|  | /* | 
|  | *  linux/mm/memory.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * demand-loading started 01.12.91 - seems it is high on the list of | 
|  | * things wanted, and it should be easy to implement. - Linus | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
|  | * pages started 02.12.91, seems to work. - Linus. | 
|  | * | 
|  | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
|  | * would have taken more than the 6M I have free, but it worked well as | 
|  | * far as I could see. | 
|  | * | 
|  | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
|  | * thought has to go into this. Oh, well.. | 
|  | * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
|  | *		Found it. Everything seems to work now. | 
|  | * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 05.04.94  -  Multi-page memory management added for v1.1. | 
|  | * 		Idea by Alex Bligh ([email protected]) | 
|  | * | 
|  | * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
|  | *		([email protected]) | 
|  | * | 
|  | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
|  | unsigned long max_mapnr; | 
|  | struct page *mem_map; | 
|  |  | 
|  | EXPORT_SYMBOL(max_mapnr); | 
|  | EXPORT_SYMBOL(mem_map); | 
|  | #endif | 
|  |  | 
|  | unsigned long num_physpages; | 
|  | /* | 
|  | * A number of key systems in x86 including ioremap() rely on the assumption | 
|  | * that high_memory defines the upper bound on direct map memory, then end | 
|  | * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
|  | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | void * high_memory; | 
|  |  | 
|  | EXPORT_SYMBOL(num_physpages); | 
|  | EXPORT_SYMBOL(high_memory); | 
|  |  | 
|  | /* | 
|  | * Randomize the address space (stacks, mmaps, brk, etc.). | 
|  | * | 
|  | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 
|  | *   as ancient (libc5 based) binaries can segfault. ) | 
|  | */ | 
|  | int randomize_va_space __read_mostly = | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | 1; | 
|  | #else | 
|  | 2; | 
|  | #endif | 
|  |  | 
|  | static int __init disable_randmaps(char *s) | 
|  | { | 
|  | randomize_va_space = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("norandmaps", disable_randmaps); | 
|  |  | 
|  | unsigned long zero_pfn __read_mostly; | 
|  | unsigned long highest_memmap_pfn __read_mostly; | 
|  |  | 
|  | /* | 
|  | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | 
|  | */ | 
|  | static int __init init_zero_pfn(void) | 
|  | { | 
|  | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | 
|  | return 0; | 
|  | } | 
|  | core_initcall(init_zero_pfn); | 
|  |  | 
|  |  | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  |  | 
|  | static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) { | 
|  | if (task->rss_stat.count[i]) { | 
|  | add_mm_counter(mm, i, task->rss_stat.count[i]); | 
|  | task->rss_stat.count[i] = 0; | 
|  | } | 
|  | } | 
|  | task->rss_stat.events = 0; | 
|  | } | 
|  |  | 
|  | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  |  | 
|  | if (likely(task->mm == mm)) | 
|  | task->rss_stat.count[member] += val; | 
|  | else | 
|  | add_mm_counter(mm, member, val); | 
|  | } | 
|  | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | 
|  | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | 
|  |  | 
|  | /* sync counter once per 64 page faults */ | 
|  | #define TASK_RSS_EVENTS_THRESH	(64) | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(task != current)) | 
|  | return; | 
|  | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | 
|  | __sync_task_rss_stat(task, task->mm); | 
|  | } | 
|  |  | 
|  | unsigned long get_mm_counter(struct mm_struct *mm, int member) | 
|  | { | 
|  | long val = 0; | 
|  |  | 
|  | /* | 
|  | * Don't use task->mm here...for avoiding to use task_get_mm().. | 
|  | * The caller must guarantee task->mm is not invalid. | 
|  | */ | 
|  | val = atomic_long_read(&mm->rss_stat.count[member]); | 
|  | /* | 
|  | * counter is updated in asynchronous manner and may go to minus. | 
|  | * But it's never be expected number for users. | 
|  | */ | 
|  | if (val < 0) | 
|  | return 0; | 
|  | return (unsigned long)val; | 
|  | } | 
|  |  | 
|  | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) | 
|  | { | 
|  | __sync_task_rss_stat(task, mm); | 
|  | } | 
|  | #else | 
|  |  | 
|  | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | 
|  | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | 
|  |  | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If a p?d_bad entry is found while walking page tables, report | 
|  | * the error, before resetting entry to p?d_none.  Usually (but | 
|  | * very seldom) called out from the p?d_none_or_clear_bad macros. | 
|  | */ | 
|  |  | 
|  | void pgd_clear_bad(pgd_t *pgd) | 
|  | { | 
|  | pgd_ERROR(*pgd); | 
|  | pgd_clear(pgd); | 
|  | } | 
|  |  | 
|  | void pud_clear_bad(pud_t *pud) | 
|  | { | 
|  | pud_ERROR(*pud); | 
|  | pud_clear(pud); | 
|  | } | 
|  |  | 
|  | void pmd_clear_bad(pmd_t *pmd) | 
|  | { | 
|  | pmd_ERROR(*pmd); | 
|  | pmd_clear(pmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: this doesn't free the actual pages themselves. That | 
|  | * has been handled earlier when unmapping all the memory regions. | 
|  | */ | 
|  | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 
|  | unsigned long addr) | 
|  | { | 
|  | pgtable_t token = pmd_pgtable(*pmd); | 
|  | pmd_clear(pmd); | 
|  | pte_free_tlb(tlb, token, addr); | 
|  | tlb->mm->nr_ptes--; | 
|  | } | 
|  |  | 
|  | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | free_pte_range(tlb, pmd, addr); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd, start); | 
|  | } | 
|  |  | 
|  | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | * | 
|  | * Must be called with pagetable lock held. | 
|  | */ | 
|  | void free_pgd_range(struct mmu_gather *tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | /* | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing PMD* at this top level?  Because often | 
|  | * there will be no work to do at all, and we'd prefer not to | 
|  | * go all the way down to the bottom just to discover that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we must | 
|  | * be careful to reject "the opposite 0" before it confuses the | 
|  | * subsequent tests.  But what about where end is brought down | 
|  | * by PMD_SIZE below? no, end can't go down to 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  |  | 
|  | addr &= PMD_MASK; | 
|  | if (addr < floor) { | 
|  | addr += PMD_SIZE; | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= PMD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= PMD_SIZE; | 
|  | if (addr > end - 1) | 
|  | return; | 
|  |  | 
|  | pgd = pgd_offset(tlb->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | while (vma) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | unsigned long addr = vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Hide vma from rmap and truncate_pagecache before freeing | 
|  | * pgtables | 
|  | */ | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } else { | 
|  | /* | 
|  | * Optimization: gather nearby vmas into one call down | 
|  | */ | 
|  | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
|  | && !is_vm_hugetlb_page(next)) { | 
|  | vma = next; | 
|  | next = vma->vm_next; | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  | } | 
|  | free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } | 
|  | vma = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | pgtable_t new = pte_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Ensure all pte setup (eg. pte page lock and page clearing) are | 
|  | * visible before the pte is made visible to other CPUs by being | 
|  | * put into page tables. | 
|  | * | 
|  | * The other side of the story is the pointer chasing in the page | 
|  | * table walking code (when walking the page table without locking; | 
|  | * ie. most of the time). Fortunately, these data accesses consist | 
|  | * of a chain of data-dependent loads, meaning most CPUs (alpha | 
|  | * being the notable exception) will already guarantee loads are | 
|  | * seen in-order. See the alpha page table accessors for the | 
|  | * smp_read_barrier_depends() barriers in page table walking code. | 
|  | */ | 
|  | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!pmd_present(*pmd)) {	/* Has another populated it ? */ | 
|  | mm->nr_ptes++; | 
|  | pmd_populate(mm, pmd, new); | 
|  | new = NULL; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | if (new) | 
|  | pte_free(mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (!pmd_present(*pmd)) {	/* Has another populated it ? */ | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | new = NULL; | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | if (new) | 
|  | pte_free_kernel(&init_mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void init_rss_vec(int *rss) | 
|  | { | 
|  | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | 
|  | } | 
|  |  | 
|  | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (current->mm == mm) | 
|  | sync_mm_rss(current, mm); | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) | 
|  | if (rss[i]) | 
|  | add_mm_counter(mm, i, rss[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called to print an error when a bad pte | 
|  | * is found. For example, we might have a PFN-mapped pte in | 
|  | * a region that doesn't allow it. | 
|  | * | 
|  | * The calling function must still handle the error. | 
|  | */ | 
|  | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte, struct page *page) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | 
|  | pud_t *pud = pud_offset(pgd, addr); | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | struct address_space *mapping; | 
