|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/percpu_counter.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/crc32c.h> | 
|  | #include "ctree.h" | 
|  | #include "extent-tree.h" | 
|  | #include "transaction.h" | 
|  | #include "disk-io.h" | 
|  | #include "print-tree.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "locking.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "free-space-tree.h" | 
|  | #include "qgroup.h" | 
|  | #include "ref-verify.h" | 
|  | #include "space-info.h" | 
|  | #include "block-rsv.h" | 
|  | #include "discard.h" | 
|  | #include "zoned.h" | 
|  | #include "dev-replace.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "root-tree.h" | 
|  | #include "file-item.h" | 
|  | #include "orphan.h" | 
|  | #include "tree-checker.h" | 
|  | #include "raid-stripe-tree.h" | 
|  |  | 
|  | #undef SCRAMBLE_DELAYED_REFS | 
|  |  | 
|  |  | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *href, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extra_op); | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei); | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod, u64 oref_root); | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op); | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key); | 
|  |  | 
|  | static int block_group_bits(struct btrfs_block_group *cache, u64 bits) | 
|  | { | 
|  | return (cache->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | /* simple helper to search for an existing data extent at a given offset */ | 
|  | int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(fs_info, start); | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = start; | 
|  | key.offset = len; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to lookup reference count and flags of a tree block. | 
|  | * | 
|  | * the head node for delayed ref is used to store the sum of all the | 
|  | * reference count modifications queued up in the rbtree. the head | 
|  | * node may also store the extent flags to set. This way you can check | 
|  | * to see what the reference count and extent flags would be if all of | 
|  | * the delayed refs are not processed. | 
|  | */ | 
|  | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 offset, int metadata, u64 *refs, u64 *flags, | 
|  | u64 *owning_root) | 
|  | { | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | u64 num_refs; | 
|  | u64 extent_flags; | 
|  | u64 owner = 0; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If we don't have skinny metadata, don't bother doing anything | 
|  | * different | 
|  | */ | 
|  | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { | 
|  | offset = fs_info->nodesize; | 
|  | metadata = 0; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!trans) { | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | } | 
|  |  | 
|  | search_again: | 
|  | key.objectid = bytenr; | 
|  | key.offset = offset; | 
|  | if (metadata) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | extent_root = btrfs_extent_root(fs_info, bytenr); | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out_free; | 
|  |  | 
|  | if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | if (path->slots[0]) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == fs_info->nodesize) | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | if (item_size >= sizeof(*ei)) { | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | num_refs = btrfs_extent_refs(leaf, ei); | 
|  | extent_flags = btrfs_extent_flags(leaf, ei); | 
|  | owner = btrfs_get_extent_owner_root(fs_info, leaf, | 
|  | path->slots[0]); | 
|  | } else { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "unexpected extent item size, has %u expect >= %zu", | 
|  | item_size, sizeof(*ei)); | 
|  | if (trans) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  |  | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs == 0); | 
|  | } else { | 
|  | num_refs = 0; | 
|  | extent_flags = 0; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (!trans) | 
|  | goto out; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and try | 
|  | * again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | goto search_again; | 
|  | } | 
|  | spin_lock(&head->lock); | 
|  | if (head->extent_op && head->extent_op->update_flags) | 
|  | extent_flags |= head->extent_op->flags_to_set; | 
|  | else | 
|  | BUG_ON(num_refs == 0); | 
|  |  | 
|  | num_refs += head->ref_mod; | 
|  | spin_unlock(&head->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | out: | 
|  | WARN_ON(num_refs == 0); | 
|  | if (refs) | 
|  | *refs = num_refs; | 
|  | if (flags) | 
|  | *flags = extent_flags; | 
|  | if (owning_root) | 
|  | *owning_root = owner; | 
|  | out_free: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back reference rules.  Back refs have three main goals: | 
|  | * | 
|  | * 1) differentiate between all holders of references to an extent so that | 
|  | *    when a reference is dropped we can make sure it was a valid reference | 
|  | *    before freeing the extent. | 
|  | * | 
|  | * 2) Provide enough information to quickly find the holders of an extent | 
|  | *    if we notice a given block is corrupted or bad. | 
|  | * | 
|  | * 3) Make it easy to migrate blocks for FS shrinking or storage pool | 
|  | *    maintenance.  This is actually the same as #2, but with a slightly | 
|  | *    different use case. | 
|  | * | 
|  | * There are two kinds of back refs. The implicit back refs is optimized | 
|  | * for pointers in non-shared tree blocks. For a given pointer in a block, | 
|  | * back refs of this kind provide information about the block's owner tree | 
|  | * and the pointer's key. These information allow us to find the block by | 
|  | * b-tree searching. The full back refs is for pointers in tree blocks not | 
|  | * referenced by their owner trees. The location of tree block is recorded | 
|  | * in the back refs. Actually the full back refs is generic, and can be | 
|  | * used in all cases the implicit back refs is used. The major shortcoming | 
|  | * of the full back refs is its overhead. Every time a tree block gets | 
|  | * COWed, we have to update back refs entry for all pointers in it. | 
|  | * | 
|  | * For a newly allocated tree block, we use implicit back refs for | 
|  | * pointers in it. This means most tree related operations only involve | 
|  | * implicit back refs. For a tree block created in old transaction, the | 
|  | * only way to drop a reference to it is COW it. So we can detect the | 
|  | * event that tree block loses its owner tree's reference and do the | 
|  | * back refs conversion. | 
|  | * | 
|  | * When a tree block is COWed through a tree, there are four cases: | 
|  | * | 
|  | * The reference count of the block is one and the tree is the block's | 
|  | * owner tree. Nothing to do in this case. | 
|  | * | 
|  | * The reference count of the block is one and the tree is not the | 
|  | * block's owner tree. In this case, full back refs is used for pointers | 
|  | * in the block. Remove these full back refs, add implicit back refs for | 
|  | * every pointers in the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * the block's owner tree. In this case, implicit back refs is used for | 
|  | * pointers in the block. Add full back refs for every pointers in the | 
|  | * block, increase lower level extents' reference counts. The original | 
|  | * implicit back refs are entailed to the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * not the block's owner tree. Add implicit back refs for every pointer in | 
|  | * the new block, increase lower level extents' reference count. | 
|  | * | 
|  | * Back Reference Key composing: | 
|  | * | 
|  | * The key objectid corresponds to the first byte in the extent, | 
|  | * The key type is used to differentiate between types of back refs. | 
|  | * There are different meanings of the key offset for different types | 
|  | * of back refs. | 
|  | * | 
|  | * File extents can be referenced by: | 
|  | * | 
|  | * - multiple snapshots, subvolumes, or different generations in one subvol | 
|  | * - different files inside a single subvolume | 
|  | * - different offsets inside a file (bookend extents in file.c) | 
|  | * | 
|  | * The extent ref structure for the implicit back refs has fields for: | 
|  | * | 
|  | * - Objectid of the subvolume root | 
|  | * - objectid of the file holding the reference | 
|  | * - original offset in the file | 
|  | * - how many bookend extents | 
|  | * | 
|  | * The key offset for the implicit back refs is hash of the first | 
|  | * three fields. | 
|  | * | 
|  | * The extent ref structure for the full back refs has field for: | 
|  | * | 
|  | * - number of pointers in the tree leaf | 
|  | * | 
|  | * The key offset for the implicit back refs is the first byte of | 
|  | * the tree leaf | 
|  | * | 
|  | * When a file extent is allocated, The implicit back refs is used. | 
|  | * the fields are filled in: | 
|  | * | 
|  | *     (root_key.objectid, inode objectid, offset in file, 1) | 
|  | * | 
|  | * When a file extent is removed file truncation, we find the | 
|  | * corresponding implicit back refs and check the following fields: | 
|  | * | 
|  | *     (btrfs_header_owner(leaf), inode objectid, offset in file) | 
|  | * | 
|  | * Btree extents can be referenced by: | 
|  | * | 
|  | * - Different subvolumes | 
|  | * | 
|  | * Both the implicit back refs and the full back refs for tree blocks | 
|  | * only consist of key. The key offset for the implicit back refs is | 
|  | * objectid of block's owner tree. The key offset for the full back refs | 
|  | * is the first byte of parent block. | 
|  | * | 
|  | * When implicit back refs is used, information about the lowest key and | 
|  | * level of the tree block are required. These information are stored in | 
|  | * tree block info structure. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, | 
|  | * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, | 
|  | * is_data == BTRFS_REF_TYPE_ANY, either type is OK. | 
|  | */ | 
|  | int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | enum btrfs_inline_ref_type is_data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int type = btrfs_extent_inline_ref_type(eb, iref); | 
|  | u64 offset = btrfs_extent_inline_ref_offset(eb, iref); | 
|  |  | 
|  | if (type == BTRFS_EXTENT_OWNER_REF_KEY) { | 
|  | ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); | 
|  | return type; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_DATA_REF_KEY || | 
|  | type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | if (is_data == BTRFS_REF_TYPE_BLOCK) { | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY) | 
|  | return type; | 
|  | if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | ASSERT(fs_info); | 
|  | /* | 
|  | * Every shared one has parent tree block, | 
|  | * which must be aligned to sector size. | 
|  | */ | 
|  | if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) | 
|  | return type; | 
|  | } | 
|  | } else if (is_data == BTRFS_REF_TYPE_DATA) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | return type; | 
|  | if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ASSERT(fs_info); | 
|  | /* | 
|  | * Every shared one has parent tree block, | 
|  | * which must be aligned to sector size. | 
|  | */ | 
|  | if (offset && | 
|  | IS_ALIGNED(offset, fs_info->sectorsize)) | 
|  | return type; | 
|  | } | 
|  | } else { | 
|  | ASSERT(is_data == BTRFS_REF_TYPE_ANY); | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN_ON(1); | 
|  | btrfs_print_leaf(eb); | 
|  | btrfs_err(fs_info, | 
|  | "eb %llu iref 0x%lx invalid extent inline ref type %d", | 
|  | eb->start, (unsigned long)iref, type); | 
|  |  | 
|  | return BTRFS_REF_TYPE_INVALID; | 
|  | } | 
|  |  | 
|  | u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | u32 high_crc = ~(u32)0; | 
|  | u32 low_crc = ~(u32)0; | 
|  | __le64 lenum; | 
|  |  | 
|  | lenum = cpu_to_le64(root_objectid); | 
|  | high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(owner); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(offset); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  |  | 
|  | return ((u64)high_crc << 31) ^ (u64)low_crc; | 
|  | } | 
|  |  | 
|  | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref) | 
|  | { | 
|  | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), | 
|  | btrfs_extent_data_ref_objectid(leaf, ref), | 
|  | btrfs_extent_data_ref_offset(leaf, ref)); | 
|  | } | 
|  |  | 
|  | static int match_extent_data_ref(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != owner || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, | 
|  | u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int recow; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | } | 
|  | again: | 
|  | recow = 0; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (parent) { | 
|  | if (ret) | 
|  | return -ENOENT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = -ENOENT; | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | while (1) { | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | return -ENOENT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != bytenr || | 
|  | key.type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto fail; | 
|  |  | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  |  | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | u64 owner = btrfs_delayed_ref_owner(node); | 
|  | u64 offset = btrfs_delayed_ref_offset(node); | 
|  | u32 size; | 
|  | u32 num_refs; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (node->parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = node->parent; | 
|  | size = sizeof(struct btrfs_shared_data_ref); | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(node->ref_root, owner, offset); | 
|  | size = sizeof(struct btrfs_extent_data_ref); | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (node->parent) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); | 
|  | } else { | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref); | 
|  | num_refs += node->ref_mod; | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | while (ret == -EEXIST) { | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (match_extent_data_ref(leaf, ref, node->ref_root, | 
|  | owner, offset)) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  | key.offset++; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); | 
|  | } else { | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref); | 
|  | num_refs += node->ref_mod; | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | ret = 0; | 
|  | fail: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | int refs_to_drop) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref1 = NULL; | 
|  | struct btrfs_shared_data_ref *ref2 = NULL; | 
|  | struct extent_buffer *leaf; | 
|  | u32 num_refs = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } else { | 
|  | btrfs_err(trans->fs_info, | 
|  | "unrecognized backref key (%llu %u %llu)", | 
|  | key.objectid, key.type, key.offset); | 
|  | btrfs_abort_transaction(trans, -EUCLEAN); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs < refs_to_drop); | 
|  | num_refs -= refs_to_drop; | 
|  |  | 
|  | if (num_refs == 0) { | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | } else { | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); | 
|  | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline u32 extent_data_ref_count(struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref1; | 
|  | struct btrfs_shared_data_ref *ref2; | 
|  | u32 num_refs = 0; | 
|  | int type; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (iref) { | 
|  | /* | 
|  | * If type is invalid, we should have bailed out earlier than | 
|  | * this call. | 
|  | */ | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); | 
|  | ASSERT(type != BTRFS_REF_TYPE_INVALID); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else { | 
|  | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | return num_refs; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (node->parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = node->parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = node->ref_root; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int extent_ref_type(u64 parent, u64 owner) | 
|  | { | 
|  | int type; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | else | 
|  | type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | } else { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key) | 
|  |  | 
|  | { | 
|  | for (; level < BTRFS_MAX_LEVEL; level++) { | 
|  | if (!path->nodes[level]) | 
|  | break; | 
|  | if (path->slots[level] + 1 >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | continue; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for inline back ref. if back ref is found, *ref_ret is set | 
|  | * to the address of inline back ref, and 0 is returned. | 
|  | * | 
|  | * if back ref isn't found, *ref_ret is set to the address where it | 
|  | * should be inserted, and -ENOENT is returned. | 
|  | * | 
|  | * if insert is true and there are too many inline back refs, the path | 
|  | * points to the extent item, and -EAGAIN is returned. | 
|  | * | 
|  | * NOTE: inline back refs are ordered in the same way that back ref | 
|  | *	 items in the tree are ordered. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int insert) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | int extra_size; | 
|  | int type; | 
|  | int want; | 
|  | int ret; | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  | int needed; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | want = extent_ref_type(parent, owner); | 
|  | if (insert) { | 
|  | extra_size = btrfs_extent_inline_ref_size(want); | 
|  | path->search_for_extension = 1; | 
|  | path->keep_locks = 1; | 
|  | } else | 
|  | extra_size = -1; | 
|  |  | 
|  | /* | 
|  | * Owner is our level, so we can just add one to get the level for the | 
|  | * block we are interested in. | 
|  | */ | 
|  | if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = owner; | 
|  | } | 
|  |  | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We may be a newly converted file system which still has the old fat | 
|  | * extent entries for metadata, so try and see if we have one of those. | 
|  | */ | 
|  | if (ret > 0 && skinny_metadata) { | 
|  | skinny_metadata = false; | 
|  | if (path->slots[0]) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  | if (ret) { | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret && !insert) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } else if (WARN_ON(ret)) { | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_err(fs_info, | 
|  | "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", | 
|  | bytenr, num_bytes, parent, root_objectid, owner, | 
|  | offset); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "unexpected extent item size, has %llu expect >= %zu", | 
|  | item_size, sizeof(*ei)); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } | 
|  |  | 
|  | if (owner >= BTRFS_FIRST_FREE_OBJECTID) | 
|  | needed = BTRFS_REF_TYPE_DATA; | 
|  | else | 
|  | needed = BTRFS_REF_TYPE_BLOCK; | 
|  |  | 
|  | ret = -ENOENT; | 
|  | while (ptr < end) { | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); | 
|  | if (type == BTRFS_EXTENT_OWNER_REF_KEY) { | 
|  | ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | continue; | 
|  | } | 
|  | if (type == BTRFS_REF_TYPE_INVALID) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (want < type) | 
|  | break; | 
|  | if (want > type) { | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (match_extent_data_ref(leaf, dref, root_objectid, | 
|  | owner, offset)) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (hash_extent_data_ref_item(leaf, dref) < | 
|  | hash_extent_data_ref(root_objectid, owner, offset)) | 
|  | break; | 
|  | } else { | 
|  | u64 ref_offset; | 
|  | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  | if (parent > 0) { | 
|  | if (parent == ref_offset) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < parent) | 
|  | break; | 
|  | } else { | 
|  | if (root_objectid == ref_offset) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < root_objectid) | 
|  | break; | 
|  | } | 
|  | } | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  |  | 
|  | if (unlikely(ptr > end)) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_crit(fs_info, | 
|  | "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", | 
|  | path->slots[0], root_objectid, owner, offset, parent); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret == -ENOENT && insert) { | 
