 
|  | return kmalloc(size, gfp_mask); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_kmalloc); | 
|  |  | 
|  | void mempool_kfree(void *element, void *pool_data) | 
|  | { | 
|  | kfree(element); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_kfree); | 
|  |  | 
|  | /* | 
|  | * A simple mempool-backed page allocator that allocates pages | 
|  | * of the order specified by pool_data. | 
|  | */ | 
|  | void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) | 
|  | { | 
|  | int order = (int)(long)pool_data; | 
|  | return alloc_pages(gfp_mask, order); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_alloc_pages); | 
|  |  | 
|  | void mempool_free_pages(void *element, void *pool_data) | 
|  | { | 
|  | int order = (int)(long)pool_data; | 
|  | __free_pages(element, order); | 
|  | } | 
|  | EXPORT_SYMBOL(mempool_free_pages); |