|  | pgoff_t index; | 
|  | static unsigned long resume; | 
|  | static unsigned long nr_shown; | 
|  | static unsigned long nr_unshown; | 
|  |  | 
|  | /* | 
|  | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | * or allow a steady drip of one report per second. | 
|  | */ | 
|  | if (nr_shown == 60) { | 
|  | if (time_before(jiffies, resume)) { | 
|  | nr_unshown++; | 
|  | return; | 
|  | } | 
|  | if (nr_unshown) { | 
|  | printk(KERN_ALERT | 
|  | "BUG: Bad page map: %lu messages suppressed\n", | 
|  | nr_unshown); | 
|  | nr_unshown = 0; | 
|  | } | 
|  | nr_shown = 0; | 
|  | } | 
|  | if (nr_shown++ == 0) | 
|  | resume = jiffies + 60 * HZ; | 
|  |  | 
|  | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | 
|  | index = linear_page_index(vma, addr); | 
|  |  | 
|  | printk(KERN_ALERT | 
|  | "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n", | 
|  | current->comm, | 
|  | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | 
|  | if (page) | 
|  | dump_page(page); | 
|  | printk(KERN_ALERT | 
|  | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", | 
|  | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | 
|  | /* | 
|  | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | 
|  | */ | 
|  | if (vma->vm_ops) | 
|  | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", | 
|  | (unsigned long)vma->vm_ops->fault); | 
|  | if (vma->vm_file && vma->vm_file->f_op) | 
|  | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", | 
|  | (unsigned long)vma->vm_file->f_op->mmap); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE); | 
|  | } | 
|  |  | 
|  | static inline int is_cow_mapping(unsigned int flags) | 
|  | { | 
|  | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
|  | } | 
|  |  | 
|  | #ifndef is_zero_pfn | 
|  | static inline int is_zero_pfn(unsigned long pfn) | 
|  | { | 
|  | return pfn == zero_pfn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef my_zero_pfn | 
|  | static inline unsigned long my_zero_pfn(unsigned long addr) | 
|  | { | 
|  | return zero_pfn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * vm_normal_page -- This function gets the "struct page" associated with a pte. | 
|  | * | 
|  | * "Special" mappings do not wish to be associated with a "struct page" (either | 
|  | * it doesn't exist, or it exists but they don't want to touch it). In this | 
|  | * case, NULL is returned here. "Normal" mappings do have a struct page. | 
|  | * | 
|  | * There are 2 broad cases. Firstly, an architecture may define a pte_special() | 
|  | * pte bit, in which case this function is trivial. Secondly, an architecture | 
|  | * may not have a spare pte bit, which requires a more complicated scheme, | 
|  | * described below. | 
|  | * | 
|  | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | 
|  | * special mapping (even if there are underlying and valid "struct pages"). | 
|  | * COWed pages of a VM_PFNMAP are always normal. | 
|  | * | 
|  | * The way we recognize COWed pages within VM_PFNMAP mappings is through the | 
|  | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | 
|  | * set, and the vm_pgoff will point to the first PFN mapped: thus every special | 
|  | * mapping will always honor the rule | 
|  | * | 
|  | *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
|  | * | 
|  | * And for normal mappings this is false. | 
|  | * | 
|  | * This restricts such mappings to be a linear translation from virtual address | 
|  | * to pfn. To get around this restriction, we allow arbitrary mappings so long | 
|  | * as the vma is not a COW mapping; in that case, we know that all ptes are | 
|  | * special (because none can have been COWed). | 
|  | * | 
|  | * | 
|  | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | 
|  | * | 
|  | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | 
|  | * page" backing, however the difference is that _all_ pages with a struct | 
|  | * page (that is, those where pfn_valid is true) are refcounted and considered | 
|  | * normal pages by the VM. The disadvantage is that pages are refcounted | 
|  | * (which can be slower and simply not an option for some PFNMAP users). The | 
|  | * advantage is that we don't have to follow the strict linearity rule of | 
|  | * PFNMAP mappings in order to support COWable mappings. | 
|  | * | 
|  | */ | 
|  | #ifdef __HAVE_ARCH_PTE_SPECIAL | 
|  | # define HAVE_PTE_SPECIAL 1 | 
|  | #else | 
|  | # define HAVE_PTE_SPECIAL 0 | 
|  | #endif | 
|  | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | if (HAVE_PTE_SPECIAL) { | 
|  | if (likely(!pte_special(pte))) | 
|  | goto check_pfn; | 
|  | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 
|  | return NULL; | 
|  | if (!is_zero_pfn(pfn)) | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* !HAVE_PTE_SPECIAL case follows: */ | 
|  |  | 
|  | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
|  | if (vma->vm_flags & VM_MIXEDMAP) { | 
|  | if (!pfn_valid(pfn)) | 
|  | return NULL; | 
|  | goto out; | 
|  | } else { | 
|  | unsigned long off; | 
|  | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_zero_pfn(pfn)) | 
|  | return NULL; | 
|  | check_pfn: | 
|  | if (unlikely(pfn > highest_memmap_pfn)) { | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page tables. | 
|  | * eg. VDSO mappings can cause them to exist. | 
|  | */ | 
|  | out: | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy one vm_area from one task to the other. Assumes the page tables | 
|  | * already present in the new task to be cleared in the whole range | 
|  | * covered by this vma. | 
|  | */ | 
|  |  | 
|  | static inline unsigned long | 
|  | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
|  | unsigned long addr, int *rss) | 
|  | { | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | pte_t pte = *src_pte; | 
|  | struct page *page; | 
|  |  | 
|  | /* pte contains position in swap or file, so copy. */ | 
|  | if (unlikely(!pte_present(pte))) { | 
|  | if (!pte_file(pte)) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (swap_duplicate(entry) < 0) | 
|  | return entry.val; | 
|  |  | 
|  | /* make sure dst_mm is on swapoff's mmlist. */ | 
|  | if (unlikely(list_empty(&dst_mm->mmlist))) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&dst_mm->mmlist)) | 
|  | list_add(&dst_mm->mmlist, | 
|  | &src_mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | if (likely(!non_swap_entry(entry))) | 
|  | rss[MM_SWAPENTS]++; | 
|  | else if (is_write_migration_entry(entry) && | 
|  | is_cow_mapping(vm_flags)) { | 
|  | /* | 
|  | * COW mappings require pages in both parent | 
|  | * and child to be set to read. | 
|  | */ | 
|  | make_migration_entry_read(&entry); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | } | 
|  | goto out_set_pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a COW mapping, write protect it both | 
|  | * in the parent and the child | 
|  | */ | 
|  | if (is_cow_mapping(vm_flags)) { | 
|  | ptep_set_wrprotect(src_mm, addr, src_pte); | 
|  | pte = pte_wrprotect(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a shared mapping, mark it clean in | 
|  | * the child | 
|  | */ | 
|  | if (vm_flags & VM_SHARED) | 
|  | pte = pte_mkclean(pte); | 
|  | pte = pte_mkold(pte); | 
|  |  | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (page) { | 
|  | get_page(page); | 
|  | page_dup_rmap(page); | 
|  | if (PageAnon(page)) | 
|  | rss[MM_ANONPAGES]++; | 
|  | else | 
|  | rss[MM_FILEPAGES]++; | 
|  | } | 
|  |  | 
|  | out_set_pte: | 
|  | set_pte_at(dst_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pte_t *orig_src_pte, *orig_dst_pte; | 
|  | pte_t *src_pte, *dst_pte; | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | int progress = 0; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  | swp_entry_t entry = (swp_entry_t){0}; | 
|  |  | 
|  | again: | 
|  | init_rss_vec(rss); | 
|  |  | 
|  | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
|  | if (!dst_pte) | 
|  | return -ENOMEM; | 
|  | src_pte = pte_offset_map_nested(src_pmd, addr); | 
|  | src_ptl = pte_lockptr(src_mm, src_pmd); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | orig_src_pte = src_pte; | 
|  | orig_dst_pte = dst_pte; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * We are holding two locks at this point - either of them | 
|  | * could generate latencies in another task on another CPU. | 
|  | */ | 
|  | if (progress >= 32) { | 
|  | progress = 0; | 
|  | if (need_resched() || | 
|  | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 
|  | break; | 
|  | } | 
|  | if (pte_none(*src_pte)) { | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, | 
|  | vma, addr, rss); | 
|  | if (entry.val) | 
|  | break; | 
|  | progress += 8; | 
|  | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | spin_unlock(src_ptl); | 
|  | pte_unmap_nested(orig_src_pte); | 
|  | add_mm_rss_vec(dst_mm, rss); | 
|  | pte_unmap_unlock(orig_dst_pte, dst_ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (entry.val) { | 
|  | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | 
|  | return -ENOMEM; | 
|  | progress = 0; | 
|  | } | 
|  | if (addr != end) | 
|  | goto again; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pmd_t *src_pmd, *dst_pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
|  | if (!dst_pmd) | 
|  | return -ENOMEM; | 
|  | src_pmd = pmd_offset(src_pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(src_pmd)) | 
|  | continue; | 
|  | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pud_t *src_pud, *dst_pud; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
|  | if (!dst_pud) | 
|  | return -ENOMEM; | 
|  | src_pud = pud_offset(src_pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(src_pud)) | 
|  | continue; | 