|  | if (item_size + extra_size >= | 
|  | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * To add new inline back ref, we have to make sure | 
|  | * there is no corresponding back ref item. | 
|  | * For simplicity, we just do not add new inline back | 
|  | * ref if there is any kind of item for this block | 
|  | */ | 
|  | if (find_next_key(path, 0, &key) == 0 && | 
|  | key.objectid == bytenr && | 
|  | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; | 
|  | out: | 
|  | if (insert) { | 
|  | path->keep_locks = 0; | 
|  | path->search_for_extension = 0; | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add new inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void setup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | unsigned long item_offset; | 
|  | u64 refs; | 
|  | int size; | 
|  | int type; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | item_offset = (unsigned long)iref - (unsigned long)ei; | 
|  |  | 
|  | type = extent_ref_type(parent, owner); | 
|  | size = btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | btrfs_extend_item(trans, path, size); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | refs += refs_to_add; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)ei + item_offset; | 
|  | end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); | 
|  | if (ptr < end - size) | 
|  | memmove_extent_buffer(leaf, ptr + size, ptr, | 
|  | end - size - ptr); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, dref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | struct btrfs_shared_data_ref *sref; | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | } | 
|  |  | 
|  | static int lookup_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, | 
|  | num_bytes, parent, root_objectid, | 
|  | owner, offset, 0); | 
|  | if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | *ref_ret = NULL; | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = lookup_tree_block_ref(trans, path, bytenr, parent, | 
|  | root_objectid); | 
|  | } else { | 
|  | ret = lookup_extent_data_ref(trans, path, bytenr, parent, | 
|  | root_objectid, owner, offset); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to update/remove inline back ref | 
|  | */ | 
|  | static noinline_for_stack int update_inline_extent_backref( | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_mod, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_data_ref *dref = NULL; | 
|  | struct btrfs_shared_data_ref *sref = NULL; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | u32 item_size; | 
|  | int size; | 
|  | int type; | 
|  | u64 refs; | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { | 
|  | struct btrfs_key key; | 
|  | u32 extent_size; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | extent_size = fs_info->nodesize; | 
|  | else | 
|  | extent_size = key.offset; | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_err(fs_info, | 
|  | "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", | 
|  | key.objectid, extent_size, refs_to_mod, refs); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | refs += refs_to_mod; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); | 
|  | /* | 
|  | * Function btrfs_get_extent_inline_ref_type() has already printed | 
|  | * error messages. | 
|  | */ | 
|  | if (unlikely(type == BTRFS_REF_TYPE_INVALID)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | refs = btrfs_extent_data_ref_count(leaf, dref); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | refs = btrfs_shared_data_ref_count(leaf, sref); | 
|  | } else { | 
|  | refs = 1; | 
|  | /* | 
|  | * For tree blocks we can only drop one ref for it, and tree | 
|  | * blocks should not have refs > 1. | 
|  | * | 
|  | * Furthermore if we're inserting a new inline backref, we | 
|  | * won't reach this path either. That would be | 
|  | * setup_inline_extent_backref(). | 
|  | */ | 
|  | if (unlikely(refs_to_mod != -1)) { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_err(fs_info, | 
|  | "invalid refs_to_mod for tree block %llu, has %d expect -1", | 
|  | key.objectid, refs_to_mod); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { | 
|  | struct btrfs_key key; | 
|  | u32 extent_size; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | extent_size = fs_info->nodesize; | 
|  | else | 
|  | extent_size = key.offset; | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_err(fs_info, | 
|  | "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", | 
|  | (unsigned long)iref, key.objectid, extent_size, | 
|  | refs_to_mod, refs); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | refs += refs_to_mod; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs); | 
|  | else | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs); | 
|  | } else { | 
|  | size =  btrfs_extent_inline_ref_size(type); | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | ptr = (unsigned long)iref; | 
|  | end = (unsigned long)ei + item_size; | 
|  | if (ptr + size < end) | 
|  | memmove_extent_buffer(leaf, ptr, ptr + size, | 
|  | end - ptr - size); | 
|  | item_size -= size; | 
|  | btrfs_truncate_item(trans, path, item_size, 1); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, | 
|  | num_bytes, parent, root_objectid, | 
|  | owner, offset, 1); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * We're adding refs to a tree block we already own, this | 
|  | * should not happen at all. | 
|  | */ | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_crit(trans->fs_info, | 
|  | "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", | 
|  | bytenr, num_bytes, root_objectid, path->slots[0]); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | ret = update_inline_extent_backref(trans, path, iref, | 
|  | refs_to_add, extent_op); | 
|  | } else if (ret == -ENOENT) { | 
|  | setup_inline_extent_backref(trans, path, iref, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add, extent_op); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int remove_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_drop, int is_data) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  | if (iref) | 
|  | ret = update_inline_extent_backref(trans, path, iref, | 
|  | -refs_to_drop, NULL); | 
|  | else if (is_data) | 
|  | ret = remove_extent_data_ref(trans, root, path, refs_to_drop); | 
|  | else | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, | 
|  | u64 *discarded_bytes) | 
|  | { | 
|  | int j, ret = 0; | 
|  | u64 bytes_left, end; | 
|  | u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); | 
|  |  | 
|  | /* Adjust the range to be aligned to 512B sectors if necessary. */ | 
|  | if (start != aligned_start) { | 
|  | len -= aligned_start - start; | 
|  | len = round_down(len, 1 << SECTOR_SHIFT); | 
|  | start = aligned_start; | 
|  | } | 
|  |  | 
|  | *discarded_bytes = 0; | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | end = start + len; | 
|  | bytes_left = len; | 
|  |  | 
|  | /* Skip any superblocks on this device. */ | 
|  | for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { | 
|  | u64 sb_start = btrfs_sb_offset(j); | 
|  | u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; | 
|  | u64 size = sb_start - start; | 
|  |  | 
|  | if (!in_range(sb_start, start, bytes_left) && | 
|  | !in_range(sb_end, start, bytes_left) && | 
|  | !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Superblock spans beginning of range.  Adjust start and | 
|  | * try again. | 
|  | */ | 
|  | if (sb_start <= start) { | 
|  | start += sb_end - start; | 
|  | if (start > end) { | 
|  | bytes_left = 0; | 
|  | break; | 
|  | } | 
|  | bytes_left = end - start; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (size) { | 
|  | ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, | 
|  | size >> SECTOR_SHIFT, | 
|  | GFP_NOFS); | 
|  | if (!ret) | 
|  | *discarded_bytes += size; | 
|  | else if (ret != -EOPNOTSUPP) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | start = sb_end; | 
|  | if (start > end) { | 
|  | bytes_left = 0; | 
|  | break; | 
|  | } | 
|  | bytes_left = end - start; | 
|  | } | 
|  |  | 
|  | if (bytes_left) { | 
|  | ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, | 
|  | bytes_left >> SECTOR_SHIFT, | 
|  | GFP_NOFS); | 
|  | if (!ret) | 
|  | *discarded_bytes += bytes_left; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) | 
|  | { | 
|  | struct btrfs_device *dev = stripe->dev; | 
|  | struct btrfs_fs_info *fs_info = dev->fs_info; | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  | u64 phys = stripe->physical; | 
|  | u64 len = stripe->length; | 
|  | u64 discarded = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Zone reset on a zoned filesystem */ | 
|  | if (btrfs_can_zone_reset(dev, phys, len)) { | 
|  | u64 src_disc; | 
|  |  | 
|  | ret = btrfs_reset_device_zone(dev, phys, len, &discarded); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!btrfs_dev_replace_is_ongoing(dev_replace) || | 
|  | dev != dev_replace->srcdev) | 
|  | goto out; | 
|  |  | 
|  | src_disc = discarded; | 
|  |  | 
|  | /* Send to replace target as well */ | 
|  | ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, | 
|  | &discarded); | 
|  | discarded += src_disc; | 
|  | } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { | 
|  | ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); | 
|  | } else { | 
|  | ret = 0; | 
|  | *bytes = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | *bytes = discarded; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 num_bytes, u64 *actual_bytes) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 discarded_bytes = 0; | 
|  | u64 end = bytenr + num_bytes; | 
|  | u64 cur = bytenr; | 
|  |  | 
|  | /* | 
|  | * Avoid races with device replace and make sure the devices in the | 
|  | * stripes don't go away while we are discarding. | 
|  | */ | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | while (cur < end) { | 
|  | struct btrfs_discard_stripe *stripes; | 
|  | unsigned int num_stripes; | 
|  | int i; | 
|  |  | 
|  | num_bytes = end - cur; | 
|  | stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); | 
|  | if (IS_ERR(stripes)) { | 
|  | ret = PTR_ERR(stripes); | 
|  | if (ret == -EOPNOTSUPP) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | struct btrfs_discard_stripe *stripe = stripes + i; | 
|  | u64 bytes; | 
|  |  | 
|  | if (!stripe->dev->bdev) { | 
|  | ASSERT(btrfs_test_opt(fs_info, DEGRADED)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, | 
|  | &stripe->dev->dev_state)) | 
|  | continue; | 
|  |  | 
|  | ret = do_discard_extent(stripe, &bytes); | 
|  | if (ret) { | 
|  | /* | 
|  | * Keep going if discard is not supported by the | 
|  | * device. | 
|  | */ | 
|  | if (ret != -EOPNOTSUPP) | 
|  | break; | 
|  | ret = 0; | 
|  | } else { | 
|  | discarded_bytes += bytes; | 
|  | } | 
|  | } | 
|  | kfree(stripes); | 
|  | if (ret) | 
|  | break; | 
|  | cur += num_bytes; | 
|  | } | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | if (actual_bytes) | 
|  | *actual_bytes = discarded_bytes; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_ref *generic_ref) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && | 
|  | generic_ref->action); | 
|  | BUG_ON(generic_ref->type == BTRFS_REF_METADATA && | 
|  | generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | if (generic_ref->type == BTRFS_REF_METADATA) | 
|  | ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); | 
|  | else | 
|  | ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); | 
|  |  | 
|  | btrfs_ref_tree_mod(fs_info, generic_ref); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert backreference for a given extent. | 
|  | * | 
|  | * The counterpart is in __btrfs_free_extent(), with examples and more details | 
|  | * how it works. | 
|  | * | 
|  | * @trans:	    Handle of transaction | 
|  | * | 
|  | * @node:	    The delayed ref node used to get the bytenr/length for | 
|  | *		    extent whose references are incremented. | 
|  | * | 
|  | * @extent_op       Pointer to a structure, holding information necessary when | 
|  | *                  updating a tree block's flags | 
|  | * | 
|  | */ | 
|  | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *item; | 
|  | struct btrfs_key key; | 
|  | u64 bytenr = node->bytenr; | 
|  | u64 num_bytes = node->num_bytes; | 
|  | u64 owner = btrfs_delayed_ref_owner(node); | 
|  | u64 offset = btrfs_delayed_ref_offset(node); | 
|  | u64 refs; | 
|  | int refs_to_add = node->ref_mod; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* this will setup the path even if it fails to insert the back ref */ | 
|  | ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, | 
|  | node->parent, node->ref_root, owner, | 
|  | offset, refs_to_add, extent_op); | 
|  | if ((ret < 0 && ret != -EAGAIN) || !ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Ok we had -EAGAIN which means we didn't have space to insert and | 
|  | * inline extent ref, so just update the reference count and add a | 
|  | * normal backref. | 
|  | */ | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, item); | 
|  | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, item); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* now insert the actual backref */ | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) | 
|  | ret = insert_tree_block_ref(trans, path, node, bytenr); | 
|  | else | 
|  | ret = insert_extent_data_ref(trans, path, node, bytenr); | 
|  |  | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_ref_head *href) | 
|  | { | 
|  | u64 root = href->owning_root; | 
|  |  | 
|  | /* | 
|  | * Don't check must_insert_reserved, as this is called from contexts | 
|  | * where it has already been unset. | 
|  | */ | 
|  | if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || | 
|  | !href->is_data || !is_fstree(root)) | 
|  | return; | 
|  |  | 
|  | btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, | 
|  | BTRFS_QGROUP_RSV_DATA); | 
|  | } | 
|  |  | 
|  | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *href, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | bool insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 parent = 0; | 
|  | u64 flags = 0; | 
|  |  | 
|  | trace_run_delayed_data_ref(trans->fs_info, node); | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | parent = node->parent; | 
|  |  | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_squota_delta delta = { | 
|  | .root = href->owning_root, | 
|  | .num_bytes = node->num_bytes, | 
|  | .is_data = true, | 
|  | .is_inc	= true, | 
|  | .generation = trans->transid, | 
|  | }; | 
|  | u64 owner = btrfs_delayed_ref_owner(node); | 
|  | u64 offset = btrfs_delayed_ref_offset(node); | 
|  |  | 
|  | if (extent_op) | 
|  | flags |= extent_op->flags_to_set; | 
|  |  | 
|  | key.objectid = node->bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = node->num_bytes; | 
|  |  | 
|  | ret = alloc_reserved_file_extent(trans, parent, node->ref_root, | 
|  | flags, owner, offset, &key, | 
|  | node->ref_mod, | 
|  | href->owning_root); | 
|  | free_head_ref_squota_rsv(trans->fs_info, href); | 
|  | if (!ret) | 
|  | ret = btrfs_record_squota_delta(trans->fs_info, &delta); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, node, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, href, node, extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei) | 
|  | { | 
|  | u64 flags = btrfs_extent_flags(leaf, ei); | 
|  | if (extent_op->update_flags) { | 
|  | flags |= extent_op->flags_to_set; | 
|  | btrfs_set_extent_flags(leaf, ei, flags); | 
|  | } | 
|  |  | 
|  | if (extent_op->update_key) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | int metadata = 1; | 
|  |  | 
|  | if (TRANS_ABORTED(trans)) | 
|  | return 0; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | metadata = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = head->bytenr; | 
|  |  | 
|  | if (metadata) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = extent_op->level; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = head->num_bytes; | 
|  | } | 
|  |  | 
|  | root = btrfs_extent_root(fs_info, key.objectid); | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret > 0) { | 
|  | if (metadata) { | 
|  | if (path->slots[0] > 0) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == head->bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == head->num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  | if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | metadata = 0; | 
|  |  | 
|  | key.objectid = head->bytenr; | 
|  | key.offset = head->num_bytes; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "missing extent item for extent %llu num_bytes %llu level %d", | 
|  | head->bytenr, head->num_bytes, extent_op->level); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  |  | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "unexpected extent item size, has %u expect >= %zu", | 
|  | item_size, sizeof(*ei)); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *href, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | bool insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  |  | 
|  | trace_run_delayed_tree_ref(trans->fs_info, node); | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | parent = node->parent; | 
|  | ref_root = node->ref_root; | 
|  |  | 
|  | if (unlikely(node->ref_mod != 1)) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", | 
|  | node->bytenr, node->ref_mod, node->action, ref_root, | 
|  | parent); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | struct btrfs_squota_delta delta = { | 
|  | .root = href->owning_root, | 
|  | .num_bytes = fs_info->nodesize, | 
|  | .is_data = false, | 
|  | .is_inc = true, | 
|  | .generation = trans->transid, | 
|  | }; | 
|  |  | 
|  | BUG_ON(!extent_op || !extent_op->update_flags); | 
|  | ret = alloc_reserved_tree_block(trans, node, extent_op); | 
|  | if (!ret) | 
|  | btrfs_record_squota_delta(fs_info, &delta); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, node, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, href, node, extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* helper function to actually process a single delayed ref entry */ | 
|  | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *href, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | bool insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (TRANS_ABORTED(trans)) { | 
|  | if (insert_reserved) { | 
|  | btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); | 
|  | free_head_ref_squota_rsv(trans->fs_info, href); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | ret = run_delayed_tree_ref(trans, href, node, extent_op, | 
|  | insert_reserved); | 
|  | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || | 
|  | node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | ret = run_delayed_data_ref(trans, href, node, extent_op, | 
|  | insert_reserved); | 
|  | else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) | 
|  | ret = 0; | 
|  | else | 
|  | BUG(); | 
|  | if (ret && insert_reserved) | 
|  | btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); | 
|  | if (ret < 0) | 
|  | btrfs_err(trans->fs_info, | 
|  | "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", | 
|  | node->bytenr, node->num_bytes, node->type, | 
|  | node->action, node->ref_mod, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct btrfs_delayed_ref_node * | 
|  | select_delayed_ref(struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. | 
|  | * This is to prevent a ref count from going down to zero, which deletes | 
|  | * the extent item from the extent tree, when there still are references | 
|  | * to add, which would fail because they would not find the extent item. | 
|  | */ | 
|  | if (!list_empty(&head->ref_add_list)) | 
|  | return list_first_entry(&head->ref_add_list, | 
|  | struct btrfs_delayed_ref_node, add_list); | 
|  |  | 
|  | ref = rb_entry(rb_first_cached(&head->ref_tree), | 
|  | struct btrfs_delayed_ref_node, ref_node); | 
|  | ASSERT(list_empty(&ref->add_list)); | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head->processing = false; | 
|  | delayed_refs->num_heads_ready++; | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_delayed_ref_unlock(head); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_extent_op *cleanup_extent_op( | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op = head->extent_op; | 
|  |  | 
|  | if (!extent_op) | 
|  | return NULL; | 
|  |  | 
|  | if (head->must_insert_reserved) { | 
|  | head->extent_op = NULL; | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return NULL; | 