|  | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pud++, src_pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pgd_t *src_pgd, *dst_pgd; | 
|  | unsigned long next; | 
|  | unsigned long addr = vma->vm_start; | 
|  | unsigned long end = vma->vm_end; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Don't copy ptes where a page fault will fill them correctly. | 
|  | * Fork becomes much lighter when there are big shared or private | 
|  | * readonly mappings. The tradeoff is that copy_page_range is more | 
|  | * efficient than faulting. | 
|  | */ | 
|  | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 
|  | if (!vma->anon_vma) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
|  |  | 
|  | if (unlikely(is_pfn_mapping(vma))) { | 
|  | /* | 
|  | * We do not free on error cases below as remove_vma | 
|  | * gets called on error from higher level routine | 
|  | */ | 
|  | ret = track_pfn_vma_copy(vma); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to invalidate the secondary MMU mappings only when | 
|  | * there could be a permission downgrade on the ptes of the | 
|  | * parent mm. And a permission downgrade will only happen if | 
|  | * is_cow_mapping() returns true. | 
|  | */ | 
|  | if (is_cow_mapping(vma->vm_flags)) | 
|  | mmu_notifier_invalidate_range_start(src_mm, addr, end); | 
|  |  | 
|  | ret = 0; | 
|  | dst_pgd = pgd_offset(dst_mm, addr); | 
|  | src_pgd = pgd_offset(src_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(src_pgd)) | 
|  | continue; | 
|  | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
|  | vma, addr, next))) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (is_cow_mapping(vma->vm_flags)) | 
|  | mmu_notifier_invalidate_range_end(src_mm, | 
|  | vma->vm_start, end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = tlb->mm; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  |  | 
|  | init_rss_vec(rss); | 
|  |  | 
|  | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | pte_t ptent = *pte; | 
|  | if (pte_none(ptent)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | (*zap_work) -= PAGE_SIZE; | 
|  |  | 
|  | if (pte_present(ptent)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (unlikely(details) && page) { | 
|  | /* | 
|  | * unmap_shared_mapping_pages() wants to | 
|  | * invalidate cache without truncating: | 
|  | * unmap shared but keep private pages. | 
|  | */ | 
|  | if (details->check_mapping && | 
|  | details->check_mapping != page->mapping) | 
|  | continue; | 
|  | /* | 
|  | * Each page->index must be checked when | 
|  | * invalidating or truncating nonlinear. | 
|  | */ | 
|  | if (details->nonlinear_vma && | 
|  | (page->index < details->first_index || | 
|  | page->index > details->last_index)) | 
|  | continue; | 
|  | } | 
|  | ptent = ptep_get_and_clear_full(mm, addr, pte, | 
|  | tlb->fullmm); | 
|  | tlb_remove_tlb_entry(tlb, pte, addr); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (unlikely(details) && details->nonlinear_vma | 
|  | && linear_page_index(details->nonlinear_vma, | 
|  | addr) != page->index) | 
|  | set_pte_at(mm, addr, pte, | 
|  | pgoff_to_pte(page->index)); | 
|  | if (PageAnon(page)) | 
|  | rss[MM_ANONPAGES]--; | 
|  | else { | 
|  | if (pte_dirty(ptent)) | 
|  | set_page_dirty(page); | 
|  | if (pte_young(ptent) && | 
|  | likely(!VM_SequentialReadHint(vma))) | 
|  | mark_page_accessed(page); | 
|  | rss[MM_FILEPAGES]--; | 
|  | } | 
|  | page_remove_rmap(page); | 
|  | if (unlikely(page_mapcount(page) < 0)) | 
|  | print_bad_pte(vma, addr, ptent, page); | 
|  | tlb_remove_page(tlb, page); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * If details->check_mapping, we leave swap entries; | 
|  | * if details->nonlinear_vma, we leave file entries. | 
|  | */ | 
|  | if (unlikely(details)) | 
|  | continue; | 
|  | if (pte_file(ptent)) { | 
|  | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | 
|  | print_bad_pte(vma, addr, ptent, NULL); | 
|  | } else { | 
|  | swp_entry_t entry = pte_to_swp_entry(ptent); | 
|  |  | 
|  | if (!non_swap_entry(entry)) | 
|  | rss[MM_SWAPENTS]--; | 
|  | if (unlikely(!free_swap_and_cache(entry))) | 
|  | print_bad_pte(vma, addr, ptent, NULL); | 
|  | } | 
|  | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
|  | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | add_mm_rss_vec(mm, rss); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pte_range(tlb, vma, pmd, addr, next, | 
|  | zap_work, details); | 
|  | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pmd_range(tlb, vma, pud, addr, next, | 
|  | zap_work, details); | 
|  | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static unsigned long unmap_page_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | if (details && !details->check_mapping && !details->nonlinear_vma) | 
|  | details = NULL; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | mem_cgroup_uncharge_start(); | 
|  | tlb_start_vma(tlb, vma); | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pud_range(tlb, vma, pgd, addr, next, | 
|  | zap_work, details); | 
|  | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | 
|  | tlb_end_vma(tlb, vma); | 
|  | mem_cgroup_uncharge_end(); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE) | 
|  | #else | 
|  | /* No preempt: go for improved straight-line efficiency */ | 
|  | # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * unmap_vmas - unmap a range of memory covered by a list of vma's | 
|  | * @tlbp: address of the caller's struct mmu_gather | 
|  | * @vma: the starting vma | 
|  | * @start_addr: virtual address at which to start unmapping | 
|  | * @end_addr: virtual address at which to end unmapping | 
|  | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 
|  | * @details: details of nonlinear truncation or shared cache invalidation | 
|  | * | 
|  | * Returns the end address of the unmapping (restart addr if interrupted). | 
|  | * | 
|  | * Unmap all pages in the vma list. | 
|  | * | 
|  | * We aim to not hold locks for too long (for scheduling latency reasons). | 
|  | * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to | 
|  | * return the ending mmu_gather to the caller. | 
|  | * | 
|  | * Only addresses between `start' and `end' will be unmapped. | 
|  | * | 
|  | * The VMA list must be sorted in ascending virtual address order. | 
|  | * | 
|  | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
|  | * range after unmap_vmas() returns.  So the only responsibility here is to | 
|  | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
|  | * drops the lock and schedules. | 
|  | */ | 
|  | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr, unsigned long *nr_accounted, | 
|  | struct zap_details *details) | 
|  | { | 
|  | long zap_work = ZAP_BLOCK_SIZE; | 
|  | unsigned long tlb_start = 0;	/* For tlb_finish_mmu */ | 
|  | int tlb_start_valid = 0; | 
|  | unsigned long start = start_addr; | 
|  | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 
|  | int fullmm = (*tlbp)->fullmm; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); | 
|  | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 
|  | unsigned long end; | 
|  |  | 
|  | start = max(vma->vm_start, start_addr); | 
|  | if (start >= vma->vm_end) | 
|  | continue; | 
|  | end = min(vma->vm_end, end_addr); | 
|  | if (end <= vma->vm_start) | 
|  | continue; | 
|  |  | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | *nr_accounted += (end - start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (unlikely(is_pfn_mapping(vma))) | 
|  | untrack_pfn_vma(vma, 0, 0); | 
|  |  | 
|  | while (start != end) { | 
|  | if (!tlb_start_valid) { | 
|  | tlb_start = start; | 
|  | tlb_start_valid = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) { | 
|  | /* | 
|  | * It is undesirable to test vma->vm_file as it | 
|  | * should be non-null for valid hugetlb area. | 
|  | * However, vm_file will be NULL in the error | 
|  | * cleanup path of do_mmap_pgoff. When | 
|  | * hugetlbfs ->mmap method fails, | 
|  | * do_mmap_pgoff() nullifies vma->vm_file | 
|  | * before calling this function to clean up. | 
|  | * Since no pte has actually been setup, it is | 
|  | * safe to do nothing in this case. | 
|  | */ | 
|  | if (vma->vm_file) { | 
|  | unmap_hugepage_range(vma, start, end, NULL); | 
|  | zap_work -= (end - start) / | 
|  | pages_per_huge_page(hstate_vma(vma)); | 
|  | } | 
|  |  | 
|  | start = end; | 
|  | } else | 
|  | start = unmap_page_range(*tlbp, vma, | 
|  | start, end, &zap_work, details); | 
|  |  | 
|  | if (zap_work > 0) { | 
|  | BUG_ON(start != end); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tlb_finish_mmu(*tlbp, tlb_start, start); | 
|  |  | 
|  | if (need_resched() || | 
|  | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { | 
|  | if (i_mmap_lock) { | 
|  | *tlbp = NULL; | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 
|  | tlb_start_valid = 0; | 
|  | zap_work = ZAP_BLOCK_SIZE; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); | 
|  | return start;	/* which is now the end (or restart) address */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * @details: details of nonlinear truncation or shared cache invalidation | 
|  | */ | 
|  | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_gather *tlb; | 
|  | unsigned long end = address + size; | 
|  | unsigned long nr_accounted = 0; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb = tlb_gather_mmu(mm, 0); | 
|  | update_hiwater_rss(mm); | 
|  | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 
|  | if (tlb) | 
|  | tlb_finish_mmu(tlb, address, end); | 
|  | return end; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_vma_ptes - remove ptes mapping the vma | 
|  | * @vma: vm_area_struct holding ptes to be zapped | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * | 
|  | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | 
|  | * | 
|  | * The entire address range must be fully contained within the vma. | 
|  | * | 
|  | * Returns 0 if successful. | 
|  | */ | 
|  | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size) | 
|  | { | 
|  | if (address < vma->vm_start || address + size > vma->vm_end || | 
|  | !(vma->vm_flags & VM_PFNMAP)) | 
|  | return -1; | 
|  | zap_page_range(vma, address, size, NULL); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zap_vma_ptes); | 
|  |  | 
|  | /** | 
|  | * follow_page - look up a page descriptor from a user-virtual address | 
|  | * @vma: vm_area_struct mapping @address | 
|  | * @address: virtual address to look up | 
|  | * @flags: flags modifying lookup behaviour | 
|  | * | 
|  | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 
|  | * | 
|  | * Returns the mapped (struct page *), %NULL if no mapping exists, or | 
|  | * an error pointer if there is a mapping to something not represented | 
|  | * by a page descriptor (see also vm_normal_page()). | 
|  | */ | 
|  | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
|  | if (!IS_ERR(page)) { | 
|  | BUG_ON(flags & FOLL_GET); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = NULL; | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | goto no_page_table; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none(*pud)) | 
|  | goto no_page_table; | 
|  | if (pud_huge(*pud)) { | 
|  | BUG_ON(flags & FOLL_GET); | 
|  | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(pud_bad(*pud))) | 
|  | goto no_page_table; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none(*pmd)) | 
|  | goto no_page_table; | 
|  | if (pmd_huge(*pmd)) { | 
|  | BUG_ON(flags & FOLL_GET); | 
|  | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(pmd_bad(*pmd))) | 
|  | goto no_page_table; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  |  | 
|  | pte = *ptep; | 
|  | if (!pte_present(pte)) | 
|  | goto no_page; | 
|  | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
|  | goto unlock; | 
|  |  | 
|  | page = vm_normal_page(vma, address, pte); | 
|  | if (unlikely(!page)) { | 
|  | if ((flags & FOLL_DUMP) || | 
|  | !is_zero_pfn(pte_pfn(pte))) | 
|  | goto bad_page; | 
|  | page = pte_page(pte); | 
|  | } | 
|  |  | 
|  | if (flags & FOLL_GET) | 
|  | get_page(page); | 
|  | if (flags & FOLL_TOUCH) { | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !pte_dirty(pte) && !PageDirty(page)) | 
|  | set_page_dirty(page); | 
|  | /* | 
|  | * pte_mkyoung() would be more correct here, but atomic care | 
|  | * is needed to avoid losing the dirty bit: it is easier to use | 
|  | * mark_page_accessed(). | 
|  | */ | 
|  | mark_page_accessed(page); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return page; | 
|  |  | 
|  | bad_page: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | no_page: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | if (!pte_none(pte)) | 
|  | return page; | 
|  |  | 
|  | no_page_table: | 
|  | /* | 
|  | * When core dumping an enormous anonymous area that nobody | 
|  | * has touched so far, we don't want to allocate unnecessary pages or | 
|  | * page tables.  Return error instead of NULL to skip handle_mm_fault, | 
|  | * then get_dump_page() will return NULL to leave a hole in the dump. | 
|  | * But we can only make this optimization where a hole would surely | 
|  | * be zero-filled if handle_mm_fault() actually did handle it. | 
|  | */ | 
|  | if ((flags & FOLL_DUMP) && | 
|  | (!vma->vm_ops || !vma->vm_ops->fault)) | 
|  | return ERR_PTR(-EFAULT); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long start, int nr_pages, unsigned int gup_flags, | 
|  | struct page **pages, struct vm_area_struct **vmas) | 
|  | { | 
|  | int i; | 
|  | unsigned long vm_flags; | 
|  |  | 
|  | if (nr_pages <= 0) | 
|  | return 0; | 
|  |  | 
|  | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | 
|  |  | 
|  | /* | 
|  | * Require read or write permissions. | 
|  | * If FOLL_FORCE is set, we only require the "MAY" flags. | 
|  | */ | 
|  | vm_flags  = (gup_flags & FOLL_WRITE) ? | 
|  | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
|  | vm_flags &= (gup_flags & FOLL_FORCE) ? | 
|  | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
|  | i = 0; | 
|  |  | 
|  | do { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_extend_vma(mm, start); | 
|  | if (!vma && in_gate_area(tsk, start)) { | 
|  | unsigned long pg = start & PAGE_MASK; | 
|  | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | /* user gate pages are read-only */ | 
|  | if (gup_flags & FOLL_WRITE) | 
|  | return i ? : -EFAULT; | 
|  | if (pg > TASK_SIZE) | 
|  | pgd = pgd_offset_k(pg); | 
|  | else | 
|  | pgd = pgd_offset_gate(mm, pg); | 
|  | BUG_ON(pgd_none(*pgd)); | 
|  | pud = pud_offset(pgd, pg); | 
|  | BUG_ON(pud_none(*pud)); | 
|  | pmd = pmd_offset(pud, pg); | 
|  | if (pmd_none(*pmd)) | 
|  | return i ? : -EFAULT; | 
|  | pte = pte_offset_map(pmd, pg); | 
|  | if (pte_none(*pte)) { | 
|  | pte_unmap(pte); | 
|  | return i ? : -EFAULT; | 
|  | } | 
|  | if (pages) { | 
|  | struct page *page; | 
|  |  | 
|  | page = vm_normal_page(gate_vma, start, *pte); | 
|  | if (!page) { | 
|  | if (!(gup_flags & FOLL_DUMP) && | 
|  | is_zero_pfn(pte_pfn(*pte))) | 
|  | page = pte_page(*pte); | 
|  | else { | 
|  | pte_unmap(pte); | 
|  | return i ? : -EFAULT; | 
|  | } | 
|  | } | 
|  | pages[i] = page; | 
|  | get_page(page); | 
|  | } | 
|  | pte_unmap(pte); | 
|  | if (vmas) | 
|  | vmas[i] = gate_vma; | 
|  | i++; | 
|  | start += PAGE_SIZE; | 
|  | nr_pages--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!vma || | 
|  | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 
|  | !(vm_flags & vma->vm_flags)) | 
|  | return i ? : -EFAULT; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | i = follow_hugetlb_page(mm, vma, pages, vmas, | 
|  | &start, &nr_pages, i, gup_flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  | unsigned int foll_flags = gup_flags; | 
|  |  | 
|  | /* | 
|  | * If we have a pending SIGKILL, don't keep faulting | 
|  | * pages and potentially allocating memory. | 
|  | */ | 
|  | if (unlikely(fatal_signal_pending(current))) | 
|  | return i ? i : -ERESTARTSYS; | 
|  |  | 
|  | cond_resched(); | 
|  | while (!(page = follow_page(vma, start, foll_flags))) { | 
|  | int ret; | 
|  |  | 
|  | ret = handle_mm_fault(mm, vma, start, | 
|  | (foll_flags & FOLL_WRITE) ? | 
|  | FAULT_FLAG_WRITE : 0); | 
|  |  | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | if (ret & VM_FAULT_OOM) | 
|  | return i ? i : -ENOMEM; | 
|  | if (ret & | 
|  | (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) | 
|  | return i ? i : -EFAULT; | 
|  | BUG(); | 
|  | } | 
|  | if (ret & VM_FAULT_MAJOR) | 
|  | tsk->maj_flt++; | 
|  | else | 
|  | tsk->min_flt++; | 
|  |  | 
|  | /* | 
|  | * The VM_FAULT_WRITE bit tells us that | 
|  | * do_wp_page has broken COW when necessary, | 
|  | * even if maybe_mkwrite decided not to set | 
|  | * pte_write. We can thus safely do subsequent | 
|  | * page lookups as if they were reads. But only | 
|  | * do so when looping for pte_write is futile: | 
|  | * in some cases userspace may also be wanting | 
|  | * to write to the gotten user page, which a | 
|  | * read fault here might prevent (a readonly | 
|  | * page might get reCOWed by userspace write). | 
|  | */ | 
|  | if ((ret & VM_FAULT_WRITE) && | 
|  | !(vma->vm_flags & VM_WRITE)) | 
|  | foll_flags &= ~FOLL_WRITE; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | if (IS_ERR(page)) | 
|  | return i ? i : PTR_ERR(page); | 
|  | if (pages) { | 
|  | pages[i] = page; | 
|  |  | 
|  | flush_anon_page(vma, page, start); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | if (vmas) | 
|  | vmas[i] = vma; | 
|  | i++; | 
|  | start += PAGE_SIZE; | 
|  | nr_pages--; | 
|  | } while (nr_pages && start < vma->vm_end); | 
|  | } while (nr_pages); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_user_pages() - pin user pages in memory | 
|  | * @tsk:	task_struct of target task | 
|  | * @mm:		mm_struct of target mm | 
|  | * @start:	starting user address | 
|  | * @nr_pages:	number of pages from start to pin | 
|  | * @write:	whether pages will be written to by the caller | 
|  | * @force:	whether to force write access even if user mapping is | 
|  | *		readonly. This will result in the page being COWed even | 
|  | *		in MAP_SHARED mappings. You do not want this. | 
|  | * @pages:	array that receives pointers to the pages pinned. | 
|  | *		Should be at least nr_pages long. Or NULL, if caller | 
|  | *		only intends to ensure the pages are faulted in. | 
|  | * @vmas:	array of pointers to vmas corresponding to each page. | 
|  | *		Or NULL if the caller does not require them. | 
|  | * | 
|  | * Returns number of pages pinned. This may be fewer than the number | 
|  | * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
|  | * were pinned, returns -errno. Each page returned must be released | 
|  | * with a put_page() call when it is finished with. vmas will only | 
|  | * remain valid while mmap_sem is held. | 
|  | * | 
|  | * Must be called with mmap_sem held for read or write. | 
|  | * | 
|  | * get_user_pages walks a process's page tables and takes a reference to | 
|  | * each struct page that each user address corresponds to at a given | 
|  | * instant. That is, it takes the page that would be accessed if a user | 
|  | * thread accesses the given user virtual address at that instant. | 
|  | * | 
|  | * This does not guarantee that the page exists in the user mappings when | 
|  | * get_user_pages returns, and there may even be a completely different | 
|  | * page there in some cases (eg. if mmapped pagecache has been invalidated | 
|  | * and subsequently re faulted). However it does guarantee that the page | 