|  | } | 
|  | return extent_op; | 
|  | } | 
|  |  | 
|  | static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int ret; | 
|  |  | 
|  | extent_op = cleanup_extent_op(head); | 
|  | if (!extent_op) | 
|  | return 0; | 
|  | head->extent_op = NULL; | 
|  | spin_unlock(&head->lock); | 
|  | ret = run_delayed_extent_op(trans, head, extent_op); | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return ret ? ret : 1; | 
|  | } | 
|  |  | 
|  | u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_ref_root *delayed_refs, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | u64 ret = 0; | 
|  |  | 
|  | /* | 
|  | * We had csum deletions accounted for in our delayed refs rsv, we need | 
|  | * to drop the csum leaves for this update from our delayed_refs_rsv. | 
|  | */ | 
|  | if (head->total_ref_mod < 0 && head->is_data) { | 
|  | int nr_csums; | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | delayed_refs->pending_csums -= head->num_bytes; | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); | 
|  |  | 
|  | btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); | 
|  |  | 
|  | ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); | 
|  | } | 
|  | /* must_insert_reserved can be set only if we didn't run the head ref. */ | 
|  | if (head->must_insert_reserved) | 
|  | free_head_ref_squota_rsv(fs_info, head); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cleanup_ref_head(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head, | 
|  | u64 *bytes_released) | 
|  | { | 
|  |  | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | int ret; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  |  | 
|  | ret = run_and_cleanup_extent_op(trans, head); | 
|  | if (ret < 0) { | 
|  | unselect_delayed_ref_head(delayed_refs, head); | 
|  | btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); | 
|  | return ret; | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to drop our head ref lock and re-acquire the delayed ref lock | 
|  | * and then re-check to make sure nobody got added. | 
|  | */ | 
|  | spin_unlock(&head->lock); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | spin_lock(&head->lock); | 
|  | if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 1; | 
|  | } | 
|  | btrfs_delete_ref_head(delayed_refs, head); | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | if (head->must_insert_reserved) { | 
|  | btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); | 
|  | if (head->is_data) { | 
|  | struct btrfs_root *csum_root; | 
|  |  | 
|  | csum_root = btrfs_csum_root(fs_info, head->bytenr); | 
|  | ret = btrfs_del_csums(trans, csum_root, head->bytenr, | 
|  | head->num_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); | 
|  |  | 
|  | trace_run_delayed_ref_head(fs_info, head, 0); | 
|  | btrfs_delayed_ref_unlock(head); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( | 
|  | struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_delayed_ref_root *delayed_refs = | 
|  | &trans->transaction->delayed_refs; | 
|  | struct btrfs_delayed_ref_head *head = NULL; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_select_ref_head(delayed_refs); | 
|  | if (!head) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return head; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the lock that says we are going to process all the refs for | 
|  | * this head | 
|  | */ | 
|  | ret = btrfs_delayed_ref_lock(delayed_refs, head); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | /* | 
|  | * We may have dropped the spin lock to get the head mutex lock, and | 
|  | * that might have given someone else time to free the head.  If that's | 
|  | * true, it has been removed from our list and we can move on. | 
|  | */ | 
|  | if (ret == -EAGAIN) | 
|  | head = ERR_PTR(-EAGAIN); | 
|  |  | 
|  | return head; | 
|  | } | 
|  |  | 
|  | static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *locked_ref, | 
|  | u64 *bytes_released) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | bool must_insert_reserved; | 
|  | int ret; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  |  | 
|  | lockdep_assert_held(&locked_ref->mutex); | 
|  | lockdep_assert_held(&locked_ref->lock); | 
|  |  | 
|  | while ((ref = select_delayed_ref(locked_ref))) { | 
|  | if (ref->seq && | 
|  | btrfs_check_delayed_seq(fs_info, ref->seq)) { | 
|  | spin_unlock(&locked_ref->lock); | 
|  | unselect_delayed_ref_head(delayed_refs, locked_ref); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); | 
|  | RB_CLEAR_NODE(&ref->ref_node); | 
|  | if (!list_empty(&ref->add_list)) | 
|  | list_del(&ref->add_list); | 
|  | /* | 
|  | * When we play the delayed ref, also correct the ref_mod on | 
|  | * head | 
|  | */ | 
|  | switch (ref->action) { | 
|  | case BTRFS_ADD_DELAYED_REF: | 
|  | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | locked_ref->ref_mod -= ref->ref_mod; | 
|  | break; | 
|  | case BTRFS_DROP_DELAYED_REF: | 
|  | locked_ref->ref_mod += ref->ref_mod; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  |  | 
|  | /* | 
|  | * Record the must_insert_reserved flag before we drop the | 
|  | * spin lock. | 
|  | */ | 
|  | must_insert_reserved = locked_ref->must_insert_reserved; | 
|  | /* | 
|  | * Unsetting this on the head ref relinquishes ownership of | 
|  | * the rsv_bytes, so it is critical that every possible code | 
|  | * path from here forward frees all reserves including qgroup | 
|  | * reserve. | 
|  | */ | 
|  | locked_ref->must_insert_reserved = false; | 
|  |  | 
|  | extent_op = locked_ref->extent_op; | 
|  | locked_ref->extent_op = NULL; | 
|  | spin_unlock(&locked_ref->lock); | 
|  |  | 
|  | ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, | 
|  | must_insert_reserved); | 
|  | btrfs_delayed_refs_rsv_release(fs_info, 1, 0); | 
|  | *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); | 
|  |  | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | if (ret) { | 
|  | unselect_delayed_ref_head(delayed_refs, locked_ref); | 
|  | btrfs_put_delayed_ref(ref); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_put_delayed_ref(ref); | 
|  | cond_resched(); | 
|  |  | 
|  | spin_lock(&locked_ref->lock); | 
|  | btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 0 on success or if called with an already aborted transaction. | 
|  | * Returns -ENOMEM or -EIO on failure and will abort the transaction. | 
|  | */ | 
|  | static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | u64 min_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_head *locked_ref = NULL; | 
|  | int ret; | 
|  | unsigned long count = 0; | 
|  | unsigned long max_count = 0; | 
|  | u64 bytes_processed = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | if (min_bytes == 0) { | 
|  | max_count = delayed_refs->num_heads_ready; | 
|  | min_bytes = U64_MAX; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (!locked_ref) { | 
|  | locked_ref = btrfs_obtain_ref_head(trans); | 
|  | if (IS_ERR_OR_NULL(locked_ref)) { | 
|  | if (PTR_ERR(locked_ref) == -EAGAIN) { | 
|  | continue; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | count++; | 
|  | } | 
|  | /* | 
|  | * We need to try and merge add/drops of the same ref since we | 
|  | * can run into issues with relocate dropping the implicit ref | 
|  | * and then it being added back again before the drop can | 
|  | * finish.  If we merged anything we need to re-loop so we can | 
|  | * get a good ref. | 
|  | * Or we can get node references of the same type that weren't | 
|  | * merged when created due to bumps in the tree mod seq, and | 
|  | * we need to merge them to prevent adding an inline extent | 
|  | * backref before dropping it (triggering a BUG_ON at | 
|  | * insert_inline_extent_backref()). | 
|  | */ | 
|  | spin_lock(&locked_ref->lock); | 
|  | btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); | 
|  |  | 
|  | ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); | 
|  | if (ret < 0 && ret != -EAGAIN) { | 
|  | /* | 
|  | * Error, btrfs_run_delayed_refs_for_head already | 
|  | * unlocked everything so just bail out | 
|  | */ | 
|  | return ret; | 
|  | } else if (!ret) { | 
|  | /* | 
|  | * Success, perform the usual cleanup of a processed | 
|  | * head | 
|  | */ | 
|  | ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); | 
|  | if (ret > 0 ) { | 
|  | /* We dropped our lock, we need to loop. */ | 
|  | ret = 0; | 
|  | continue; | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either success case or btrfs_run_delayed_refs_for_head | 
|  | * returned -EAGAIN, meaning we need to select another head | 
|  | */ | 
|  |  | 
|  | locked_ref = NULL; | 
|  | cond_resched(); | 
|  | } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || | 
|  | (max_count > 0 && count < max_count) || | 
|  | locked_ref); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | /* | 
|  | * Normally delayed refs get processed in ascending bytenr order. This | 
|  | * correlates in most cases to the order added. To expose dependencies on this | 
|  | * order, we start to process the tree in the middle instead of the beginning | 
|  | */ | 
|  | static u64 find_middle(struct rb_root *root) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct btrfs_delayed_ref_node *entry; | 
|  | int alt = 1; | 
|  | u64 middle; | 
|  | u64 first = 0, last = 0; | 
|  |  | 
|  | n = rb_first(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | first = entry->bytenr; | 
|  | } | 
|  | n = rb_last(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | last = entry->bytenr; | 
|  | } | 
|  | n = root->rb_node; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | WARN_ON(!entry->in_tree); | 
|  |  | 
|  | middle = entry->bytenr; | 
|  |  | 
|  | if (alt) | 
|  | n = n->rb_left; | 
|  | else | 
|  | n = n->rb_right; | 
|  |  | 
|  | alt = 1 - alt; | 
|  | } | 
|  | return middle; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Start processing the delayed reference count updates and extent insertions | 
|  | * we have queued up so far. | 
|  | * | 
|  | * @trans:	Transaction handle. | 
|  | * @min_bytes:	How many bytes of delayed references to process. After this | 
|  | *		many bytes we stop processing delayed references if there are | 
|  | *		any more. If 0 it means to run all existing delayed references, | 
|  | *		but not new ones added after running all existing ones. | 
|  | *		Use (u64)-1 (U64_MAX) to run all existing delayed references | 
|  | *		plus any new ones that are added. | 
|  | * | 
|  | * Returns 0 on success or if called with an aborted transaction | 
|  | * Returns <0 on error and aborts the transaction | 
|  | */ | 
|  | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | int ret; | 
|  |  | 
|  | /* We'll clean this up in btrfs_cleanup_transaction */ | 
|  | if (TRANS_ABORTED(trans)) | 
|  | return 0; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) | 
|  | return 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | again: | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); | 
|  | #endif | 
|  | ret = __btrfs_run_delayed_refs(trans, min_bytes); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (min_bytes == U64_MAX) { | 
|  | btrfs_create_pending_block_groups(trans); | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *eb, u64 flags) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int level = btrfs_header_level(eb); | 
|  | int ret; | 
|  |  | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | if (!extent_op) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_flags = true; | 
|  | extent_op->update_key = false; | 
|  | extent_op->level = level; | 
|  |  | 
|  | ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); | 
|  | if (ret) | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_delayed_ref(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_transaction *cur_trans; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | cur_trans = root->fs_info->running_transaction; | 
|  | if (cur_trans) | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | if (!cur_trans) | 
|  | return 0; | 
|  |  | 
|  | delayed_refs = &cur_trans->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (!head) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | if (path->nowait) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and let | 
|  | * caller try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return -EAGAIN; | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | /* | 
|  | * XXX: We should replace this with a proper search function in the | 
|  | * future. | 
|  | */ | 
|  | for (node = rb_first_cached(&head->ref_tree); node; | 
|  | node = rb_next(node)) { | 
|  | u64 ref_owner; | 
|  | u64 ref_offset; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); | 
|  | /* If it's a shared ref we know a cross reference exists */ | 
|  | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ref_owner = btrfs_delayed_ref_owner(ref); | 
|  | ref_offset = btrfs_delayed_ref_offset(ref); | 
|  |  | 
|  | /* | 
|  | * If our ref doesn't match the one we're currently looking at | 
|  | * then we have a cross reference. | 
|  | */ | 
|  | if (ref->ref_root != btrfs_root_id(root) || | 
|  | ref_owner != objectid || ref_offset != offset) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&head->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_committed_ref(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr, | 
|  | bool strict) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | u32 expected_size; | 
|  | int type; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist an extent | 
|  | * item with such offset, but this is out of the valid range. | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); | 
|  |  | 
|  | /* No inline refs; we need to bail before checking for owner ref. */ | 
|  | if (item_size == sizeof(*ei)) | 
|  | goto out; | 
|  |  | 
|  | /* Check for an owner ref; skip over it to the real inline refs. */ | 
|  | iref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); | 
|  | if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { | 
|  | expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); | 
|  | iref = (struct btrfs_extent_inline_ref *)(iref + 1); | 
|  | } | 
|  |  | 
|  | /* If extent item has more than 1 inline ref then it's shared */ | 
|  | if (item_size != expected_size) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If extent created before last snapshot => it's shared unless the | 
|  | * snapshot has been deleted. Use the heuristic if strict is false. | 
|  | */ | 
|  | if (!strict && | 
|  | (btrfs_extent_generation(leaf, ei) <= | 
|  | btrfs_root_last_snapshot(&root->root_item))) | 
|  | goto out; | 
|  |  | 
|  | /* If this extent has SHARED_DATA_REF then it's shared */ | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); | 
|  | if (type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out; | 
|  |  | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (btrfs_extent_refs(leaf, ei) != | 
|  | btrfs_extent_data_ref_count(leaf, ref) || | 
|  | btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, | 
|  | u64 bytenr, bool strict, struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | ret = check_committed_ref(root, path, objectid, | 
|  | offset, bytenr, strict); | 
|  | if (ret && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | ret = check_delayed_ref(root, path, objectid, offset, bytenr); | 
|  | } while (ret == -EAGAIN); | 
|  |  | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | if (btrfs_is_data_reloc_root(root)) | 
|  | WARN_ON(ret > 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | int full_backref, int inc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 parent; | 
|  | u64 ref_root; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); | 
|  | int i; | 
|  | int action; | 
|  | int level; | 
|  | int ret = 0; | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | ref_root = btrfs_header_owner(buf); | 
|  | nritems = btrfs_header_nritems(buf); | 
|  | level = btrfs_header_level(buf); | 
|  |  | 
|  | if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) | 
|  | return 0; | 
|  |  | 
|  | if (full_backref) | 
|  | parent = buf->start; | 
|  | else | 
|  | parent = 0; | 
|  | if (inc) | 
|  | action = BTRFS_ADD_DELAYED_REF; | 
|  | else | 
|  | action = BTRFS_DROP_DELAYED_REF; | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | struct btrfs_ref ref = { | 
|  | .action = action, | 
|  | .parent = parent, | 
|  | .ref_root = ref_root, | 
|  | }; | 
|  |  | 
|  | if (level == 0) { | 
|  | btrfs_item_key_to_cpu(buf, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(buf, i, | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(buf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
|  | if (ref.bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); | 
|  | ref.owning_root = ref_root; | 
|  |  | 
|  | key.offset -= btrfs_file_extent_offset(buf, fi); | 
|  | btrfs_init_data_ref(&ref, key.objectid, key.offset, | 
|  | btrfs_root_id(root), for_reloc); | 
|  | if (inc) | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | else | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } else { | 
|  | /* We don't know the owning_root, leave as 0. */ | 
|  | ref.bytenr = btrfs_node_blockptr(buf, i); | 
|  | ref.num_bytes = fs_info->nodesize; | 
|  |  | 
|  | btrfs_init_tree_ref(&ref, level - 1, | 
|  | btrfs_root_id(root), for_reloc); | 
|  | if (inc) | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | else | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 1); | 
|  | } | 
|  |  | 
|  | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 0); | 
|  | } | 
|  |  | 
|  | static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 flags; | 
|  | u64 ret; | 
|  |  | 
|  | if (data) | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | else if (root == fs_info->chunk_root) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  |  | 
|  | ret = btrfs_get_alloc_profile(fs_info, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 first_logical_byte(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct rb_node *leftmost; | 
|  | u64 bytenr = 0; | 
|  |  | 
|  | read_lock(&fs_info->block_group_cache_lock); | 
|  | /* Get the block group with the lowest logical start address. */ | 
|  | leftmost = rb_first_cached(&fs_info->block_group_cache_tree); | 
|  | if (leftmost) { | 
|  | struct btrfs_block_group *bg; | 
|  |  | 
|  | bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); | 
|  | bytenr = bg->start; | 
|  | } | 
|  | read_unlock(&fs_info->block_group_cache_lock); | 
|  |  | 
|  | return bytenr; | 
|  | } | 
|  |  | 
|  | static int pin_down_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group *cache, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned += num_bytes; | 
|  | btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, | 
|  | num_bytes); | 
|  | if (reserved) { | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | set_extent_bit(&trans->transaction->pinned_extents, bytenr, | 
|  | bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_pin_extent(struct btrfs_trans_handle *trans, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(trans->fs_info, bytenr); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  |  | 
|  | pin_down_extent(trans, cache, bytenr, num_bytes, reserved); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, | 
|  | const struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | int ret; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(trans->fs_info, eb->start); | 
|  | if (!cache) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Fully cache the free space first so that our pin removes the free space | 
|  | * from the cache. | 
|  | */ | 
|  | ret = btrfs_cache_block_group(cache, true); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | pin_down_extent(trans, cache, eb->start, eb->len, 0); | 
|  |  | 
|  | /* remove us from the free space cache (if we're there at all) */ | 
|  | ret = btrfs_remove_free_space(cache, eb->start, eb->len); | 
|  | out: | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_block_group *block_group; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, start); | 
|  | if (!block_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = btrfs_cache_block_group(block_group, true); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_remove_free_space(block_group, start, num_bytes); | 
|  | out: | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_exclude_logged_extents(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct btrfs_key key; | 
|  | int found_type; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < btrfs_header_nritems(eb); i++) { | 