|  | * won't be freed completely. And mostly callers simply care that the page | 
|  | * contains data that was valid *at some point in time*. Typically, an IO | 
|  | * or similar operation cannot guarantee anything stronger anyway because | 
|  | * locks can't be held over the syscall boundary. | 
|  | * | 
|  | * If write=0, the page must not be written to. If the page is written to, | 
|  | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | 
|  | * after the page is finished with, and before put_page is called. | 
|  | * | 
|  | * get_user_pages is typically used for fewer-copy IO operations, to get a | 
|  | * handle on the memory by some means other than accesses via the user virtual | 
|  | * addresses. The pages may be submitted for DMA to devices or accessed via | 
|  | * their kernel linear mapping (via the kmap APIs). Care should be taken to | 
|  | * use the correct cache flushing APIs. | 
|  | * | 
|  | * See also get_user_pages_fast, for performance critical applications. | 
|  | */ | 
|  | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long start, int nr_pages, int write, int force, | 
|  | struct page **pages, struct vm_area_struct **vmas) | 
|  | { | 
|  | int flags = FOLL_TOUCH; | 
|  |  | 
|  | if (pages) | 
|  | flags |= FOLL_GET; | 
|  | if (write) | 
|  | flags |= FOLL_WRITE; | 
|  | if (force) | 
|  | flags |= FOLL_FORCE; | 
|  |  | 
|  | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); | 
|  | } | 
|  | EXPORT_SYMBOL(get_user_pages); | 
|  |  | 
|  | /** | 
|  | * get_dump_page() - pin user page in memory while writing it to core dump | 
|  | * @addr: user address | 
|  | * | 
|  | * Returns struct page pointer of user page pinned for dump, | 
|  | * to be freed afterwards by page_cache_release() or put_page(). | 
|  | * | 
|  | * Returns NULL on any kind of failure - a hole must then be inserted into | 
|  | * the corefile, to preserve alignment with its headers; and also returns | 
|  | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 
|  | * allowing a hole to be left in the corefile to save diskspace. | 
|  | * | 
|  | * Called without mmap_sem, but after all other threads have been killed. | 
|  | */ | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | struct page *get_dump_page(unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  |  | 
|  | if (__get_user_pages(current, current->mm, addr, 1, | 
|  | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) | 
|  | return NULL; | 
|  | flush_cache_page(vma, addr, page_to_pfn(page)); | 
|  | return page; | 
|  | } | 
|  | #endif /* CONFIG_ELF_CORE */ | 
|  |  | 
|  | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
|  | spinlock_t **ptl) | 
|  | { | 
|  | pgd_t * pgd = pgd_offset(mm, addr); | 
|  | pud_t * pud = pud_alloc(mm, pgd, addr); | 
|  | if (pud) { | 
|  | pmd_t * pmd = pmd_alloc(mm, pud, addr); | 
|  | if (pmd) | 
|  | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the old fallback for page remapping. | 
|  | * | 
|  | * For historical reasons, it only allows reserved pages. Only | 
|  | * old drivers should use this, and they needed to mark their | 
|  | * pages reserved for the old functions anyway. | 
|  | */ | 
|  | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page, pgprot_t prot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int retval; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = -EINVAL; | 
|  | if (PageAnon(page)) | 
|  | goto out; | 
|  | retval = -ENOMEM; | 
|  | flush_dcache_page(page); | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | get_page(page); | 
|  | inc_mm_counter_fast(mm, MM_FILEPAGES); | 
|  | page_add_file_rmap(page); | 
|  | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 
|  |  | 
|  | retval = 0; | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return retval; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_insert_page - insert single page into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @page: source kernel page | 
|  | * | 
|  | * This allows drivers to insert individual pages they've allocated | 
|  | * into a user vma. | 
|  | * | 
|  | * The page has to be a nice clean _individual_ kernel allocation. | 
|  | * If you allocate a compound page, you need to have marked it as | 
|  | * such (__GFP_COMP), or manually just split the page up yourself | 
|  | * (see split_page()). | 
|  | * | 
|  | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
|  | * took an arbitrary page protection parameter. This doesn't allow | 
|  | * that. Your vma protection will have to be set up correctly, which | 
|  | * means that if you want a shared writable mapping, you'd better | 
|  | * ask for a shared writable mapping! | 
|  | * | 
|  | * The page does not need to be reserved. | 
|  | */ | 
|  | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page) | 
|  | { | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (!page_count(page)) | 
|  | return -EINVAL; | 
|  | vma->vm_flags |= VM_INSERTPAGE; | 
|  | return insert_page(vma, addr, page, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_page); | 
|  |  | 
|  | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int retval; | 
|  | pte_t *pte, entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | entry = pte_mkspecial(pfn_pte(pfn, prot)); | 
|  | set_pte_at(mm, addr, pte, entry); | 
|  | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | 
|  |  | 
|  | retval = 0; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_insert_pfn - insert single pfn into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * | 
|  | * Similar to vm_inert_page, this allows drivers to insert individual pages | 
|  | * they've allocated into a user vma. Same comments apply. | 
|  | * | 
|  | * This function should only be called from a vm_ops->fault handler, and | 
|  | * in that case the handler should return NULL. | 
|  | * | 
|  | * vma cannot be a COW mapping. | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | */ | 
|  | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | int ret; | 
|  | pgprot_t pgprot = vma->vm_page_prot; | 
|  | /* | 
|  | * Technically, architectures with pte_special can avoid all these | 
|  | * restrictions (same for remap_pfn_range).  However we would like | 
|  | * consistency in testing and feature parity among all, so we should | 
|  | * try to keep these invariants in place for everybody. | 
|  | */ | 
|  | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | 
|  | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
|  | (VM_PFNMAP|VM_MIXEDMAP)); | 
|  | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
|  | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = insert_pfn(vma, addr, pfn, pgprot); | 
|  |  | 
|  | if (ret) | 
|  | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_pfn); | 
|  |  | 
|  | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * If we don't have pte special, then we have to use the pfn_valid() | 
|  | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | 
|  | * refcount the page if pfn_valid is true (hence insert_page rather | 
|  | * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP | 
|  | * without pte special, it would there be refcounted as a normal page. | 
|  | */ | 
|  | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | return insert_page(vma, addr, page, vma->vm_page_prot); | 
|  | } | 
|  | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_mixed); | 
|  |  | 
|  | /* | 
|  | * maps a range of physical memory into the requested pages. the old | 
|  | * mappings are removed. any references to nonexistent pages results | 
|  | * in null mappings (currently treated as "copy-on-access") | 
|  | */ | 
|  | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (remap_pte_range(mm, pmd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot)) | 
|  | return -ENOMEM; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (remap_pmd_range(mm, pud, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot)) | 
|  | return -ENOMEM; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remap_pfn_range - remap kernel memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address to start at | 
|  | * @pfn: physical address of kernel memory | 
|  | * @size: size of map area | 
|  | * @prot: page protection flags for this mapping | 
|  | * | 
|  | *  Note: this is only safe if the mm semaphore is held when called. | 
|  | */ | 
|  | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Physically remapped pages are special. Tell the | 
|  | * rest of the world about it: | 
|  | *   VM_IO tells people not to look at these pages | 
|  | *	(accesses can have side effects). | 
|  | *   VM_RESERVED is specified all over the place, because | 
|  | *	in 2.4 it kept swapout's vma scan off this vma; but | 
|  | *	in 2.6 the LRU scan won't even find its pages, so this | 
|  | *	flag means no more than count its pages in reserved_vm, | 
|  | * 	and omit it from core dump, even when VM_IO turned off. | 
|  | *   VM_PFNMAP tells the core MM that the base pages are just | 
|  | *	raw PFN mappings, and do not have a "struct page" associated | 
|  | *	with them. | 
|  | * | 
|  | * There's a horrible special case to handle copy-on-write | 
|  | * behaviour that some programs depend on. We mark the "original" | 
|  | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
|  | */ | 
|  | if (addr == vma->vm_start && end == vma->vm_end) { | 
|  | vma->vm_pgoff = pfn; | 
|  | vma->vm_flags |= VM_PFN_AT_MMAP; | 
|  | } else if (is_cow_mapping(vma->vm_flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 
|  |  | 
|  | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); | 
|  | if (err) { | 
|  | /* | 
|  | * To indicate that track_pfn related cleanup is not | 
|  | * needed from higher level routine calling unmap_vmas | 
|  | */ | 