|  | btrfs_item_key_to_cpu(eb, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(eb, item); | 
|  | if (found_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
|  | continue; | 
|  | key.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
|  | key.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
|  | ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) | 
|  | { | 
|  | atomic_inc(&bg->reservations); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the free cluster for the given space info and sets empty_cluster to | 
|  | * what it should be based on the mount options. | 
|  | */ | 
|  | static struct btrfs_free_cluster * | 
|  | fetch_cluster_info(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, u64 *empty_cluster) | 
|  | { | 
|  | struct btrfs_free_cluster *ret = NULL; | 
|  |  | 
|  | *empty_cluster = 0; | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | return ret; | 
|  |  | 
|  | if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | ret = &fs_info->meta_alloc_cluster; | 
|  | if (btrfs_test_opt(fs_info, SSD)) | 
|  | *empty_cluster = SZ_2M; | 
|  | else | 
|  | *empty_cluster = SZ_64K; | 
|  | } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && | 
|  | btrfs_test_opt(fs_info, SSD_SPREAD)) { | 
|  | *empty_cluster = SZ_2M; | 
|  | ret = &fs_info->data_alloc_cluster; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int unpin_extent_range(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 end, | 
|  | const bool return_free_space) | 
|  | { | 
|  | struct btrfs_block_group *cache = NULL; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_free_cluster *cluster = NULL; | 
|  | u64 len; | 
|  | u64 total_unpinned = 0; | 
|  | u64 empty_cluster = 0; | 
|  | bool readonly; | 
|  | int ret = 0; | 
|  |  | 
|  | while (start <= end) { | 
|  | readonly = false; | 
|  | if (!cache || | 
|  | start >= cache->start + cache->length) { | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | total_unpinned = 0; | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | if (cache == NULL) { | 
|  | /* Logic error, something removed the block group. */ | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cluster = fetch_cluster_info(fs_info, | 
|  | cache->space_info, | 
|  | &empty_cluster); | 
|  | empty_cluster <<= 1; | 
|  | } | 
|  |  | 
|  | len = cache->start + cache->length - start; | 
|  | len = min(len, end + 1 - start); | 
|  |  | 
|  | if (return_free_space) | 
|  | btrfs_add_free_space(cache, start, len); | 
|  |  | 
|  | start += len; | 
|  | total_unpinned += len; | 
|  | space_info = cache->space_info; | 
|  |  | 
|  | /* | 
|  | * If this space cluster has been marked as fragmented and we've | 
|  | * unpinned enough in this block group to potentially allow a | 
|  | * cluster to be created inside of it go ahead and clear the | 
|  | * fragmented check. | 
|  | */ | 
|  | if (cluster && cluster->fragmented && | 
|  | total_unpinned > empty_cluster) { | 
|  | spin_lock(&cluster->lock); | 
|  | cluster->fragmented = 0; | 
|  | spin_unlock(&cluster->lock); | 
|  | } | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned -= len; | 
|  | btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); | 
|  | space_info->max_extent_size = 0; | 
|  | if (cache->ro) { | 
|  | space_info->bytes_readonly += len; | 
|  | readonly = true; | 
|  | } else if (btrfs_is_zoned(fs_info)) { | 
|  | /* Need reset before reusing in a zoned block group */ | 
|  | space_info->bytes_zone_unusable += len; | 
|  | readonly = true; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | if (!readonly && return_free_space && | 
|  | global_rsv->space_info == space_info) { | 
|  | spin_lock(&global_rsv->lock); | 
|  | if (!global_rsv->full) { | 
|  | u64 to_add = min(len, global_rsv->size - | 
|  | global_rsv->reserved); | 
|  |  | 
|  | global_rsv->reserved += to_add; | 
|  | btrfs_space_info_update_bytes_may_use(fs_info, | 
|  | space_info, to_add); | 
|  | if (global_rsv->reserved >= global_rsv->size) | 
|  | global_rsv->full = 1; | 
|  | len -= to_add; | 
|  | } | 
|  | spin_unlock(&global_rsv->lock); | 
|  | } | 
|  | /* Add to any tickets we may have */ | 
|  | if (!readonly && return_free_space && len) | 
|  | btrfs_try_granting_tickets(fs_info, space_info); | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group *block_group, *tmp; | 
|  | struct list_head *deleted_bgs; | 
|  | struct extent_io_tree *unpin; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int ret; | 
|  |  | 
|  | unpin = &trans->transaction->pinned_extents; | 
|  |  | 
|  | while (!TRANS_ABORTED(trans)) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
|  | if (!find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY, &cached_state)) { | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, DISCARD_SYNC)) | 
|  | ret = btrfs_discard_extent(fs_info, start, | 
|  | end + 1 - start, NULL); | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, &cached_state); | 
|  | ret = unpin_extent_range(fs_info, start, end, true); | 
|  | BUG_ON(ret); | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | free_extent_state(cached_state); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { | 
|  | btrfs_discard_calc_delay(&fs_info->discard_ctl); | 
|  | btrfs_discard_schedule_work(&fs_info->discard_ctl, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transaction is finished.  We don't need the lock anymore.  We | 
|  | * do need to clean up the block groups in case of a transaction | 
|  | * abort. | 
|  | */ | 
|  | deleted_bgs = &trans->transaction->deleted_bgs; | 
|  | list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { | 
|  | u64 trimmed = 0; | 
|  |  | 
|  | ret = -EROFS; | 
|  | if (!TRANS_ABORTED(trans)) | 
|  | ret = btrfs_discard_extent(fs_info, | 
|  | block_group->start, | 
|  | block_group->length, | 
|  | &trimmed); | 
|  |  | 
|  | list_del_init(&block_group->bg_list); | 
|  | btrfs_unfreeze_block_group(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | if (ret) { | 
|  | const char *errstr = btrfs_decode_error(ret); | 
|  | btrfs_warn(fs_info, | 
|  | "discard failed while removing blockgroup: errno=%d %s", | 
|  | ret, errstr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse an extent item's inline extents looking for a simple quotas owner ref. | 
|  | * | 
|  | * @fs_info:	the btrfs_fs_info for this mount | 
|  | * @leaf:	a leaf in the extent tree containing the extent item | 
|  | * @slot:	the slot in the leaf where the extent item is found | 
|  | * | 
|  | * Returns the objectid of the root that originally allocated the extent item | 
|  | * if the inline owner ref is expected and present, otherwise 0. | 
|  | * | 
|  | * If an extent item has an owner ref item, it will be the first inline ref | 
|  | * item. Therefore the logic is to check whether there are any inline ref | 
|  | * items, then check the type of the first one. | 
|  | */ | 
|  | u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *leaf, int slot) | 
|  | { | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_extent_owner_ref *oref; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | int type; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) | 
|  | return 0; | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + btrfs_item_size(leaf, slot); | 
|  |  | 
|  | /* No inline ref items of any kind, can't check type. */ | 
|  | if (ptr == end) | 
|  | return 0; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); | 
|  |  | 
|  | /* We found an owner ref, get the root out of it. */ | 
|  | if (type == BTRFS_EXTENT_OWNER_REF_KEY) { | 
|  | oref = (struct btrfs_extent_owner_ref *)(&iref->offset); | 
|  | return btrfs_extent_owner_ref_root_id(leaf, oref); | 
|  | } | 
|  |  | 
|  | /* We have inline refs, but not an owner ref. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_free_extent_accounting(struct btrfs_trans_handle *trans, | 
|  | u64 bytenr, struct btrfs_squota_delta *delta) | 
|  | { | 
|  | int ret; | 
|  | u64 num_bytes = delta->num_bytes; | 
|  |  | 
|  | if (delta->is_data) { | 
|  | struct btrfs_root *csum_root; | 
|  |  | 
|  | csum_root = btrfs_csum_root(trans->fs_info, bytenr); | 
|  | ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_record_squota_delta(trans->fs_info, delta); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = add_to_free_space_tree(trans, bytenr, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define abort_and_dump(trans, path, fmt, args...)	\ | 
|  | ({							\ | 
|  | btrfs_abort_transaction(trans, -EUCLEAN);	\ | 
|  | btrfs_print_leaf(path->nodes[0]);		\ | 
|  | btrfs_crit(trans->fs_info, fmt, ##args);	\ | 
|  | }) | 
|  |  | 
|  | /* | 
|  | * Drop one or more refs of @node. | 
|  | * | 
|  | * 1. Locate the extent refs. | 
|  | *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. | 
|  | *    Locate it, then reduce the refs number or remove the ref line completely. | 
|  | * | 
|  | * 2. Update the refs count in EXTENT/METADATA_ITEM | 
|  | * | 
|  | * Inline backref case: | 
|  | * | 
|  | * in extent tree we have: | 
|  | * | 
|  | * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 | 
|  | *		refs 2 gen 6 flags DATA | 
|  | *		extent data backref root FS_TREE objectid 258 offset 0 count 1 | 
|  | *		extent data backref root FS_TREE objectid 257 offset 0 count 1 | 
|  | * | 
|  | * This function gets called with: | 
|  | * | 
|  | *    node->bytenr = 13631488 | 
|  | *    node->num_bytes = 1048576 | 
|  | *    root_objectid = FS_TREE | 
|  | *    owner_objectid = 257 | 
|  | *    owner_offset = 0 | 
|  | *    refs_to_drop = 1 | 
|  | * | 
|  | * Then we should get some like: | 
|  | * | 
|  | * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 | 
|  | *		refs 1 gen 6 flags DATA | 
|  | *		extent data backref root FS_TREE objectid 258 offset 0 count 1 | 
|  | * | 
|  | * Keyed backref case: | 
|  | * | 
|  | * in extent tree we have: | 
|  | * | 
|  | *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 | 
|  | *		refs 754 gen 6 flags DATA | 
|  | *	[...] | 
|  | *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 | 
|  | *		extent data backref root FS_TREE objectid 866 offset 0 count 1 | 
|  | * | 
|  | * This function get called with: | 
|  | * | 
|  | *    node->bytenr = 13631488 | 
|  | *    node->num_bytes = 1048576 | 
|  | *    root_objectid = FS_TREE | 
|  | *    owner_objectid = 866 | 
|  | *    owner_offset = 0 | 
|  | *    refs_to_drop = 1 | 
|  | * | 
|  | * Then we should get some like: | 
|  | * | 
|  | *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 | 
|  | *		refs 753 gen 6 flags DATA | 
|  | * | 
|  | * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. | 
|  | */ | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *href, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  | int is_data; | 
|  | int extent_slot = 0; | 
|  | int found_extent = 0; | 
|  | int num_to_del = 1; | 
|  | int refs_to_drop = node->ref_mod; | 
|  | u32 item_size; | 
|  | u64 refs; | 
|  | u64 bytenr = node->bytenr; | 
|  | u64 num_bytes = node->num_bytes; | 
|  | u64 owner_objectid = btrfs_delayed_ref_owner(node); | 
|  | u64 owner_offset = btrfs_delayed_ref_offset(node); | 
|  | bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); | 
|  | u64 delayed_ref_root = href->owning_root; | 
|  |  | 
|  | extent_root = btrfs_extent_root(info, bytenr); | 
|  | ASSERT(extent_root); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; | 
|  |  | 
|  | if (!is_data && refs_to_drop != 1) { | 
|  | btrfs_crit(info, | 
|  | "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", | 
|  | node->bytenr, refs_to_drop); | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (is_data) | 
|  | skinny_metadata = false; | 
|  |  | 
|  | ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, | 
|  | node->parent, node->ref_root, owner_objectid, | 
|  | owner_offset); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Either the inline backref or the SHARED_DATA_REF/ | 
|  | * SHARED_BLOCK_REF is found | 
|  | * | 
|  | * Here is a quick path to locate EXTENT/METADATA_ITEM. | 
|  | * It's possible the EXTENT/METADATA_ITEM is near current slot. | 
|  | */ | 
|  | extent_slot = path->slots[0]; | 
|  | while (extent_slot >= 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | extent_slot); | 
|  | if (key.objectid != bytenr) | 
|  | break; | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY && | 
|  | key.offset == owner_objectid) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Quick path didn't find the EXTEMT/METADATA_ITEM */ | 
|  | if (path->slots[0] - extent_slot > 5) | 
|  | break; | 
|  | extent_slot--; | 
|  | } | 
|  |  | 
|  | if (!found_extent) { | 
|  | if (iref) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", | 
|  | path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | /* Must be SHARED_* item, remove the backref first */ | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | NULL, refs_to_drop, is_data); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* Slow path to locate EXTENT/METADATA_ITEM */ | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | if (!is_data && skinny_metadata) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = owner_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | if (ret > 0 && skinny_metadata && path->slots[0]) { | 
|  | /* | 
|  | * Couldn't find our skinny metadata item, | 
|  | * see if we have ye olde extent item. | 
|  | */ | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (ret > 0 && skinny_metadata) { | 
|  | skinny_metadata = false; | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_err(info, | 
|  | "umm, got %d back from search, was looking for %llu, slot %d", | 
|  | ret, bytenr, path->slots[0]); | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | extent_slot = path->slots[0]; | 
|  | } | 
|  | } else if (WARN_ON(ret == -ENOENT)) { | 
|  | abort_and_dump(trans, path, | 
|  | "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", | 
|  | bytenr, node->parent, node->ref_root, owner_objectid, | 
|  | owner_offset, path->slots[0]); | 
|  | goto out; | 
|  | } else { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, extent_slot); | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(trans->fs_info, | 
|  | "unexpected extent item size, has %u expect >= %zu", | 
|  | item_size, sizeof(*ei)); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | ei = btrfs_item_ptr(leaf, extent_slot, | 
|  | struct btrfs_extent_item); | 
|  | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  |  | 
|  | if (item_size < sizeof(*ei) + sizeof(*bi)) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", | 
|  | key.objectid, key.type, key.offset, | 
|  | path->slots[0], owner_objectid, item_size, | 
|  | sizeof(*ei) + sizeof(*bi)); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); | 
|  | } | 
|  |  | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | if (refs < refs_to_drop) { | 
|  | abort_and_dump(trans, path, | 
|  | "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", | 
|  | refs_to_drop, refs, bytenr, path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | refs -= refs_to_drop; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  | /* | 
|  | * In the case of inline back ref, reference count will | 
|  | * be updated by remove_extent_backref | 
|  | */ | 
|  | if (iref) { | 
|  | if (!found_extent) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", | 
|  | path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | } | 
|  | if (found_extent) { | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | iref, refs_to_drop, is_data); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | struct btrfs_squota_delta delta = { | 
|  | .root = delayed_ref_root, | 
|  | .num_bytes = num_bytes, | 
|  | .is_data = is_data, | 
|  | .is_inc = false, | 
|  | .generation = btrfs_extent_generation(leaf, ei), | 
|  | }; | 
|  |  | 
|  | /* In this branch refs == 1 */ | 
|  | if (found_extent) { | 
|  | if (is_data && refs_to_drop != | 
|  | extent_data_ref_count(path, iref)) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", | 
|  | extent_data_ref_count(path, iref), | 
|  | refs_to_drop, path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | if (iref) { | 
|  | if (path->slots[0] != extent_slot) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", | 
|  | key.objectid, key.type, | 
|  | key.offset, path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * No inline ref, we must be at SHARED_* item, | 
|  | * And it's single ref, it must be: | 
|  | * |	extent_slot	  ||extent_slot + 1| | 
|  | * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] | 
|  | */ | 
|  | if (path->slots[0] != extent_slot + 1) { | 
|  | abort_and_dump(trans, path, | 
|  | "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", | 
|  | path->slots[0]); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | path->slots[0] = extent_slot; | 
|  | num_to_del = 2; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * We can't infer the data owner from the delayed ref, so we need | 
|  | * to try to get it from the owning ref item. | 
|  | * | 
|  | * If it is not present, then that extent was not written under | 
|  | * simple quotas mode, so we don't need to account for its deletion. | 
|  | */ | 
|  | if (is_data) | 
|  | delta.root = btrfs_get_extent_owner_root(trans->fs_info, | 
|  | leaf, extent_slot); | 
|  |  | 
|  | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | 
|  | num_to_del); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = do_free_extent_accounting(trans, bytenr, &delta); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we free an block, it is possible (and likely) that we free the last | 
|  | * delayed ref for that extent as well.  This searches the delayed ref tree for | 
|  | * a given extent, and if there are no other delayed refs to be processed, it | 
|  | * removes it from the tree. | 
|  | */ | 
|  | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (!head) | 
|  | goto out_delayed_unlock; | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) | 
|  | goto out; | 
|  |  | 
|  | if (cleanup_extent_op(head) != NULL) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * waiting for the lock here would deadlock.  If someone else has it | 
|  | * locked they are already in the process of dropping it anyway | 
|  | */ | 
|  | if (!mutex_trylock(&head->mutex)) | 
|  | goto out; | 
|  |  | 
|  | btrfs_delete_ref_head(delayed_refs, head); | 
|  | head->processing = false; | 
|  |  | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | BUG_ON(head->extent_op); | 
|  | if (head->must_insert_reserved) | 
|  | ret = 1; | 
|  |  | 
|  | btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | return ret; | 
|  | out: | 
|  | spin_unlock(&head->lock); | 
|  |  | 
|  | out_delayed_unlock: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, | 
|  | u64 root_id, | 
|  | struct extent_buffer *buf, | 
|  | u64 parent, int last_ref) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group *bg; | 
|  | int ret; | 
|  |  | 
|  | if (root_id != BTRFS_TREE_LOG_OBJECTID) { | 
|  | struct btrfs_ref generic_ref = { | 
|  | .action = BTRFS_DROP_DELAYED_REF, | 
|  | .bytenr = buf->start, | 
|  | .num_bytes = buf->len, | 
|  | .parent = parent, | 
|  | .owning_root = btrfs_header_owner(buf), | 
|  | .ref_root = root_id, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Assert that the extent buffer is not cleared due to | 
|  | * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer | 
|  | * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for | 
|  | * detail. | 
|  | */ | 
|  | ASSERT(btrfs_header_bytenr(buf) != 0); | 
|  |  | 
|  | btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); | 
|  | btrfs_ref_tree_mod(fs_info, &generic_ref); | 
|  | ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | if (!last_ref) | 
|  | return; | 
|  |  | 
|  | if (btrfs_header_generation(buf) != trans->transid) | 
|  | goto out; | 
|  |  | 
|  | if (root_id != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = check_ref_cleanup(trans, buf->start); | 
|  | if (!ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, buf->start); | 
|  |  | 
|  | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | 
|  | pin_down_extent(trans, bg, buf->start, buf->len, 1); | 
|  | btrfs_put_block_group(bg); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are tree mod log users we may have recorded mod log | 
|  | * operations for this node.  If we re-allocate this node we | 
|  | * could replay operations on this node that happened when it | 
|  | * existed in a completely different root.  For example if it | 
|  | * was part of root A, then was reallocated to root B, and we | 