|  | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | 
|  | vma->vm_flags &= ~VM_PFN_AT_MMAP; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pgd = pgd_offset(mm, addr); | 
|  | flush_cache_range(vma, addr, end); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = remap_pud_range(mm, pgd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (err) | 
|  | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(remap_pfn_range); | 
|  |  | 
|  | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pte_t *pte; | 
|  | int err; | 
|  | pgtable_t token; | 
|  | spinlock_t *uninitialized_var(ptl); | 
|  |  | 
|  | pte = (mm == &init_mm) ? | 
|  | pte_alloc_kernel(pmd, addr) : | 
|  | pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | BUG_ON(pmd_huge(*pmd)); | 
|  |  | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | token = pmd_pgtable(*pmd); | 
|  |  | 
|  | do { | 
|  | err = fn(pte++, token, addr, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | pte_unmap_unlock(pte-1, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(pud_huge(*pud)); | 
|  |  | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan a region of virtual memory, filling in page tables as necessary | 
|  | * and calling a provided function on each leaf page table. | 
|  | */ | 
|  | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long size, pte_fn_t fn, void *data) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + size; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pgd = pgd_offset(mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(apply_to_page_range); | 
|  |  | 
|  | /* | 
|  | * handle_pte_fault chooses page fault handler according to an entry | 
|  | * which was read non-atomically.  Before making any commitment, on | 
|  | * those architectures or configurations (e.g. i386 with PAE) which | 
|  | * might give a mix of unmatched parts, do_swap_page and do_file_page | 
|  | * must check under lock before unmapping the pte and proceeding | 
|  | * (but do_wp_page is only called after already making such a check; | 
|  | * and do_anonymous_page and do_no_page can safely check later on). | 
|  | */ | 
|  | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 
|  | pte_t *page_table, pte_t orig_pte) | 
|  | { | 
|  | int same = 1; | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
|  | if (sizeof(pte_t) > sizeof(unsigned long)) { | 
|  | spinlock_t *ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | same = pte_same(*page_table, orig_pte); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #endif | 
|  | pte_unmap(page_table); | 
|  | return same; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
|  | * servicing faults for write access.  In the normal case, do always want | 
|  | * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
|  | * that do not have writing enabled, when used by access_process_vm. | 
|  | */ | 
|  | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pte = pte_mkwrite(pte); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * If the source page was a PFN mapping, we don't have | 
|  | * a "struct page" for it. We do a best-effort copy by | 
|  | * just copying from the original user address. If that | 
|  | * fails, we just zero-fill it. Live with it. | 
|  | */ | 
|  | if (unlikely(!src)) { | 
|  | void *kaddr = kmap_atomic(dst, KM_USER0); | 
|  | void __user *uaddr = (void __user *)(va & PAGE_MASK); | 
|  |  | 
|  | /* | 
|  | * This really shouldn't fail, because the page is there | 
|  | * in the page tables. But it might just be unreadable, | 
|  | * in which case we just give up and fill the result with | 
|  | * zeroes. | 
|  | */ | 
|  | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 
|  | memset(kaddr, 0, PAGE_SIZE); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(dst); | 
|  | } else | 
|  | copy_user_highpage(dst, src, va, vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine handles present pages, when users try to write | 
|  | * to a shared page. It is done by copying the page to a new address | 
|  | * and decrementing the shared-page counter for the old page. | 
|  | * | 
|  | * Note that this routine assumes that the protection checks have been | 
|  | * done by the caller (the low-level page fault routine in most cases). | 
|  | * Thus we can safely just mark it writable once we've done any necessary | 
|  | * COW. | 
|  | * | 
|  | * We also mark the page dirty at this point even though the page will | 
|  | * change only once the write actually happens. This avoids a few races, | 
|  | * and potentially makes it more efficient. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), with pte both mapped and locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | spinlock_t *ptl, pte_t orig_pte) | 
|  | { | 
|  | struct page *old_page, *new_page; | 
|  | pte_t entry; | 
|  | int reuse = 0, ret = 0; | 
|  | int page_mkwrite = 0; | 
|  | struct page *dirty_page = NULL; | 
|  |  | 
|  | old_page = vm_normal_page(vma, address, orig_pte); | 
|  | if (!old_page) { | 
|  | /* | 
|  | * VM_MIXEDMAP !pfn_valid() case | 
|  | * | 
|  | * We should not cow pages in a shared writeable mapping. | 
|  | * Just mark the pages writable as we can't do any dirty | 
|  | * accounting on raw pfn maps. | 
|  | */ | 
|  | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED)) | 
|  | goto reuse; | 
|  | goto gotten; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take out anonymous pages first, anonymous shared vmas are | 
|  | * not dirty accountable. | 
|  | */ | 
|  | if (PageAnon(old_page) && !PageKsm(old_page)) { | 
|  | if (!trylock_page(old_page)) { | 
|  | page_cache_get(old_page); | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | lock_page(old_page); | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, | 
|  | &ptl); | 
|  | if (!pte_same(*page_table, orig_pte)) { | 
|  | unlock_page(old_page); | 
|  | page_cache_release(old_page); | 
|  | goto unlock; | 
|  | } | 
|  | page_cache_release(old_page); | 
|  | } | 
|  | reuse = reuse_swap_page(old_page); | 
|  | if (reuse) | 
|  | /* | 
|  | * The page is all ours.  Move it to our anon_vma so | 
|  | * the rmap code will not search our parent or siblings. | 
|  | * Protected against the rmap code by the page lock. | 
|  | */ | 
|  | page_move_anon_rmap(old_page, vma, address); | 
|  | unlock_page(old_page); | 
|  | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED))) { | 
|  | /* | 
|  | * Only catch write-faults on shared writable pages, | 
|  | * read-only shared pages can get COWed by | 
|  | * get_user_pages(.write=1, .force=1). | 
|  | */ | 
|  | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
|  | struct vm_fault vmf; | 
|  | int tmp; | 
|  |  | 
|  | vmf.virtual_address = (void __user *)(address & | 
|  | PAGE_MASK); | 
|  | vmf.pgoff = old_page->index; | 
|  | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
|  | vmf.page = old_page; | 
|  |  | 
|  | /* | 
|  | * Notify the address space that the page is about to | 
|  | * become writable so that it can prohibit this or wait | 
|  | * for the page to get into an appropriate state. | 
|  | * | 
|  | * We do this without the lock held, so that it can | 
|  | * sleep if it needs to. | 
|  | */ | 
|  | page_cache_get(old_page); | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  |  | 
|  | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 
|  | if (unlikely(tmp & | 
|  | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 
|  | ret = tmp; | 
|  | goto unwritable_page; | 
|  | } | 
|  | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 
|  | lock_page(old_page); | 
|  | if (!old_page->mapping) { | 
|  | ret = 0; /* retry the fault */ | 
|  | unlock_page(old_page); | 
|  | goto unwritable_page; | 
|  | } | 
|  | } else | 
|  | VM_BUG_ON(!PageLocked(old_page)); | 
|  |  | 
|  | /* | 
|  | * Since we dropped the lock we need to revalidate | 
|  | * the PTE as someone else may have changed it.  If | 
|  | * they did, we just return, as we can count on the | 
|  | * MMU to tell us if they didn't also make it writable. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, | 
|  | &ptl); | 
|  | if (!pte_same(*page_table, orig_pte)) { | 
|  | unlock_page(old_page); | 
|  | page_cache_release(old_page); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | page_mkwrite = 1; | 
|  | } | 
|  | dirty_page = old_page; | 
|  | get_page(dirty_page); | 
|  | reuse = 1; | 
|  | } | 
|  |  | 
|  | if (reuse) { | 
|  | reuse: | 
|  | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
|  | entry = pte_mkyoung(orig_pte); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (ptep_set_access_flags(vma, address, page_table, entry,1)) | 
|  | update_mmu_cache(vma, address, page_table); | 
|  | ret |= VM_FAULT_WRITE; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we need to copy. Oh, well.. | 
|  | */ | 
|  | page_cache_get(old_page); | 
|  | gotten: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  |  | 
|  | if (is_zero_pfn(pte_pfn(orig_pte))) { | 
|  | new_page = alloc_zeroed_user_highpage_movable(vma, address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | } else { | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | cow_user_page(new_page, old_page, address, vma); | 
|  | } | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | /* | 
|  | * Don't let another task, with possibly unlocked vma, | 
|  | * keep the mlocked page. | 
|  | */ | 
|  | if ((vma->vm_flags & VM_LOCKED) && old_page) { | 
|  | lock_page(old_page);	/* for LRU manipulation */ | 
|  | clear_page_mlock(old_page); | 
|  | unlock_page(old_page); | 
|  | } | 
|  |  | 
|  | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) | 
|  | goto oom_free_new; | 
|  |  | 
|  | /* | 
|  | * Re-check the pte - we dropped the lock | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (likely(pte_same(*page_table, orig_pte))) { | 