|  | * are doing a btrfs_old_search_slot(root b), we could replay | 
|  | * operations that happened when the block was part of root A, | 
|  | * giving us an inconsistent view of the btree. | 
|  | * | 
|  | * We are safe from races here because at this point no other | 
|  | * node or root points to this extent buffer, so if after this | 
|  | * check a new tree mod log user joins we will not have an | 
|  | * existing log of operations on this node that we have to | 
|  | * contend with. | 
|  | */ | 
|  |  | 
|  | if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) | 
|  | || btrfs_is_zoned(fs_info)) { | 
|  | pin_down_extent(trans, bg, buf->start, buf->len, 1); | 
|  | btrfs_put_block_group(bg); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); | 
|  |  | 
|  | btrfs_add_free_space(bg, buf->start, buf->len); | 
|  | btrfs_free_reserved_bytes(bg, buf->len, 0); | 
|  | btrfs_put_block_group(bg); | 
|  | trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); | 
|  |  | 
|  | out: | 
|  |  | 
|  | /* | 
|  | * Deleting the buffer, clear the corrupt flag since it doesn't | 
|  | * matter anymore. | 
|  | */ | 
|  | clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * tree log blocks never actually go into the extent allocation | 
|  | * tree, just update pinning info and exit early. | 
|  | */ | 
|  | if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { | 
|  | btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); | 
|  | ret = 0; | 
|  | } else if (ref->type == BTRFS_REF_METADATA) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(trans, ref, 0); | 
|  | } | 
|  |  | 
|  | if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) | 
|  | btrfs_ref_tree_mod(fs_info, ref); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | enum btrfs_loop_type { | 
|  | /* | 
|  | * Start caching block groups but do not wait for progress or for them | 
|  | * to be done. | 
|  | */ | 
|  | LOOP_CACHING_NOWAIT, | 
|  |  | 
|  | /* | 
|  | * Wait for the block group free_space >= the space we're waiting for if | 
|  | * the block group isn't cached. | 
|  | */ | 
|  | LOOP_CACHING_WAIT, | 
|  |  | 
|  | /* | 
|  | * Allow allocations to happen from block groups that do not yet have a | 
|  | * size classification. | 
|  | */ | 
|  | LOOP_UNSET_SIZE_CLASS, | 
|  |  | 
|  | /* | 
|  | * Allocate a chunk and then retry the allocation. | 
|  | */ | 
|  | LOOP_ALLOC_CHUNK, | 
|  |  | 
|  | /* | 
|  | * Ignore the size class restrictions for this allocation. | 
|  | */ | 
|  | LOOP_WRONG_SIZE_CLASS, | 
|  |  | 
|  | /* | 
|  | * Ignore the empty size, only try to allocate the number of bytes | 
|  | * needed for this allocation. | 
|  | */ | 
|  | LOOP_NO_EMPTY_SIZE, | 
|  | }; | 
|  |  | 
|  | static inline void | 
|  | btrfs_lock_block_group(struct btrfs_block_group *cache, | 
|  | int delalloc) | 
|  | { | 
|  | if (delalloc) | 
|  | down_read(&cache->data_rwsem); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, | 
|  | int delalloc) | 
|  | { | 
|  | btrfs_get_block_group(cache); | 
|  | if (delalloc) | 
|  | down_read(&cache->data_rwsem); | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group *btrfs_lock_cluster( | 
|  | struct btrfs_block_group *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | int delalloc) | 
|  | __acquires(&cluster->refill_lock) | 
|  | { | 
|  | struct btrfs_block_group *used_bg = NULL; | 
|  |  | 
|  | spin_lock(&cluster->refill_lock); | 
|  | while (1) { | 
|  | used_bg = cluster->block_group; | 
|  | if (!used_bg) | 
|  | return NULL; | 
|  |  | 
|  | if (used_bg == block_group) | 
|  | return used_bg; | 
|  |  | 
|  | btrfs_get_block_group(used_bg); | 
|  |  | 
|  | if (!delalloc) | 
|  | return used_bg; | 
|  |  | 
|  | if (down_read_trylock(&used_bg->data_rwsem)) | 
|  | return used_bg; | 
|  |  | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | /* We should only have one-level nested. */ | 
|  | down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | spin_lock(&cluster->refill_lock); | 
|  | if (used_bg == cluster->block_group) | 
|  | return used_bg; | 
|  |  | 
|  | up_read(&used_bg->data_rwsem); | 
|  | btrfs_put_block_group(used_bg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | btrfs_release_block_group(struct btrfs_block_group *cache, | 
|  | int delalloc) | 
|  | { | 
|  | if (delalloc) | 
|  | up_read(&cache->data_rwsem); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for find_free_extent(). | 
|  | * | 
|  | * Return -ENOENT to inform caller that we need fallback to unclustered mode. | 
|  | * Return >0 to inform caller that we find nothing | 
|  | * Return 0 means we have found a location and set ffe_ctl->found_offset. | 
|  | */ | 
|  | static int find_free_extent_clustered(struct btrfs_block_group *bg, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_block_group **cluster_bg_ret) | 
|  | { | 
|  | struct btrfs_block_group *cluster_bg; | 
|  | struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; | 
|  | u64 aligned_cluster; | 
|  | u64 offset; | 
|  | int ret; | 
|  |  | 
|  | cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); | 
|  | if (!cluster_bg) | 
|  | goto refill_cluster; | 
|  | if (cluster_bg != bg && (cluster_bg->ro || | 
|  | !block_group_bits(cluster_bg, ffe_ctl->flags))) | 
|  | goto release_cluster; | 
|  |  | 
|  | offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, | 
|  | ffe_ctl->num_bytes, cluster_bg->start, | 
|  | &ffe_ctl->max_extent_size); | 
|  | if (offset) { | 
|  | /* We have a block, we're done */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); | 
|  | *cluster_bg_ret = cluster_bg; | 
|  | ffe_ctl->found_offset = offset; | 
|  | return 0; | 
|  | } | 
|  | WARN_ON(last_ptr->block_group != cluster_bg); | 
|  |  | 
|  | release_cluster: | 
|  | /* | 
|  | * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so | 
|  | * lets just skip it and let the allocator find whatever block it can | 
|  | * find. If we reach this point, we will have tried the cluster | 
|  | * allocator plenty of times and not have found anything, so we are | 
|  | * likely way too fragmented for the clustering stuff to find anything. | 
|  | * | 
|  | * However, if the cluster is taken from the current block group, | 
|  | * release the cluster first, so that we stand a better chance of | 
|  | * succeeding in the unclustered allocation. | 
|  | */ | 
|  | if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* This cluster didn't work out, free it and start over */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  |  | 
|  | if (cluster_bg != bg) | 
|  | btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); | 
|  |  | 
|  | refill_cluster: | 
|  | if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | aligned_cluster = max_t(u64, | 
|  | ffe_ctl->empty_cluster + ffe_ctl->empty_size, | 
|  | bg->full_stripe_len); | 
|  | ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, | 
|  | ffe_ctl->num_bytes, aligned_cluster); | 
|  | if (ret == 0) { | 
|  | /* Now pull our allocation out of this cluster */ | 
|  | offset = btrfs_alloc_from_cluster(bg, last_ptr, | 
|  | ffe_ctl->num_bytes, ffe_ctl->search_start, | 
|  | &ffe_ctl->max_extent_size); | 
|  | if (offset) { | 
|  | /* We found one, proceed */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | ffe_ctl->found_offset = offset; | 
|  | trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * At this point we either didn't find a cluster or we weren't able to | 
|  | * allocate a block from our cluster.  Free the cluster we've been | 
|  | * trying to use, and go to the next block group. | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return >0 to inform caller that we find nothing | 
|  | * Return 0 when we found an free extent and set ffe_ctrl->found_offset | 
|  | */ | 
|  | static int find_free_extent_unclustered(struct btrfs_block_group *bg, | 
|  | struct find_free_extent_ctl *ffe_ctl) | 
|  | { | 
|  | struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; | 
|  | u64 offset; | 
|  |  | 
|  | /* | 
|  | * We are doing an unclustered allocation, set the fragmented flag so | 
|  | * we don't bother trying to setup a cluster again until we get more | 
|  | * space. | 
|  | */ | 
|  | if (unlikely(last_ptr)) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | last_ptr->fragmented = 1; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  | if (ffe_ctl->cached) { | 
|  | struct btrfs_free_space_ctl *free_space_ctl; | 
|  |  | 
|  | free_space_ctl = bg->free_space_ctl; | 
|  | spin_lock(&free_space_ctl->tree_lock); | 
|  | if (free_space_ctl->free_space < | 
|  | ffe_ctl->num_bytes + ffe_ctl->empty_cluster + | 
|  | ffe_ctl->empty_size) { | 
|  | ffe_ctl->total_free_space = max_t(u64, | 
|  | ffe_ctl->total_free_space, | 
|  | free_space_ctl->free_space); | 
|  | spin_unlock(&free_space_ctl->tree_lock); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&free_space_ctl->tree_lock); | 
|  | } | 
|  |  | 
|  | offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, | 
|  | ffe_ctl->num_bytes, ffe_ctl->empty_size, | 
|  | &ffe_ctl->max_extent_size); | 
|  | if (!offset) | 
|  | return 1; | 
|  | ffe_ctl->found_offset = offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_allocation_clustered(struct btrfs_block_group *block_group, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_block_group **bg_ret) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* We want to try and use the cluster allocator, so lets look there */ | 
|  | if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { | 
|  | ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  | /* ret == -ENOENT case falls through */ | 
|  | } | 
|  |  | 
|  | return find_free_extent_unclustered(block_group, ffe_ctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tree-log block group locking | 
|  | * ============================ | 
|  | * | 
|  | * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which | 
|  | * indicates the starting address of a block group, which is reserved only | 
|  | * for tree-log metadata. | 
|  | * | 
|  | * Lock nesting | 
|  | * ============ | 
|  | * | 
|  | * space_info::lock | 
|  | *   block_group::lock | 
|  | *     fs_info::treelog_bg_lock | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Simple allocator for sequential-only block group. It only allows sequential | 
|  | * allocation. No need to play with trees. This function also reserves the | 
|  | * bytes as in btrfs_add_reserved_bytes. | 
|  | */ | 
|  | static int do_allocation_zoned(struct btrfs_block_group *block_group, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_block_group **bg_ret) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_space_info *space_info = block_group->space_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | u64 start = block_group->start; | 
|  | u64 num_bytes = ffe_ctl->num_bytes; | 
|  | u64 avail; | 
|  | u64 bytenr = block_group->start; | 
|  | u64 log_bytenr; | 
|  | u64 data_reloc_bytenr; | 
|  | int ret = 0; | 
|  | bool skip = false; | 
|  |  | 
|  | ASSERT(btrfs_is_zoned(block_group->fs_info)); | 
|  |  | 
|  | /* | 
|  | * Do not allow non-tree-log blocks in the dedicated tree-log block | 
|  | * group, and vice versa. | 
|  | */ | 
|  | spin_lock(&fs_info->treelog_bg_lock); | 
|  | log_bytenr = fs_info->treelog_bg; | 
|  | if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || | 
|  | (!ffe_ctl->for_treelog && bytenr == log_bytenr))) | 
|  | skip = true; | 
|  | spin_unlock(&fs_info->treelog_bg_lock); | 
|  | if (skip) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Do not allow non-relocation blocks in the dedicated relocation block | 
|  | * group, and vice versa. | 
|  | */ | 
|  | spin_lock(&fs_info->relocation_bg_lock); | 
|  | data_reloc_bytenr = fs_info->data_reloc_bg; | 
|  | if (data_reloc_bytenr && | 
|  | ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || | 
|  | (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) | 
|  | skip = true; | 
|  | spin_unlock(&fs_info->relocation_bg_lock); | 
|  | if (skip) | 
|  | return 1; | 
|  |  | 
|  | /* Check RO and no space case before trying to activate it */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { | 
|  | ret = 1; | 
|  | /* | 
|  | * May need to clear fs_info->{treelog,data_reloc}_bg. | 
|  | * Return the error after taking the locks. | 
|  | */ | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | /* Metadata block group is activated at write time. */ | 
|  | if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && | 
|  | !btrfs_zone_activate(block_group)) { | 
|  | ret = 1; | 
|  | /* | 
|  | * May need to clear fs_info->{treelog,data_reloc}_bg. | 
|  | * Return the error after taking the locks. | 
|  | */ | 
|  | } | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | spin_lock(&fs_info->treelog_bg_lock); | 
|  | spin_lock(&fs_info->relocation_bg_lock); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ASSERT(!ffe_ctl->for_treelog || | 
|  | block_group->start == fs_info->treelog_bg || | 
|  | fs_info->treelog_bg == 0); | 
|  | ASSERT(!ffe_ctl->for_data_reloc || | 
|  | block_group->start == fs_info->data_reloc_bg || | 
|  | fs_info->data_reloc_bg == 0); | 
|  |  | 
|  | if (block_group->ro || | 
|  | (!ffe_ctl->for_data_reloc && | 
|  | test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do not allow currently using block group to be tree-log dedicated | 
|  | * block group. | 
|  | */ | 
|  | if (ffe_ctl->for_treelog && !fs_info->treelog_bg && | 
|  | (block_group->used || block_group->reserved)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do not allow currently used block group to be the data relocation | 
|  | * dedicated block group. | 
|  | */ | 
|  | if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && | 
|  | (block_group->used || block_group->reserved)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); | 
|  | avail = block_group->zone_capacity - block_group->alloc_offset; | 
|  | if (avail < num_bytes) { | 
|  | if (ffe_ctl->max_extent_size < avail) { | 
|  | /* | 
|  | * With sequential allocator, free space is always | 
|  | * contiguous | 
|  | */ | 
|  | ffe_ctl->max_extent_size = avail; | 
|  | ffe_ctl->total_free_space = avail; | 
|  | } | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ffe_ctl->for_treelog && !fs_info->treelog_bg) | 
|  | fs_info->treelog_bg = block_group->start; | 
|  |  | 
|  | if (ffe_ctl->for_data_reloc) { | 
|  | if (!fs_info->data_reloc_bg) | 
|  | fs_info->data_reloc_bg = block_group->start; | 
|  | /* | 
|  | * Do not allow allocations from this block group, unless it is | 
|  | * for data relocation. Compared to increasing the ->ro, setting | 
|  | * the ->zoned_data_reloc_ongoing flag still allows nocow | 
|  | * writers to come in. See btrfs_inc_nocow_writers(). | 
|  | * | 
|  | * We need to disable an allocation to avoid an allocation of | 
|  | * regular (non-relocation data) extent. With mix of relocation | 
|  | * extents and regular extents, we can dispatch WRITE commands | 
|  | * (for relocation extents) and ZONE APPEND commands (for | 
|  | * regular extents) at the same time to the same zone, which | 
|  | * easily break the write pointer. | 
|  | * | 
|  | * Also, this flag avoids this block group to be zone finished. | 
|  | */ | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); | 
|  | } | 
|  |  | 
|  | ffe_ctl->found_offset = start + block_group->alloc_offset; | 
|  | block_group->alloc_offset += num_bytes; | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ctl->free_space -= num_bytes; | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | /* | 
|  | * We do not check if found_offset is aligned to stripesize. The | 
|  | * address is anyway rewritten when using zone append writing. | 
|  | */ | 
|  |  | 
|  | ffe_ctl->search_start = ffe_ctl->found_offset; | 
|  |  | 
|  | out: | 
|  | if (ret && ffe_ctl->for_treelog) | 
|  | fs_info->treelog_bg = 0; | 
|  | if (ret && ffe_ctl->for_data_reloc) | 
|  | fs_info->data_reloc_bg = 0; | 
|  | spin_unlock(&fs_info->relocation_bg_lock); | 
|  | spin_unlock(&fs_info->treelog_bg_lock); | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_allocation(struct btrfs_block_group *block_group, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_block_group **bg_ret) | 
|  | { | 
|  | switch (ffe_ctl->policy) { | 
|  | case BTRFS_EXTENT_ALLOC_CLUSTERED: | 
|  | return do_allocation_clustered(block_group, ffe_ctl, bg_ret); | 
|  | case BTRFS_EXTENT_ALLOC_ZONED: | 
|  | return do_allocation_zoned(block_group, ffe_ctl, bg_ret); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_block_group(struct btrfs_block_group *block_group, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | int delalloc) | 
|  | { | 
|  | switch (ffe_ctl->policy) { | 
|  | case BTRFS_EXTENT_ALLOC_CLUSTERED: | 
|  | ffe_ctl->retry_uncached = false; | 
|  | break; | 
|  | case BTRFS_EXTENT_ALLOC_ZONED: | 
|  | /* Nothing to do */ | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != | 
|  | ffe_ctl->index); | 
|  | btrfs_release_block_group(block_group, delalloc); | 
|  | } | 
|  |  | 
|  | static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; | 
|  |  | 
|  | if (!ffe_ctl->use_cluster && last_ptr) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | last_ptr->window_start = ins->objectid; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void found_extent(struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | switch (ffe_ctl->policy) { | 
|  | case BTRFS_EXTENT_ALLOC_CLUSTERED: | 
|  | found_extent_clustered(ffe_ctl, ins); | 
|  | break; | 
|  | case BTRFS_EXTENT_ALLOC_ZONED: | 
|  | /* Nothing to do */ | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, | 
|  | struct find_free_extent_ctl *ffe_ctl) | 
|  | { | 
|  | /* Block group's activeness is not a requirement for METADATA block groups. */ | 
|  | if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | return 0; | 
|  |  | 
|  | /* If we can activate new zone, just allocate a chunk and use it */ | 
|  | if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We already reached the max active zones. Try to finish one block | 
|  | * group to make a room for a new block group. This is only possible | 
|  | * for a data block group because btrfs_zone_finish() may need to wait | 
|  | * for a running transaction which can cause a deadlock for metadata | 
|  | * allocation. | 
|  | */ | 
|  | if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { | 
|  | int ret = btrfs_zone_finish_one_bg(fs_info); | 
|  |  | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | else if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have enough free space left in an already active block group | 
|  | * and we can't activate any other zone now, do not allow allocating a | 
|  | * new chunk and let find_free_extent() retry with a smaller size. | 
|  | */ | 
|  | if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * Even min_alloc_size is not left in any block groups. Since we cannot | 
|  | * activate a new block group, allocating it may not help. Let's tell a | 
|  | * caller to try again and hope it progress something by writing some | 
|  | * parts of the region. That is only possible for data block groups, | 
|  | * where a part of the region can be written. | 
|  | */ | 
|  | if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * We cannot activate a new block group and no enough space left in any | 
|  | * block groups. So, allocating a new block group may not help. But, | 
|  | * there is nothing to do anyway, so let's go with it. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int can_allocate_chunk(struct btrfs_fs_info *fs_info, | 
|  | struct find_free_extent_ctl *ffe_ctl) | 
|  | { | 
|  | switch (ffe_ctl->policy) { | 
|  | case BTRFS_EXTENT_ALLOC_CLUSTERED: | 
|  | return 0; | 
|  | case BTRFS_EXTENT_ALLOC_ZONED: | 
|  | return can_allocate_chunk_zoned(fs_info, ffe_ctl); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return >0 means caller needs to re-search for free extent | 
|  | * Return 0 means we have the needed free extent. | 
|  | * Return <0 means we failed to locate any free extent. | 
|  | */ | 
|  | static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_key *ins, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | bool full_search) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | int ret; | 
|  |  | 
|  | if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && | 
|  | ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) | 
|  | ffe_ctl->orig_have_caching_bg = true; | 
|  |  | 
|  | if (ins->objectid) { | 
|  | found_extent(ffe_ctl, ins); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) | 
|  | return 1; | 
|  |  | 
|  | ffe_ctl->index++; | 
|  | if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) | 
|  | return 1; | 
|  |  | 
|  | /* See the comments for btrfs_loop_type for an explanation of the phases. */ | 
|  | if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { | 
|  | ffe_ctl->index = 0; | 
|  | /* | 
|  | * We want to skip the LOOP_CACHING_WAIT step if we don't have | 
|  | * any uncached bgs and we've already done a full search | 
|  | * through. | 
|  | */ | 
|  | if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && | 
|  | (!ffe_ctl->orig_have_caching_bg && full_search)) | 
|  | ffe_ctl->loop++; | 
|  | ffe_ctl->loop++; | 
|  |  | 
|  | if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int exist = 0; | 
|  |  | 
|  | /* Check if allocation policy allows to create a new chunk */ | 
|  | ret = can_allocate_chunk(fs_info, ffe_ctl); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | trans = current->journal_info; | 
|  | if (trans) | 
|  | exist = 1; | 
|  | else | 
|  | trans = btrfs_join_transaction(root); | 
|  |  | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, | 
|  | CHUNK_ALLOC_FORCE_FOR_EXTENT); | 
|  |  | 
|  | /* Do not bail out on ENOSPC since we can do more. */ | 
|  | if (ret == -ENOSPC) { | 
|  | ret = 0; | 
|  | ffe_ctl->loop++; | 
|  | } | 
|  | else if (ret < 0) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | ret = 0; | 
|  | if (!exist) | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { | 
|  | if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * Don't loop again if we already have no empty_size and | 
|  | * no empty_cluster. | 
|  | */ | 
|  | if (ffe_ctl->empty_size == 0 && | 
|  | ffe_ctl->empty_cluster == 0) | 
|  | return -ENOSPC; | 
|  | ffe_ctl->empty_size = 0; | 
|  | ffe_ctl->empty_cluster = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_block_group *bg) | 
|  | { | 
|  | if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) | 
|  | return true; | 
|  | if (!btrfs_block_group_should_use_size_class(bg)) | 
|  | return true; | 
|  | if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) | 
|  | return true; | 
|  | if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && | 
|  | bg->size_class == BTRFS_BG_SZ_NONE) | 
|  | return true; | 
|  | return ffe_ctl->size_class == bg->size_class; | 
|  | } | 
|  |  | 
|  | static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_space_info *space_info, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | /* | 
|  | * If our free space is heavily fragmented we may not be able to make | 
|  | * big contiguous allocations, so instead of doing the expensive search | 
|  | * for free space, simply return ENOSPC with our max_extent_size so we | 
|  | * can go ahead and search for a more manageable chunk. | 
|  | * | 
|  | * If our max_extent_size is large enough for our allocation simply | 
|  | * disable clustering since we will likely not be able to find enough | 
|  | * space to create a cluster and induce latency trying. | 
|  | */ | 
|  | if (space_info->max_extent_size) { | 
|  | spin_lock(&space_info->lock); | 
|  | if (space_info->max_extent_size && | 
|  | ffe_ctl->num_bytes > space_info->max_extent_size) { | 
|  | ins->offset = space_info->max_extent_size; | 
|  | spin_unlock(&space_info->lock); | 
|  | return -ENOSPC; | 
|  | } else if (space_info->max_extent_size) { | 
|  | ffe_ctl->use_cluster = false; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, | 
|  | &ffe_ctl->empty_cluster); | 
|  | if (ffe_ctl->last_ptr) { | 
|  | struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; | 
|  |  | 
|  | spin_lock(&last_ptr->lock); | 
|  | if (last_ptr->block_group) | 
|  | ffe_ctl->hint_byte = last_ptr->window_start; | 
|  | if (last_ptr->fragmented) { | 
|  | /* | 
|  | * We still set window_start so we can keep track of the | 
|  | * last place we found an allocation to try and save | 
|  | * some time. | 
|  | */ | 
|  | ffe_ctl->hint_byte = last_ptr->window_start; | 
|  | ffe_ctl->use_cluster = false; | 
|  | } | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, | 
|  | struct find_free_extent_ctl *ffe_ctl) | 
|  | { | 
|  | if (ffe_ctl->for_treelog) { | 
|  | spin_lock(&fs_info->treelog_bg_lock); | 
|  | if (fs_info->treelog_bg) | 
|  | ffe_ctl->hint_byte = fs_info->treelog_bg; | 
|  | spin_unlock(&fs_info->treelog_bg_lock); | 
|  | } else if (ffe_ctl->for_data_reloc) { | 
|  | spin_lock(&fs_info->relocation_bg_lock); | 
|  | if (fs_info->data_reloc_bg) | 
|  | ffe_ctl->hint_byte = fs_info->data_reloc_bg; | 
|  | spin_unlock(&fs_info->relocation_bg_lock); | 
|  | } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { | 
|  | struct btrfs_block_group *block_group; | 
|  |  | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { | 
|  | /* | 
|  | * No lock is OK here because avail is monotinically | 
|  | * decreasing, and this is just a hint. | 
|  | */ | 
|  | u64 avail = block_group->zone_capacity - block_group->alloc_offset; | 
|  |  | 
|  | if (block_group_bits(block_group, ffe_ctl->flags) && | 
|  | avail >= ffe_ctl->num_bytes) { | 
|  | ffe_ctl->hint_byte = block_group->start; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prepare_allocation(struct btrfs_fs_info *fs_info, | 
|  | struct find_free_extent_ctl *ffe_ctl, | 
|  | struct btrfs_space_info *space_info, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | switch (ffe_ctl->policy) { | 
|  | case BTRFS_EXTENT_ALLOC_CLUSTERED: | 
|  | return prepare_allocation_clustered(fs_info, ffe_ctl, | 
|  | space_info, ins); | 
|  | case BTRFS_EXTENT_ALLOC_ZONED: | 
|  | return prepare_allocation_zoned(fs_info, ffe_ctl); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walks the btree of allocated extents and find a hole of a given size. | 
|  | * The key ins is changed to record the hole: | 
|  | * ins->objectid == start position | 
|  | * ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | * ins->offset == the size of the hole. | 
|  | * Any available blocks before search_start are skipped. | 
|  | * | 
|  | * If there is no suitable free space, we will record the max size of | 
|  | * the free space extent currently. | 
|  | * | 
|  | * The overall logic and call chain: | 
|  | * | 
|  | * find_free_extent() | 
|  | * |- Iterate through all block groups | 
|  | * |  |- Get a valid block group | 
|  | * |  |- Try to do clustered allocation in that block group | 
|  | * |  |- Try to do unclustered allocation in that block group | 
|  | * |  |- Check if the result is valid | 
|  | * |  |  |- If valid, then exit | 
|  | * |  |- Jump to next block group | 
|  | * | | 
|  | * |- Push harder to find free extents | 
|  | *    |- If not found, re-iterate all block groups | 
|  | */ | 
|  | static noinline int find_free_extent(struct btrfs_root *root, | 
|  | struct btrfs_key *ins, | 
|  | struct find_free_extent_ctl *ffe_ctl) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret = 0; | 
|  | int cache_block_group_error = 0; | 
|  | struct btrfs_block_group *block_group = NULL; | 
|  | struct btrfs_space_info *space_info; | 
|  | bool full_search = false; | 
|  |  | 
|  | WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); | 
|  |  | 
|  | ffe_ctl->search_start = 0; | 
|  | /* For clustered allocation */ | 
|  | ffe_ctl->empty_cluster = 0; | 
|  | ffe_ctl->last_ptr = NULL; | 
|  | ffe_ctl->use_cluster = true; | 
|  | ffe_ctl->have_caching_bg = false; | 
|  | ffe_ctl->orig_have_caching_bg = false; | 
|  | ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); | 
|  | ffe_ctl->loop = 0; | 
|  | ffe_ctl->retry_uncached = false; | 
|  | ffe_ctl->cached = 0; | 
|  | ffe_ctl->max_extent_size = 0; | 
|  | ffe_ctl->total_free_space = 0; | 
|  | ffe_ctl->found_offset = 0; | 
|  | ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; | 
|  | ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); | 
|  |  | 
|  | if (btrfs_is_zoned(fs_info)) | 
|  | ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; | 
|  |  | 
|  | ins->type = BTRFS_EXTENT_ITEM_KEY; | 
|  | ins->objectid = 0; | 
|  | ins->offset = 0; | 
|  |  | 
|  | trace_find_free_extent(root, ffe_ctl); | 
|  |  | 
|  | space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); | 
|  | if (!space_info) { | 
|  | btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ffe_ctl->search_start = max(ffe_ctl->search_start, | 
|  | first_logical_byte(fs_info)); | 
|  | ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); | 
|  | if (ffe_ctl->search_start == ffe_ctl->hint_byte) { | 
|  | block_group = btrfs_lookup_block_group(fs_info, | 
|  | ffe_ctl->search_start); | 
|  | /* | 
|  | * we don't want to use the block group if it doesn't match our | 
|  | * allocation bits, or if its not cached. | 
|  | * | 
|  | * However if we are re-searching with an ideal block group | 
|  | * picked out then we don't care that the block group is cached. | 
|  | */ | 
|  | if (block_group && block_group_bits(block_group, ffe_ctl->flags) && | 
|  | block_group->cached != BTRFS_CACHE_NO) { | 
|  | down_read(&space_info->groups_sem); | 
|  | if (list_empty(&block_group->list) || | 
|  | block_group->ro) { | 
|  | /* | 
|  | * someone is removing this block group, | 
|  | * we can't jump into the have_block_group | 
|  | * target because our list pointers are not | 
|  | * valid | 
|  | */ | 
|  | btrfs_put_block_group(block_group); | 
|  | up_read(&space_info->groups_sem); | 
|  | } else { | 
|  | ffe_ctl->index = btrfs_bg_flags_to_raid_index( | 
|  | block_group->flags); | 
|  | btrfs_lock_block_group(block_group, | 
|  | ffe_ctl->delalloc); | 
|  | ffe_ctl->hinted = true; | 
|  | goto have_block_group; | 
|  | } | 
|  | } else if (block_group) { | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  | search: | 
|  | trace_find_free_extent_search_loop(root, ffe_ctl); | 
|  | ffe_ctl->have_caching_bg = false; | 
|  | if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || | 
|  | ffe_ctl->index == 0) | 
|  | full_search = true; | 
|  | down_read(&space_info->groups_sem); | 
|  | list_for_each_entry(block_group, | 
|  | &space_info->block_groups[ffe_ctl->index], list) { | 
|  | struct btrfs_block_group *bg_ret; | 
|  |  | 
|  | ffe_ctl->hinted = false; | 
|  | /* If the block group is read-only, we can skip it entirely. */ | 
|  | if (unlikely(block_group->ro)) { | 
|  | if (ffe_ctl->for_treelog) | 
|  | btrfs_clear_treelog_bg(block_group); | 
|  | if (ffe_ctl->for_data_reloc) | 
|  | btrfs_clear_data_reloc_bg(block_group); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_grab_block_group(block_group, ffe_ctl->delalloc); | 
|  | ffe_ctl->search_start = block_group->start; | 
|  |  | 
|  | /* | 
|  | * this can happen if we end up cycling through all the | 
|  | * raid types, but we want to make sure we only allocate | 
|  | * for the proper type. | 
|  | */ | 
|  | if (!block_group_bits(block_group, ffe_ctl->flags)) { | 
|  | u64 extra = BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1_MASK | | 
|  | BTRFS_BLOCK_GROUP_RAID56_MASK | | 
|  | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | /* | 
|  | * if they asked for extra copies and this block group | 
|  | * doesn't provide them, bail.  This does allow us to | 
|  | * fill raid0 from raid1. | 
|  | */ | 
|  | if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) | 
|  | goto loop; | 
|  |  | 
|  | /* | 
|  | * This block group has different flags than we want. | 
|  | * It's possible that we have MIXED_GROUP flag but no | 
|  | * block group is mixed.  Just skip such block group. | 
|  | */ | 
|  | btrfs_release_block_group(block_group, ffe_ctl->delalloc); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | have_block_group: | 
|  | trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); | 
|  | ffe_ctl->cached = btrfs_block_group_done(block_group); | 
|  | if (unlikely(!ffe_ctl->cached)) { | 
|  | ffe_ctl->have_caching_bg = true; | 
|  | ret = btrfs_cache_block_group(block_group, false); | 
|  |  | 
|  | /* | 
|  | * If we get ENOMEM here or something else we want to | 
|  | * try other block groups, because it may not be fatal. | 
|  | * However if we can't find anything else we need to | 
|  | * save our return here so that we return the actual | 
|  | * error that caused problems, not ENOSPC. | 
|  | */ | 
|  | if (ret < 0) { | 
|  | if (!cache_block_group_error) | 
|  | cache_block_group_error = ret; | 
|  | ret = 0; | 
|  | goto loop; | 
|  | } | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { | 
|  | if (!cache_block_group_error) | 
|  | cache_block_group_error = -EIO; | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (!find_free_extent_check_size_class(ffe_ctl, block_group)) | 
|  | goto loop; | 
|  |  | 
|  | bg_ret = NULL; | 
|  | ret = do_allocation(block_group, ffe_ctl, &bg_ret); | 
|  | if (ret > 0) | 
|  | goto loop; | 
|  |  | 
|  | if (bg_ret && bg_ret != block_group) { | 
|  | btrfs_release_block_group(block_group, ffe_ctl->delalloc); | 
|  | block_group = bg_ret; | 
|  | } | 
|  |  | 
|  | /* Checks */ | 
|  | ffe_ctl->search_start = round_up(ffe_ctl->found_offset, | 
|  | fs_info->stripesize); | 
|  |  | 
|  | /* move on to the next group */ | 
|  | if (ffe_ctl->search_start + ffe_ctl->num_bytes > | 
|  | block_group->start + block_group->length) { | 
|  | btrfs_add_free_space_unused(block_group, | 
|  | ffe_ctl->found_offset, | 
|  | ffe_ctl->num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (ffe_ctl->found_offset < ffe_ctl->search_start) | 
|  | btrfs_add_free_space_unused(block_group, | 
|  | ffe_ctl->found_offset, | 
|  | ffe_ctl->search_start - ffe_ctl->found_offset); | 
|  |  | 
|  | ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, | 
|  | ffe_ctl->num_bytes, | 
|  | ffe_ctl->delalloc, | 
|  | ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_add_free_space_unused(block_group, | 
|  | ffe_ctl->found_offset, | 
|  | ffe_ctl->num_bytes); | 
|  | goto loop; | 
|  | } | 
|  | btrfs_inc_block_group_reservations(block_group); | 
|  |  | 
|  | /* we are all good, lets return */ | 
|  | ins->objectid = ffe_ctl->search_start; | 
|  | ins->offset = ffe_ctl->num_bytes; | 
|  |  | 
|  | trace_btrfs_reserve_extent(block_group, ffe_ctl); | 
|  | btrfs_release_block_group(block_group, ffe_ctl->delalloc); | 
|  | break; | 
|  | loop: | 
|  | if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && | 
|  | !ffe_ctl->retry_uncached) { | 
|  | ffe_ctl->retry_uncached = true; | 
|  | btrfs_wait_block_group_cache_progress(block_group, | 
|  | ffe_ctl->num_bytes + | 
|  | ffe_ctl->empty_cluster + | 
|  | ffe_ctl->empty_size); | 
|  | goto have_block_group; | 
|  | } | 
|  | release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); | 
|  | cond_resched(); | 
|  | } | 
|  | up_read(&space_info->groups_sem); | 
|  |  | 
|  | ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); | 
|  | if (ret > 0) | 
|  | goto search; | 
|  |  | 
|  | if (ret == -ENOSPC && !cache_block_group_error) { | 
|  | /* | 
|  | * Use ffe_ctl->total_free_space as fallback if we can't find | 
|  | * any contiguous hole. | 
|  | */ | 
|  | if (!ffe_ctl->max_extent_size) | 
|  | ffe_ctl->max_extent_size = ffe_ctl->total_free_space; | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->max_extent_size = ffe_ctl->max_extent_size; | 
|  | spin_unlock(&space_info->lock); | 
|  | ins->offset = ffe_ctl->max_extent_size; | 
|  | } else if (ret == -ENOSPC) { | 
|  | ret = cache_block_group_error; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Entry point to the extent allocator. Tries to find a hole that is at least | 
|  | * as big as @num_bytes. | 
|  | * | 
|  | * @root           -	The root that will contain this extent | 
|  | * | 
|  | * @ram_bytes      -	The amount of space in ram that @num_bytes take. This | 
|  | *			is used for accounting purposes. This value differs | 
|  | *			from @num_bytes only in the case of compressed extents. | 
|  | * | 
|  | * @num_bytes      -	Number of bytes to allocate on-disk. | 
|  | * | 
|  | * @min_alloc_size -	Indicates the minimum amount of space that the | 
|  | *			allocator should try to satisfy. In some cases | 
|  | *			@num_bytes may be larger than what is required and if | 
|  | *			the filesystem is fragmented then allocation fails. | 
|  | *			However, the presence of @min_alloc_size gives a | 
|  | *			chance to try and satisfy the smaller allocation. | 
|  | * | 
|  | * @empty_size     -	A hint that you plan on doing more COW. This is the | 
|  | *			size in bytes the allocator should try to find free | 
|  | *			next to the block it returns.  This is just a hint and | 
|  | *			may be ignored by the allocator. | 
|  | * | 
|  | * @hint_byte      -	Hint to the allocator to start searching above the byte | 
|  | *			address passed. It might be ignored. | 
|  | * | 
|  | * @ins            -	This key is modified to record the found hole. It will | 
|  | *			have the following values: | 
|  | *			ins->objectid == start position | 
|  | *			ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | *			ins->offset == the size of the hole. | 
|  | * | 
|  | * @is_data        -	Boolean flag indicating whether an extent is | 
|  | *			allocated for data (true) or metadata (false) | 
|  | * | 
|  | * @delalloc       -	Boolean flag indicating whether this allocation is for | 
|  | *			delalloc or not. If 'true' data_rwsem of block groups | 
|  | *			is going to be acquired. | 
|  | * | 
|  | * | 
|  | * Returns 0 when an allocation succeeded or < 0 when an error occurred. In | 
|  | * case -ENOSPC is returned then @ins->offset will contain the size of the | 
|  | * largest available hole the allocator managed to find. | 
|  | */ | 
|  | int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, | 
|  | u64 num_bytes, u64 min_alloc_size, | 
|  | u64 empty_size, u64 hint_byte, | 
|  | struct btrfs_key *ins, int is_data, int delalloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct find_free_extent_ctl ffe_ctl = {}; | 
|  | bool final_tried = num_bytes == min_alloc_size; | 
|  | u64 flags; | 
|  | int ret; | 
|  | bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); | 
|  | bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); | 
|  |  | 
|  | flags = get_alloc_profile_by_root(root, is_data); | 
|  | again: | 
|  | WARN_ON(num_bytes < fs_info->sectorsize); | 
|  |  | 
|  | ffe_ctl.ram_bytes = ram_bytes; | 
|  | ffe_ctl.num_bytes = num_bytes; | 
|  | ffe_ctl.min_alloc_size = min_alloc_size; | 
|  | ffe_ctl.empty_size = empty_size; | 
|  | ffe_ctl.flags = flags; | 
|  | ffe_ctl.delalloc = delalloc; | 
|  | ffe_ctl.hint_byte = hint_byte; | 
|  | ffe_ctl.for_treelog = for_treelog; | 
|  | ffe_ctl.for_data_reloc = for_data_reloc; | 
|  |  | 
|  | ret = find_free_extent(root, ins, &ffe_ctl); | 
|  | if (!ret && !is_data) { | 
|  | btrfs_dec_block_group_reservations(fs_info, ins->objectid); | 
|  | } else if (ret == -ENOSPC) { | 
|  | if (!final_tried && ins->offset) { | 
|  | num_bytes = min(num_bytes >> 1, ins->offset); | 
|  | num_bytes = round_down(num_bytes, | 
|  | fs_info->sectorsize); | 
|  | num_bytes = max(num_bytes, min_alloc_size); | 
|  | ram_bytes = num_bytes; | 
|  | if (num_bytes == min_alloc_size) | 
|  | final_tried = true; | 
|  | goto again; | 
|  | } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | struct btrfs_space_info *sinfo; | 
|  |  | 
|  | sinfo = btrfs_find_space_info(fs_info, flags); | 
|  | btrfs_err(fs_info, | 
|  | "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", | 
|  | flags, num_bytes, for_treelog, for_data_reloc); | 
|  | if (sinfo) | 
|  | btrfs_dump_space_info(fs_info, sinfo, | 
|  | num_bytes, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 len, int delalloc) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | if (!cache) { | 
|  | btrfs_err(fs_info, "Unable to find block group for %llu", | 
|  | start); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | btrfs_free_reserved_bytes(cache, len, delalloc); | 
|  | trace_btrfs_reserved_extent_free(fs_info, start, len); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, | 
|  | const struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | int ret = 0; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(trans->fs_info, eb->start); | 
|  | if (!cache) { | 
|  | btrfs_err(trans->fs_info, "unable to find block group for %llu", | 
|  | eb->start); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  |  | 
|  | ret = remove_from_free_space_tree(trans, bytenr, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); | 
|  | if (ret) { | 
|  | ASSERT(!ret); | 
|  | btrfs_err(fs_info, "update block group failed for %llu %llu", | 