|  | if (old_page) { | 
|  | if (!PageAnon(old_page)) { | 
|  | dec_mm_counter_fast(mm, MM_FILEPAGES); | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | } | 
|  | } else | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
|  | entry = mk_pte(new_page, vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | /* | 
|  | * Clear the pte entry and flush it first, before updating the | 
|  | * pte with the new entry. This will avoid a race condition | 
|  | * seen in the presence of one thread doing SMC and another | 
|  | * thread doing COW. | 
|  | */ | 
|  | ptep_clear_flush(vma, address, page_table); | 
|  | page_add_new_anon_rmap(new_page, vma, address); | 
|  | /* | 
|  | * We call the notify macro here because, when using secondary | 
|  | * mmu page tables (such as kvm shadow page tables), we want the | 
|  | * new page to be mapped directly into the secondary page table. | 
|  | */ | 
|  | set_pte_at_notify(mm, address, page_table, entry); | 
|  | update_mmu_cache(vma, address, page_table); | 
|  | if (old_page) { | 
|  | /* | 
|  | * Only after switching the pte to the new page may | 
|  | * we remove the mapcount here. Otherwise another | 
|  | * process may come and find the rmap count decremented | 
|  | * before the pte is switched to the new page, and | 
|  | * "reuse" the old page writing into it while our pte | 
|  | * here still points into it and can be read by other | 
|  | * threads. | 
|  | * | 
|  | * The critical issue is to order this | 
|  | * page_remove_rmap with the ptp_clear_flush above. | 
|  | * Those stores are ordered by (if nothing else,) | 
|  | * the barrier present in the atomic_add_negative | 
|  | * in page_remove_rmap. | 
|  | * | 
|  | * Then the TLB flush in ptep_clear_flush ensures that | 
|  | * no process can access the old page before the | 
|  | * decremented mapcount is visible. And the old page | 
|  | * cannot be reused until after the decremented | 
|  | * mapcount is visible. So transitively, TLBs to | 
|  | * old page will be flushed before it can be reused. | 
|  | */ | 
|  | page_remove_rmap(old_page); | 
|  | } | 
|  |  | 
|  | /* Free the old page.. */ | 
|  | new_page = old_page; | 
|  | ret |= VM_FAULT_WRITE; | 
|  | } else | 
|  | mem_cgroup_uncharge_page(new_page); | 
|  |  | 
|  | if (new_page) | 
|  | page_cache_release(new_page); | 
|  | if (old_page) | 
|  | page_cache_release(old_page); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | if (dirty_page) { | 
|  | /* | 
|  | * Yes, Virginia, this is actually required to prevent a race | 
|  | * with clear_page_dirty_for_io() from clearing the page dirty | 
|  | * bit after it clear all dirty ptes, but before a racing | 
|  | * do_wp_page installs a dirty pte. | 
|  | * | 
|  | * do_no_page is protected similarly. | 
|  | */ | 
|  | if (!page_mkwrite) { | 
|  | wait_on_page_locked(dirty_page); | 
|  | set_page_dirty_balance(dirty_page, page_mkwrite); | 
|  | } | 
|  | put_page(dirty_page); | 
|  | if (page_mkwrite) { | 
|  | struct address_space *mapping = dirty_page->mapping; | 
|  |  | 
|  | set_page_dirty(dirty_page); | 
|  | unlock_page(dirty_page); | 
|  | page_cache_release(dirty_page); | 
|  | if (mapping)	{ | 
|  | /* | 
|  | * Some device drivers do not set page.mapping | 
|  | * but still dirty their pages | 
|  | */ | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* file_update_time outside page_lock */ | 
|  | if (vma->vm_file) | 
|  | file_update_time(vma->vm_file); | 
|  | } | 
|  | return ret; | 
|  | oom_free_new: | 
|  | page_cache_release(new_page); | 
|  | oom: | 
|  | if (old_page) { | 
|  | if (page_mkwrite) { | 
|  | unlock_page(old_page); | 
|  | page_cache_release(old_page); | 
|  | } | 
|  | page_cache_release(old_page); | 
|  | } | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | unwritable_page: | 
|  | page_cache_release(old_page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper functions for unmap_mapping_range(). | 
|  | * | 
|  | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 
|  | * | 
|  | * We have to restart searching the prio_tree whenever we drop the lock, | 
|  | * since the iterator is only valid while the lock is held, and anyway | 
|  | * a later vma might be split and reinserted earlier while lock dropped. | 
|  | * | 
|  | * The list of nonlinear vmas could be handled more efficiently, using | 
|  | * a placeholder, but handle it in the same way until a need is shown. | 
|  | * It is important to search the prio_tree before nonlinear list: a vma | 
|  | * may become nonlinear and be shifted from prio_tree to nonlinear list | 
|  | * while the lock is dropped; but never shifted from list to prio_tree. | 
|  | * | 
|  | * In order to make forward progress despite restarting the search, | 
|  | * vm_truncate_count is used to mark a vma as now dealt with, so we can | 
|  | * quickly skip it next time around.  Since the prio_tree search only | 
|  | * shows us those vmas affected by unmapping the range in question, we | 
|  | * can't efficiently keep all vmas in step with mapping->truncate_count: | 
|  | * so instead reset them all whenever it wraps back to 0 (then go to 1). | 
|  | * mapping->truncate_count and vma->vm_truncate_count are protected by | 
|  | * i_mmap_lock. | 
|  | * | 
|  | * In order to make forward progress despite repeatedly restarting some | 
|  | * large vma, note the restart_addr from unmap_vmas when it breaks out: | 
|  | * and restart from that address when we reach that vma again.  It might | 
|  | * have been split or merged, shrunk or extended, but never shifted: so | 
|  | * restart_addr remains valid so long as it remains in the vma's range. | 
|  | * unmap_mapping_range forces truncate_count to leap over page-aligned | 
|  | * values so we can save vma's restart_addr in its truncate_count field. | 
|  | */ | 
|  | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 
|  |  | 
|  | static void reset_vma_truncate_counts(struct address_space *mapping) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  |  | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 
|  | vma->vm_truncate_count = 0; | 
|  | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 
|  | vma->vm_truncate_count = 0; | 
|  | } | 
|  |  | 
|  | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 
|  | unsigned long start_addr, unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | unsigned long restart_addr; | 
|  | int need_break; | 
|  |  | 
|  | /* | 
|  | * files that support invalidating or truncating portions of the | 
|  | * file from under mmaped areas must have their ->fault function | 
|  | * return a locked page (and set VM_FAULT_LOCKED in the return). | 
|  | * This provides synchronisation against concurrent unmapping here. | 
|  | */ | 
|  |  | 
|  | again: | 
|  | restart_addr = vma->vm_truncate_count; | 
|  | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 
|  | start_addr = restart_addr; | 
|  | if (start_addr >= end_addr) { | 
|  | /* Top of vma has been split off since last time */ | 
|  | vma->vm_truncate_count = details->truncate_count; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | restart_addr = zap_page_range(vma, start_addr, | 
|  | end_addr - start_addr, details); | 
|  | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); | 
|  |  | 
|  | if (restart_addr >= end_addr) { | 
|  | /* We have now completed this vma: mark it so */ | 
|  | vma->vm_truncate_count = details->truncate_count; | 
|  | if (!need_break) | 
|  | return 0; | 
|  | } else { | 
|  | /* Note restart_addr in vma's truncate_count field */ | 
|  | vma->vm_truncate_count = restart_addr; | 
|  | if (!need_break) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | spin_unlock(details->i_mmap_lock); | 
|  | cond_resched(); | 
|  | spin_lock(details->i_mmap_lock); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | pgoff_t vba, vea, zba, zea; | 
|  |  | 
|  | restart: | 
|  | vma_prio_tree_foreach(vma, &iter, root, | 
|  | details->first_index, details->last_index) { | 
|  | /* Skip quickly over those we have already dealt with */ | 
|  | if (vma->vm_truncate_count == details->truncate_count) | 
|  | continue; | 
|  |  | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 
|  | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 
|  | zba = details->first_index; | 
|  | if (zba < vba) | 
|  | zba = vba; | 
|  | zea = details->last_index; | 
|  | if (zea > vea) | 
|  | zea = vea; | 
|  |  | 
|  | if (unmap_mapping_range_vma(vma, | 
|  | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
|  | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
|  | details) < 0) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_list(struct list_head *head, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * In nonlinear VMAs there is no correspondence between virtual address | 
|  | * offset and file offset.  So we must perform an exhaustive search | 
|  | * across *all* the pages in each nonlinear VMA, not just the pages | 
|  | * whose virtual address lies outside the file truncation point. | 
|  | */ | 
|  | restart: | 
|  | list_for_each_entry(vma, head, shared.vm_set.list) { | 
|  | /* Skip quickly over those we have already dealt with */ | 
|  | if (vma->vm_truncate_count == details->truncate_count) | 
|  | continue; | 
|  | details->nonlinear_vma = vma; | 
|  | if (unmap_mapping_range_vma(vma, vma->vm_start, | 
|  | vma->vm_end, details) < 0) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. | 
|  | * @mapping: the address space containing mmaps to be unmapped. | 
|  | * @holebegin: byte in first page to unmap, relative to the start of | 
|  | * the underlying file.  This will be rounded down to a PAGE_SIZE | 
|  | * boundary.  Note that this is different from truncate_pagecache(), which | 