|  | bytenr, num_bytes); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod, u64 oref_root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *extent_root; | 
|  | int ret; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_extent_owner_ref *oref; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int type; | 
|  | u32 size; | 
|  | const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); | 
|  |  | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  |  | 
|  | size = sizeof(*extent_item); | 
|  | if (simple_quota) | 
|  | size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); | 
|  | size += btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_root = btrfs_extent_root(fs_info, ins->objectid); | 
|  | ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, ref_mod); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_DATA); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | if (simple_quota) { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); | 
|  | oref = (struct btrfs_extent_owner_ref *)(&iref->offset); | 
|  | btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); | 
|  | iref = (struct btrfs_extent_inline_ref *)(oref + 1); | 
|  | } | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  |  | 
|  | if (parent > 0) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, path->nodes[0]); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | return alloc_reserved_extent(trans, ins->objectid, ins->offset); | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *extent_root; | 
|  | int ret; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_key extent_key; | 
|  | struct btrfs_tree_block_info *block_info; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size = sizeof(*extent_item) + sizeof(*iref); | 
|  | u64 flags = extent_op->flags_to_set; | 
|  | /* The owner of a tree block is the level. */ | 
|  | int level = btrfs_delayed_ref_owner(node); | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  |  | 
|  | extent_key.objectid = node->bytenr; | 
|  | if (skinny_metadata) { | 
|  | /* The owner of a tree block is the level. */ | 
|  | extent_key.offset = level; | 
|  | extent_key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | } else { | 
|  | extent_key.offset = node->num_bytes; | 
|  | extent_key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | size += sizeof(*block_info); | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_root = btrfs_extent_root(fs_info, extent_key.objectid); | 
|  | ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, | 
|  | size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, 1); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); | 
|  |  | 
|  | if (skinny_metadata) { | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | } else { | 
|  | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); | 
|  | btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); | 
|  | btrfs_set_tree_block_level(leaf, block_info, level); | 
|  | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_SHARED_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_TREE_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 owner, | 
|  | u64 offset, u64 ram_bytes, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | struct btrfs_ref generic_ref = { | 
|  | .action = BTRFS_ADD_DELAYED_EXTENT, | 
|  | .bytenr = ins->objectid, | 
|  | .num_bytes = ins->offset, | 
|  | .owning_root = btrfs_root_id(root), | 
|  | .ref_root = btrfs_root_id(root), | 
|  | }; | 
|  |  | 
|  | ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) | 
|  | generic_ref.owning_root = root->relocation_src_root; | 
|  |  | 
|  | btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); | 
|  | btrfs_ref_tree_mod(root->fs_info, &generic_ref); | 
|  |  | 
|  | return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used by the tree logging recovery code.  It records that | 
|  | * an extent has been allocated and makes sure to clear the free | 
|  | * space cache bits as well | 
|  | */ | 
|  | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 root_objectid, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  | struct btrfs_block_group *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_squota_delta delta = { | 
|  | .root = root_objectid, | 
|  | .num_bytes = ins->offset, | 
|  | .generation = trans->transid, | 
|  | .is_data = true, | 
|  | .is_inc = true, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mixed block groups will exclude before processing the log so we only | 
|  | * need to do the exclude dance if this fs isn't mixed. | 
|  | */ | 
|  | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
|  | ret = __exclude_logged_extent(fs_info, ins->objectid, | 
|  | ins->offset); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, ins->objectid); | 
|  | if (!block_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | space_info->bytes_reserved += ins->offset; | 
|  | block_group->reserved += ins->offset; | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, | 
|  | offset, ins, 1, root_objectid); | 
|  | if (ret) | 
|  | btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); | 
|  | ret = btrfs_record_squota_delta(fs_info, &delta); | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | /* | 
|  | * Extra safety check in case the extent tree is corrupted and extent allocator | 
|  | * chooses to use a tree block which is already used and locked. | 
|  | */ | 
|  | static bool check_eb_lock_owner(const struct extent_buffer *eb) | 
|  | { | 
|  | if (eb->lock_owner == current->pid) { | 
|  | btrfs_err_rl(eb->fs_info, | 
|  | "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", | 
|  | eb->start, btrfs_header_owner(eb), current->pid); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | static bool check_eb_lock_owner(struct extent_buffer *eb) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct extent_buffer * | 
|  | btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | u64 bytenr, int level, u64 owner, | 
|  | enum btrfs_lock_nesting nest) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *buf; | 
|  | u64 lockdep_owner = owner; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); | 
|  | if (IS_ERR(buf)) | 
|  | return buf; | 
|  |  | 
|  | if (check_eb_lock_owner(buf)) { | 
|  | free_extent_buffer(buf); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The reloc trees are just snapshots, so we need them to appear to be | 
|  | * just like any other fs tree WRT lockdep. | 
|  | * | 
|  | * The exception however is in replace_path() in relocation, where we | 
|  | * hold the lock on the original fs root and then search for the reloc | 
|  | * root.  At that point we need to make sure any reloc root buffers are | 
|  | * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make | 
|  | * lockdep happy. | 
|  | */ | 
|  | if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && | 
|  | !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) | 
|  | lockdep_owner = BTRFS_FS_TREE_OBJECTID; | 
|  |  | 
|  | /* btrfs_clear_buffer_dirty() accesses generation field. */ | 
|  | btrfs_set_header_generation(buf, trans->transid); | 
|  |  | 
|  | /* | 
|  | * This needs to stay, because we could allocate a freed block from an | 
|  | * old tree into a new tree, so we need to make sure this new block is | 
|  | * set to the appropriate level and owner. | 
|  | */ | 
|  | btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); | 
|  |  | 
|  | btrfs_tree_lock_nested(buf, nest); | 
|  | btrfs_clear_buffer_dirty(trans, buf); | 
|  | clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); | 
|  | clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); | 
|  |  | 
|  | set_extent_buffer_uptodate(buf); | 
|  |  | 
|  | memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); | 
|  | btrfs_set_header_level(buf, level); | 
|  | btrfs_set_header_bytenr(buf, buf->start); | 
|  | btrfs_set_header_generation(buf, trans->transid); | 
|  | btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_set_header_owner(buf, owner); | 
|  | write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); | 
|  | write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); | 
|  | if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { | 
|  | buf->log_index = root->log_transid % 2; | 
|  | /* | 
|  | * we allow two log transactions at a time, use different | 
|  | * EXTENT bit to differentiate dirty pages. | 
|  | */ | 
|  | if (buf->log_index == 0) | 
|  | set_extent_bit(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, | 
|  | EXTENT_DIRTY, NULL); | 
|  | else | 
|  | set_extent_bit(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, | 
|  | EXTENT_NEW, NULL); | 
|  | } else { | 
|  | buf->log_index = -1; | 
|  | set_extent_bit(&trans->transaction->dirty_pages, buf->start, | 
|  | buf->start + buf->len - 1, EXTENT_DIRTY, NULL); | 
|  | } | 
|  | /* this returns a buffer locked for blocking */ | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finds a free extent and does all the dirty work required for allocation | 
|  | * returns the tree buffer or an ERR_PTR on error. | 
|  | */ | 
|  | struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | const struct btrfs_disk_key *key, | 
|  | int level, u64 hint, | 
|  | u64 empty_size, | 
|  | u64 reloc_src_root, | 
|  | enum btrfs_lock_nesting nest) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key ins; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct extent_buffer *buf; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | u64 flags = 0; | 
|  | int ret; | 
|  | u32 blocksize = fs_info->nodesize; | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  | u64 owning_root; | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (btrfs_is_testing(fs_info)) { | 
|  | buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, | 
|  | level, root_objectid, nest); | 
|  | if (!IS_ERR(buf)) | 
|  | root->alloc_bytenr += blocksize; | 
|  | return buf; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | block_rsv = btrfs_use_block_rsv(trans, root, blocksize); | 
|  | if (IS_ERR(block_rsv)) | 
|  | return ERR_CAST(block_rsv); | 
|  |  | 
|  | ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, | 
|  | empty_size, hint, &ins, 0, 0); | 
|  | if (ret) | 
|  | goto out_unuse; | 
|  |  | 
|  | buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, | 
|  | root_objectid, nest); | 
|  | if (IS_ERR(buf)) { | 
|  | ret = PTR_ERR(buf); | 
|  | goto out_free_reserved; | 
|  | } | 
|  | owning_root = btrfs_header_owner(buf); | 
|  |  | 
|  | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
|  | if (parent == 0) | 
|  | parent = ins.objectid; | 
|  | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | owning_root = reloc_src_root; | 
|  | } else | 
|  | BUG_ON(parent > 0); | 
|  |  | 
|  | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | struct btrfs_ref generic_ref = { | 
|  | .action = BTRFS_ADD_DELAYED_EXTENT, | 
|  | .bytenr = ins.objectid, | 
|  | .num_bytes = ins.offset, | 
|  | .parent = parent, | 
|  | .owning_root = owning_root, | 
|  | .ref_root = root_objectid, | 
|  | }; | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | if (!extent_op) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_buf; | 
|  | } | 
|  | if (key) | 
|  | memcpy(&extent_op->key, key, sizeof(extent_op->key)); | 
|  | else | 
|  | memset(&extent_op->key, 0, sizeof(extent_op->key)); | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_key = skinny_metadata ? false : true; | 
|  | extent_op->update_flags = true; | 
|  | extent_op->level = level; | 
|  |  | 
|  | btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); | 
|  | btrfs_ref_tree_mod(fs_info, &generic_ref); | 
|  | ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); | 
|  | if (ret) | 
|  | goto out_free_delayed; | 
|  | } | 
|  | return buf; | 
|  |  | 
|  | out_free_delayed: | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | out_free_buf: | 
|  | btrfs_tree_unlock(buf); | 
|  | free_extent_buffer(buf); | 
|  | out_free_reserved: | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); | 
|  | out_unuse: | 
|  | btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | struct walk_control { | 
|  | u64 refs[BTRFS_MAX_LEVEL]; | 
|  | u64 flags[BTRFS_MAX_LEVEL]; | 
|  | struct btrfs_key update_progress; | 
|  | struct btrfs_key drop_progress; | 
|  | int drop_level; | 
|  | int stage; | 
|  | int level; | 
|  | int shared_level; | 
|  | int update_ref; | 
|  | int keep_locks; | 
|  | int reada_slot; | 
|  | int reada_count; | 
|  | int restarted; | 
|  | }; | 
|  |  | 
|  | #define DROP_REFERENCE	1 | 
|  | #define UPDATE_BACKREF	2 | 
|  |  | 
|  | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct walk_control *wc, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 refs; | 
|  | u64 flags; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  | int slot; | 
|  | int nread = 0; | 
|  |  | 
|  | if (path->slots[wc->level] < wc->reada_slot) { | 
|  | wc->reada_count = wc->reada_count * 2 / 3; | 
|  | wc->reada_count = max(wc->reada_count, 2); | 
|  | } else { | 
|  | wc->reada_count = wc->reada_count * 3 / 2; | 
|  | wc->reada_count = min_t(int, wc->reada_count, | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info)); | 
|  | } | 
|  |  | 
|  | eb = path->nodes[wc->level]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  |  | 
|  | for (slot = path->slots[wc->level]; slot < nritems; slot++) { | 
|  | if (nread >= wc->reada_count) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | bytenr = btrfs_node_blockptr(eb, slot); | 
|  | generation = btrfs_node_ptr_generation(eb, slot); | 
|  |  | 
|  | if (slot == path->slots[wc->level]) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  |  | 
|  | /* We don't lock the tree block, it's OK to be racy here */ | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, | 
|  | wc->level - 1, 1, &refs, | 
|  | &flags, NULL); | 
|  | /* We don't care about errors in readahead. */ | 
|  | if (ret < 0) | 
|  | continue; | 
|  | BUG_ON(refs == 0); | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (refs == 1) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  | btrfs_node_key_to_cpu(eb, &key, slot); | 
|  | ret = btrfs_comp_cpu_keys(&key, | 
|  | &wc->update_progress); | 
|  | if (ret < 0) | 
|  | continue; | 
|  | } else { | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | } | 
|  | reada: | 
|  | btrfs_readahead_node_child(eb, slot); | 
|  | nread++; | 
|  | } | 
|  | wc->reada_slot = slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking down the tree. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function updates | 
|  | * back refs for pointers in the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int lookup_info) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | int ret; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * when reference count of tree block is 1, it won't increase | 
|  | * again. once full backref flag is set, we never clear it. | 
|  | */ | 
|  | if (lookup_info && | 
|  | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || | 
|  | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | eb->start, level, 1, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level], | 
|  | NULL); | 
|  | BUG_ON(ret == -ENOMEM); | 
|  | if (ret) | 
|  | return ret; | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level] > 1) | 
|  | return 1; | 
|  |  | 
|  | if (path->locks[level] && !wc->keep_locks) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* wc->stage == UPDATE_BACKREF */ | 
|  | if (!(wc->flags[level] & flag)) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_inc_ref(trans, root, eb, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_set_disk_extent_flags(trans, eb, flag); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | wc->flags[level] |= flag; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the block is shared by multiple trees, so it's not good to | 
|  | * keep the tree lock | 
|  | */ | 
|  | if (path->locks[level] && level > 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used to verify a ref exists for this root to deal with a bug where we | 
|  | * would have a drop_progress key that hadn't been updated properly. | 
|  | */ | 
|  | static int check_ref_exists(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr, u64 parent, | 
|  | int level) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = lookup_extent_backref(trans, path, &iref, bytenr, | 
|  | root->fs_info->nodesize, parent, | 
|  | btrfs_root_id(root), level, 0); | 
|  | btrfs_free_path(path); | 
|  | if (ret == -ENOENT) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block pointer. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function checks | 
|  | * reference count of the block pointed to. if the block | 
|  | * is shared and we need update back refs for the subtree | 
|  | * rooted at the block, this function changes wc->stage to | 
|  | * UPDATE_BACKREF. if the block is shared and there is no | 
|  | * need to update back, this function drops the reference | 
|  | * to the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int do_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int *lookup_info) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 owner_root = 0; | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *next; | 
|  | int level = wc->level; | 
|  | int reada = 0; | 
|  | int ret = 0; | 
|  | bool need_account = false; | 
|  |  | 
|  | generation = btrfs_node_ptr_generation(path->nodes[level], | 
|  | path->slots[level]); | 
|  | /* | 
|  | * if the lower level block was created before the snapshot | 
|  | * was created, we know there is no need to update back refs | 
|  | * for the subtree | 
|  | */ | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) { | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); | 
|  |  | 
|  | check.level = level - 1; | 
|  | check.transid = generation; | 
|  | check.owner_root = btrfs_root_id(root); | 
|  | check.has_first_key = true; | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, | 
|  | path->slots[level]); | 
|  |  | 
|  | next = find_extent_buffer(fs_info, bytenr); | 
|  | if (!next) { | 
|  | next = btrfs_find_create_tree_block(fs_info, bytenr, | 
|  | btrfs_root_id(root), level - 1); | 
|  | if (IS_ERR(next)) | 
|  | return PTR_ERR(next); | 
|  | reada = 1; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, | 
|  | &wc->refs[level - 1], | 
|  | &wc->flags[level - 1], | 
|  | &owner_root); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (unlikely(wc->refs[level - 1] == 0)) { | 
|  | btrfs_err(fs_info, "Missing references."); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | *lookup_info = 0; | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level - 1] > 1) { | 
|  | need_account = true; | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  |  | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | goto skip; | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); | 
|  | if (ret < 0) | 
|  | goto skip; | 
|  |  | 
|  | wc->stage = UPDATE_BACKREF; | 
|  | wc->shared_level = level - 1; | 
|  | } | 
|  | } else { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | if (!btrfs_buffer_uptodate(next, generation, 0)) { | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | next = NULL; | 
|  | *lookup_info = 1; | 
|  | } | 
|  |  | 
|  | if (!next) { | 
|  | if (reada && level == 1) | 
|  | reada_walk_down(trans, root, wc, path); | 
|  | next = read_tree_block(fs_info, bytenr, &check); | 
|  | if (IS_ERR(next)) { | 
|  | return PTR_ERR(next); | 
|  | } else if (!extent_buffer_uptodate(next)) { | 
|  | free_extent_buffer(next); | 
|  | return -EIO; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  | } | 
|  |  | 
|  | level--; | 
|  | ASSERT(level == btrfs_header_level(next)); | 
|  | if (level != btrfs_header_level(next)) { | 
|  | btrfs_err(root->fs_info, "mismatched level"); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | path->nodes[level] = next; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  | wc->level = level; | 
|  | if (wc->level == 1) | 
|  | wc->reada_slot = 0; | 
|  | return 0; | 
|  | skip: | 
|  | wc->refs[level - 1] = 0; | 
|  | wc->flags[level - 1] = 0; | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | struct btrfs_ref ref = { | 
|  | .action = BTRFS_DROP_DELAYED_REF, | 
|  | .bytenr = bytenr, | 
|  | .num_bytes = fs_info->nodesize, | 
|  | .owning_root = owner_root, | 
|  | .ref_root = btrfs_root_id(root), | 
|  | }; | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
|  | ref.parent = path->nodes[level]->start; | 
|  | } else { | 
|  | ASSERT(btrfs_root_id(root) == | 
|  | btrfs_header_owner(path->nodes[level])); | 
|  | if (btrfs_root_id(root) != | 
|  | btrfs_header_owner(path->nodes[level])) { | 
|  | btrfs_err(root->fs_info, | 
|  | "mismatched block owner"); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we had a drop_progress we need to verify the refs are set | 
|  | * as expected.  If we find our ref then we know that from here | 
|  | * on out everything should be correct, and we can clear the | 
|  | * ->restarted flag. | 
|  | */ | 
|  | if (wc->restarted) { | 
|  | ret = check_ref_exists(trans, root, bytenr, ref.parent, | 
|  | level - 1); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | if (ret == 0) | 
|  | goto no_delete; | 
|  | ret = 0; | 
|  | wc->restarted = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reloc tree doesn't contribute to qgroup numbers, and we have | 
|  | * already accounted them at merge time (replace_path), | 
|  | * thus we could skip expensive subtree trace here. | 
|  | */ | 
|  | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && need_account) { | 
|  | ret = btrfs_qgroup_trace_subtree(trans, next, | 
|  | generation, level - 1); | 
|  | if (ret) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "Error %d accounting shared subtree. Quota is out of sync, rescan required.", | 
|  | ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to update the next key in our walk control so we can | 
|  | * update the drop_progress key accordingly.  We don't care if | 
|  | * find_next_key doesn't find a key because that means we're at | 
|  | * the end and are going to clean up now. | 
|  | */ | 
|  | wc->drop_level = level; | 
|  | find_next_key(path, level, &wc->drop_progress); | 
|  |  | 
|  | btrfs_init_tree_ref(&ref, level - 1, 0, false); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  | no_delete: | 
|  | *lookup_info = 1; | 
|  | ret = 1; | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking up the tree. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function drops | 
|  | * reference count on the block. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function changes | 
|  | * wc->stage back to DROP_REFERENCE if we changed wc->stage | 
|  | * to UPDATE_BACKREF previously while processing the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking up. | 
|  | */ | 
|  | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 parent = 0; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF) { | 
|  | BUG_ON(wc->shared_level < level); | 
|  | if (level < wc->shared_level) | 
|  | goto out; | 
|  |  | 
|  | ret = find_next_key(path, level + 1, &wc->update_progress); | 
|  | if (ret > 0) | 
|  | wc->update_ref = 0; | 
|  |  | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->shared_level = -1; | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | /* | 
|  | * check reference count again if the block isn't locked. | 
|  | * we should start walking down the tree again if reference | 
|  | * count is one. | 
|  | */ | 
|  | if (!path->locks[level]) { | 
|  | BUG_ON(level == 0); | 
|  | btrfs_tree_lock(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | eb->start, level, 1, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level], | 
|  | NULL); | 
|  | if (ret < 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return ret; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | if (wc->refs[level] == 1) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* wc->stage == DROP_REFERENCE */ | 
|  | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); | 
|  |  | 
|  | if (wc->refs[level] == 1) { | 
|  | if (level == 0) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | ret = btrfs_dec_ref(trans, root, eb, 1); | 
|  | else | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | if (is_fstree(btrfs_root_id(root))) { | 
|  | ret = btrfs_qgroup_trace_leaf_items(trans, eb); | 
|  | if (ret) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "error %d accounting leaf items, quota is out of sync, rescan required", | 
|  | ret); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ | 
|  | if (!path->locks[level]) { | 
|  | btrfs_tree_lock(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  | } | 
|  | btrfs_clear_buffer_dirty(trans, eb); | 
|  | } | 
|  |  | 
|  | if (eb == root->node) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = eb->start; | 
|  | else if (btrfs_root_id(root) != btrfs_header_owner(eb)) | 
|  | goto owner_mismatch; | 
|  | } else { | 
|  | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = path->nodes[level + 1]->start; | 
|  | else if (btrfs_root_id(root) != | 
|  | btrfs_header_owner(path->nodes[level + 1])) | 
|  | goto owner_mismatch; | 
|  | } | 
|  |  | 
|  | btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, | 
|  | wc->refs[level] == 1); | 
|  | out: | 
|  | wc->refs[level] = 0; | 
|  | wc->flags[level] = 0; | 
|  | return 0; | 
|  |  | 
|  | owner_mismatch: | 
|  | btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", | 
|  | btrfs_header_owner(eb), btrfs_root_id(root)); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int level = wc->level; | 
|  | int lookup_info = 1; | 
|  | int ret = 0; | 
|  |  | 
|  | while (level >= 0) { | 
|  | ret = walk_down_proc(trans, root, path, wc, lookup_info); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (level == 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[level] >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | break; | 
|  |  | 
|  | ret = do_walk_down(trans, root, path, wc, &lookup_info); | 
|  | if (ret > 0) { | 
|  | path->slots[level]++; | 
|  | continue; | 
|  | } else if (ret < 0) | 
|  | break; | 
|  | level = wc->level; | 
|  | } | 
|  | return (ret == 1) ? 0 : ret; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int max_level) | 
|  | { | 
|  | int level = wc->level; | 
|  | int ret; | 
|  |  | 
|  | path->slots[level] = btrfs_header_nritems(path->nodes[level]); | 
|  | while (level < max_level && path->nodes[level]) { | 
|  | wc->level = level; | 
|  | if (path->slots[level] + 1 < | 
|  | btrfs_header_nritems(path->nodes[level])) { | 
|  | path->slots[level]++; | 
|  | return 0; | 
|  | } else { | 
|  | ret = walk_up_proc(trans, root, path, wc); | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (path->locks[level]) { | 
|  | btrfs_tree_unlock_rw(path->nodes[level], | 
|  | path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | free_extent_buffer(path->nodes[level]); | 
|  | path->nodes[level] = NULL; | 
|  | level++; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop a subvolume tree. | 
|  | * | 
|  | * this function traverses the tree freeing any blocks that only | 
|  | * referenced by the tree. | 
|  | * | 
|  | * when a shared tree block is found. this function decreases its | 
|  | * reference count by one. if update_ref is true, this function | 
|  | * also make sure backrefs for the shared block and all lower level | 
|  | * blocks are properly updated. | 
|  | * | 
|  | * If called with for_reloc == 0, may exit early with -EAGAIN | 
|  | */ | 
|  | int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) | 
|  | { | 
|  | const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root_item *root_item = &root->root_item; | 
|  | struct walk_control *wc; | 
|  | struct btrfs_key key; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int level; | 
|  | bool root_dropped = false; | 
|  | bool unfinished_drop = false; | 
|  |  | 
|  | btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use join to avoid potential EINTR from transaction start. See | 
|  | * wait_reserve_ticket and the whole reservation callchain. | 
|  | */ | 
|  | if (for_reloc) | 
|  | trans = btrfs_join_transaction(tree_root); | 
|  | else | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | err = btrfs_run_delayed_items(trans); | 
|  | if (err) | 
|  | goto out_end_trans; | 
|  |  | 
|  | /* | 
|  | * This will help us catch people modifying the fs tree while we're | 
|  | * dropping it.  It is unsafe to mess with the fs tree while it's being | 
|  | * dropped as we unlock the root node and parent nodes as we walk down | 
|  | * the tree, assuming nothing will change.  If something does change | 
|  | * then we'll have stale information and drop references to blocks we've | 
|  | * already dropped. | 
|  | */ | 
|  | set_bit(BTRFS_ROOT_DELETING, &root->state); | 
|  | unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); | 
|  |  | 
|  | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
|  | level = btrfs_header_level(root->node); | 
|  | path->nodes[level] = btrfs_lock_root_node(root); | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  | memset(&wc->update_progress, 0, | 
|  | sizeof(wc->update_progress)); | 
|  | } else { | 
|  | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
|  | memcpy(&wc->update_progress, &key, | 
|  | sizeof(wc->update_progress)); | 
|  |  | 
|  | level = btrfs_root_drop_level(root_item); | 
|  | BUG_ON(level == 0); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | WARN_ON(ret > 0); | 
|  |  | 
|  | /* | 
|  | * unlock our path, this is safe because only this | 
|  | * function is allowed to delete this snapshot | 
|  | */ | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | level = btrfs_header_level(root->node); | 
|  | while (1) { | 
|  | btrfs_tree_lock(path->nodes[level]); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | path->nodes[level]->start, | 
|  | level, 1, &wc->refs[level], | 
|  | &wc->flags[level], NULL); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  |  | 
|  | if (level == btrfs_root_drop_level(root_item)) | 
|  | break; | 
|  |  | 
|  | btrfs_tree_unlock(path->nodes[level]); | 
|  | path->locks[level] = 0; | 
|  | WARN_ON(wc->refs[level] != 1); | 
|  | level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = update_ref; | 
|  | wc->keep_locks = 0; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); | 
|  |  | 
|  | while (1) { | 
|  |  | 
|  | ret = walk_down_tree(trans, root, path, wc); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | BUG_ON(wc->stage != DROP_REFERENCE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | wc->drop_level = wc->level; | 
|  | btrfs_node_key_to_cpu(path->nodes[wc->drop_level], | 
|  | &wc->drop_progress, | 
|  | path->slots[wc->drop_level]); | 
|  | } | 
|  | btrfs_cpu_key_to_disk(&root_item->drop_progress, | 
|  | &wc->drop_progress); | 
|  | btrfs_set_root_drop_level(root_item, wc->drop_level); | 
|  |  | 
|  | BUG_ON(wc->level == 0); | 
|  | if (btrfs_should_end_transaction(trans) || | 
|  | (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { | 
|  | ret = btrfs_update_root(trans, tree_root, | 
|  | &root->root_key, | 
|  | root_item); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | if (!is_reloc_root) | 
|  | btrfs_set_last_root_drop_gen(fs_info, trans->transid); | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { | 
|  | btrfs_debug(fs_info, | 
|  | "drop snapshot early exit"); | 
|  | err = -EAGAIN; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use join to avoid potential EINTR from transaction | 
|  | * start. See wait_reserve_ticket and the whole | 
|  | * reservation callchain. | 
|  | */ | 
|  | if (for_reloc) | 
|  | trans = btrfs_join_transaction(tree_root); | 
|  | else | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (err) | 
|  | goto out_end_trans; | 
|  |  | 
|  | ret = btrfs_del_root(trans, &root->root_key); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | if (!is_reloc_root) { | 
|  | ret = btrfs_find_root(tree_root, &root->root_key, path, | 
|  | NULL, NULL); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } else if (ret > 0) { | 
|  | /* if we fail to delete the orphan item this time | 
|  | * around, it'll get picked up the next time. | 
|  | * | 
|  | * The most common failure here is just -ENOENT. | 
|  | */ | 
|  | btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This subvolume is going to be completely dropped, and won't be | 
|  | * recorded as dirty roots, thus pertrans meta rsv will not be freed at | 
|  | * commit transaction time.  So free it here manually. | 
|  | */ | 
|  | btrfs_qgroup_convert_reserved_meta(root, INT_MAX); | 
|  | btrfs_qgroup_free_meta_all_pertrans(root); | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) | 
|  | btrfs_add_dropped_root(trans, root); | 
|  | else | 
|  | btrfs_put_root(root); | 
|  | root_dropped = true; | 
|  | out_end_trans: | 
|  | if (!is_reloc_root) | 
|  | btrfs_set_last_root_drop_gen(fs_info, trans->transid); | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | out_free: | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | out: | 
|  | /* | 
|  | * We were an unfinished drop root, check to see if there are any | 
|  | * pending, and if not clear and wake up any waiters. | 
|  | */ | 
|  | if (!err && unfinished_drop) | 
|  | btrfs_maybe_wake_unfinished_drop(fs_info); | 
|  |  | 
|  | /* | 
|  | * So if we need to stop dropping the snapshot for whatever reason we | 
|  | * need to make sure to add it back to the dead root list so that we | 
|  | * keep trying to do the work later.  This also cleans up roots if we | 
|  | * don't have it in the radix (like when we recover after a power fail | 
|  | * or unmount) so we don't leak memory. | 
|  | */ | 
|  | if (!for_reloc && !root_dropped) | 
|  | btrfs_add_dead_root(root); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop subtree rooted at tree block 'node'. | 
|  | * | 
|  | * NOTE: this function will unlock and release tree block 'node' | 
|  | * only used by relocation code | 
|  | */ | 
|  | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *node, | 
|  | struct extent_buffer *parent) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct walk_control *wc; | 
|  | int level; | 
|  | int parent_level; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | btrfs_assert_tree_write_locked(parent); | 
|  | parent_level = btrfs_header_level(parent); | 
|  | atomic_inc(&parent->refs); | 
|  | path->nodes[parent_level] = parent; | 
|  | path->slots[parent_level] = btrfs_header_nritems(parent); | 
|  |  | 
|  | btrfs_assert_tree_write_locked(node); | 
|  | level = btrfs_header_level(node); | 
|  | path->nodes[level] = node; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK; | 
|  |  | 
|  | wc->refs[parent_level] = 1; | 
|  | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = 0; | 
|  | wc->keep_locks = 1; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); | 
|  |  | 
|  | while (1) { | 
|  | ret = walk_down_tree(trans, root, path, wc); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | ret = walk_up_tree(trans, root, path, wc, parent_level); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unpin the extent range in an error context and don't add the space back. | 
|  | * Errors are not propagated further. | 
|  | */ | 
|  | void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) | 
|  | { | 
|  | unpin_extent_range(fs_info, start, end, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It used to be that old block groups would be left around forever. | 
|  | * Iterating over them would be enough to trim unused space.  Since we | 
|  | * now automatically remove them, we also need to iterate over unallocated | 
|  | * space. | 
|  | * | 
|  | * We don't want a transaction for this since the discard may take a | 
|  | * substantial amount of time.  We don't require that a transaction be | 
|  | * running, but we do need to take a running transaction into account | 
|  | * to ensure that we're not discarding chunks that were released or | 
|  | * allocated in the current transaction. | 
|  | * | 
|  | * Holding the chunks lock will prevent other threads from allocating | 
|  | * or releasing chunks, but it won't prevent a running transaction | 
|  | * from committing and releasing the memory that the pending chunks | 
|  | * list head uses.  For that, we need to take a reference to the | 
|  | * transaction and hold the commit root sem.  We only need to hold | 
|  | * it while performing the free space search since we have already | 
|  | * held back allocations. | 
|  | */ | 
|  | static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) | 
|  | { | 
|  | u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; | 
|  | int ret; | 
|  |  | 
|  | *trimmed = 0; | 
|  |  | 
|  | /* Discard not supported = nothing to do. */ | 
|  | if (!bdev_max_discard_sectors(device->bdev)) | 
|  | return 0; | 
|  |  | 
|  | /* Not writable = nothing to do. */ | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | return 0; | 
|  |  | 
|  | /* No free space = nothing to do. */ | 
|  | if (device->total_bytes <= device->bytes_used) | 
|  | return 0; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | u64 bytes; | 
|  |  | 
|  | ret = mutex_lock_interruptible(&fs_info->chunk_mutex); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | find_first_clear_extent_bit(&device->alloc_state, start, | 
|  | &start, &end, | 
|  | CHUNK_TRIMMED | CHUNK_ALLOCATED); | 
|  |  | 
|  | /* Check if there are any CHUNK_* bits left */ | 
|  | if (start > device->total_bytes) { | 
|  | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", | 
|  | start, end - start + 1, | 
|  | btrfs_dev_name(device), | 
|  | device->total_bytes); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Ensure we skip the reserved space on each device. */ | 
|  | start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); | 
|  |  | 
|  | /* | 
|  | * If find_first_clear_extent_bit find a range that spans the | 
|  | * end of the device it will set end to -1, in this case it's up | 
|  | * to the caller to trim the value to the size of the device. | 
|  | */ | 
|  | end = min(end, device->total_bytes - 1); | 
|  |  | 
|  | len = end - start + 1; | 
|  |  | 
|  | /* We didn't find any extents */ | 
|  | if (!len) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_issue_discard(device->bdev, start, len, | 
|  | &bytes); | 
|  | if (!ret) | 
|  | set_extent_bit(&device->alloc_state, start, | 
|  | start + bytes - 1, CHUNK_TRIMMED, NULL); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | start += len; | 
|  | *trimmed += bytes; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trim the whole filesystem by: | 
|  | * 1) trimming the free space in each block group | 
|  | * 2) trimming the unallocated space on each device | 
|  | * | 
|  | * This will also continue trimming even if a block group or device encounters | 
|  | * an error.  The return value will be the last error, or 0 if nothing bad | 
|  | * happens. | 
|  | */ | 
|  | int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_block_group *cache = NULL; | 
|  | struct btrfs_device *device; | 
|  | u64 group_trimmed; | 
|  | u64 range_end = U64_MAX; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 trimmed = 0; | 
|  | u64 bg_failed = 0; | 
|  | u64 dev_failed = 0; | 
|  | int bg_ret = 0; | 
|  | int dev_ret = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (range->start == U64_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Check range overflow if range->len is set. | 
|  | * The default range->len is U64_MAX. | 
|  | */ | 
|  | if (range->len != U64_MAX && | 
|  | check_add_overflow(range->start, range->len, &range_end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(fs_info, range->start); | 
|  | for (; cache; cache = btrfs_next_block_group(cache)) { | 
|  | if (cache->start >= range_end) { | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  |  | 
|  | start = max(range->start, cache->start); | 
|  | end = min(range_end, cache->start + cache->length); | 
|  |  | 
|  | if (end - start >= range->minlen) { | 
|  | if (!btrfs_block_group_done(cache)) { | 
|  | ret = btrfs_cache_block_group(cache, true); | 
|  | if (ret) { | 
|  | bg_failed++; | 
|  | bg_ret = ret; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | ret = btrfs_trim_block_group(cache, | 
|  | &group_trimmed, | 
|  | start, | 
|  | end, | 
|  | range->minlen); | 
|  |  | 
|  | trimmed += group_trimmed; | 
|  | if (ret) { | 
|  | bg_failed++; | 
|  | bg_ret = ret; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bg_failed) | 
|  | btrfs_warn(fs_info, | 
|  | "failed to trim %llu block group(s), last error %d", | 
|  | bg_failed, bg_ret); | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_trim_free_extents(device, &group_trimmed); | 
|  | if (ret) { | 
|  | dev_failed++; | 
|  | dev_ret = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trimmed += group_trimmed; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (dev_failed) | 
|  | btrfs_warn(fs_info, | 
|  | "failed to trim %llu device(s), last error %d", | 
|  | dev_failed, dev_ret); | 
|  | range->len = trimmed; | 
|  | if (bg_ret) | 
|  | return bg_ret; | 
|  | return dev_ret; | 
|  | } |