|  | * must keep the partial page.  In contrast, we must get rid of | 
|  | * partial pages. | 
|  | * @holelen: size of prospective hole in bytes.  This will be rounded | 
|  | * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
|  | * end of the file. | 
|  | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
|  | * but 0 when invalidating pagecache, don't throw away private data. | 
|  | */ | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows) | 
|  | { | 
|  | struct zap_details details; | 
|  | pgoff_t hba = holebegin >> PAGE_SHIFT; | 
|  | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Check for overflow. */ | 
|  | if (sizeof(holelen) > sizeof(hlen)) { | 
|  | long long holeend = | 
|  | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (holeend & ~(long long)ULONG_MAX) | 
|  | hlen = ULONG_MAX - hba + 1; | 
|  | } | 
|  |  | 
|  | details.check_mapping = even_cows? NULL: mapping; | 
|  | details.nonlinear_vma = NULL; | 
|  | details.first_index = hba; | 
|  | details.last_index = hba + hlen - 1; | 
|  | if (details.last_index < details.first_index) | 
|  | details.last_index = ULONG_MAX; | 
|  | details.i_mmap_lock = &mapping->i_mmap_lock; | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  |  | 
|  | /* Protect against endless unmapping loops */ | 
|  | mapping->truncate_count++; | 
|  | if (unlikely(is_restart_addr(mapping->truncate_count))) { | 
|  | if (mapping->truncate_count == 0) | 
|  | reset_vma_truncate_counts(mapping); | 
|  | mapping->truncate_count++; | 
|  | } | 
|  | details.truncate_count = mapping->truncate_count; | 
|  |  | 
|  | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 
|  | unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
|  | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 
|  | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(unmap_mapping_range); | 
|  |  | 
|  | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* | 
|  | * If the underlying filesystem is not going to provide | 
|  | * a way to truncate a range of blocks (punch a hole) - | 
|  | * we should return failure right now. | 
|  | */ | 
|  | if (!inode->i_op->truncate_range) | 
|  | return -ENOSYS; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | down_write(&inode->i_alloc_sem); | 
|  | unmap_mapping_range(mapping, offset, (end - offset), 1); | 
|  | truncate_inode_pages_range(mapping, offset, end); | 
|  | unmap_mapping_range(mapping, offset, (end - offset), 1); | 
|  | inode->i_op->truncate_range(inode, offset, end); | 
|  | up_write(&inode->i_alloc_sem); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | unsigned int flags, pte_t orig_pte) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  | struct mem_cgroup *ptr = NULL; | 
|  | int exclusive = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(orig_pte); | 
|  | if (unlikely(non_swap_entry(entry))) { | 
|  | if (is_migration_entry(entry)) { | 
|  | migration_entry_wait(mm, pmd, address); | 
|  | } else if (is_hwpoison_entry(entry)) { | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | } else { | 
|  | print_bad_pte(vma, address, orig_pte, NULL); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 
|  | page = lookup_swap_cache(entry); | 
|  | if (!page) { | 
|  | grab_swap_token(mm); /* Contend for token _before_ read-in */ | 
|  | page = swapin_readahead(entry, | 
|  | GFP_HIGHUSER_MOVABLE, vma, address); | 
|  | if (!page) { | 
|  | /* | 
|  | * Back out if somebody else faulted in this pte | 
|  | * while we released the pte lock. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (likely(pte_same(*page_table, orig_pte))) | 
|  | ret = VM_FAULT_OOM; | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Had to read the page from swap area: Major fault */ | 
|  | ret = VM_FAULT_MAJOR; | 
|  | count_vm_event(PGMAJFAULT); | 
|  | } else if (PageHWPoison(page)) { | 
|  | /* | 
|  | * hwpoisoned dirty swapcache pages are kept for killing | 
|  | * owner processes (which may be unknown at hwpoison time) | 
|  | */ | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  |  | 
|  | page = ksm_might_need_to_copy(page, vma, address); | 
|  | if (!page) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back out if somebody else already faulted in this pte. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (unlikely(!pte_same(*page_table, orig_pte))) | 
|  | goto out_nomap; | 
|  |  | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out_nomap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page isn't present yet, go ahead with the fault. | 
|  | * | 
|  | * Be careful about the sequence of operations here. | 
|  | * To get its accounting right, reuse_swap_page() must be called | 
|  | * while the page is counted on swap but not yet in mapcount i.e. | 
|  | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | 
|  | * must be called after the swap_free(), or it will never succeed. | 
|  | * Because delete_from_swap_page() may be called by reuse_swap_page(), | 
|  | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | 
|  | * in page->private. In this case, a record in swap_cgroup  is silently | 
|  | * discarded at swap_free(). | 
|  | */ | 
|  |  | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | dec_mm_counter_fast(mm, MM_SWAPENTS); | 
|  | pte = mk_pte(page, vma->vm_page_prot); | 
|  | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
|  | flags &= ~FAULT_FLAG_WRITE; | 
|  | ret |= VM_FAULT_WRITE; | 
|  | exclusive = 1; | 
|  | } | 
|  | flush_icache_page(vma, page); | 
|  | set_pte_at(mm, address, page_table, pte); | 
|  | do_page_add_anon_rmap(page, vma, address, exclusive); | 
|  | /* It's better to call commit-charge after rmap is established */ | 
|  | mem_cgroup_commit_charge_swapin(page, ptr); | 
|  |  | 
|  | swap_free(entry); | 
|  | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | 
|  | try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); | 
|  | if (ret & VM_FAULT_ERROR) | 
|  | ret &= VM_FAULT_ERROR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, address, page_table); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | out: | 
|  | return ret; | 
|  | out_nomap: | 
|  | mem_cgroup_cancel_charge_swapin(ptr); | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | out_page: | 
|  | unlock_page(page); | 
|  | out_release: | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is like a special single-page "expand_{down|up}wards()", | 
|  | * except we must first make sure that 'address{-|+}PAGE_SIZE' | 
|  | * doesn't hit another vma. | 
|  | */ | 
|  | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | address &= PAGE_MASK; | 
|  | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | 
|  | struct vm_area_struct *prev = vma->vm_prev; | 
|  |  | 
|  | /* | 
|  | * Is there a mapping abutting this one below? | 
|  | * | 
|  | * That's only ok if it's the same stack mapping | 
|  | * that has gotten split.. | 
|  | */ | 
|  | if (prev && prev->vm_end == address) | 
|  | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | 
|  |  | 
|  | expand_stack(vma, address - PAGE_SIZE); | 
|  | } | 
|  | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  |  | 
|  | /* As VM_GROWSDOWN but s/below/above/ */ | 
|  | if (next && next->vm_start == address + PAGE_SIZE) | 
|  | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | 
|  |  | 
|  | expand_upwards(vma, address + PAGE_SIZE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct page *page; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  |  | 
|  | pte_unmap(page_table); | 
|  |  | 
|  | /* Check if we need to add a guard page to the stack */ | 
|  | if (check_stack_guard_page(vma, address) < 0) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* Use the zero-page for reads */ | 
|  | if (!(flags & FAULT_FLAG_WRITE)) { | 
|  | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | 
|  | vma->vm_page_prot)); | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (!pte_none(*page_table)) | 
|  | goto unlock; | 
|  | goto setpte; | 
|  | } | 
|  |  | 
|  | /* Allocate our own private page. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | page = alloc_zeroed_user_highpage_movable(vma, address); | 
|  | if (!page) | 
|  | goto oom; | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) | 
|  | goto oom_free_page; | 
|  |  | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | entry = pte_mkwrite(pte_mkdirty(entry)); | 
|  |  | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (!pte_none(*page_table)) | 
|  | goto release; | 
|  |  | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, address); | 
|  | setpte: | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, address, page_table); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | return 0; | 
|  | release: | 
|  | mem_cgroup_uncharge_page(page); | 
|  | page_cache_release(page); | 
|  | goto unlock; | 
|  | oom_free_page: | 
|  | page_cache_release(page); | 
|  | oom: | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __do_fault() tries to create a new page mapping. It aggressively | 
|  | * tries to share with existing pages, but makes a separate copy if | 
|  | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid | 
|  | * the next page fault. | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte neither mapped nor locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmd, | 
|  | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | 
|  | { | 
|  | pte_t *page_table; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | pte_t entry; | 
|  | int anon = 0; | 
|  | int charged = 0; | 
|  | struct page *dirty_page = NULL; | 
|  | struct vm_fault vmf; | 
|  | int ret; | 
|  | int page_mkwrite = 0; | 
|  |  | 
|  | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | 
|  | vmf.pgoff = pgoff; | 
|  | vmf.flags = flags; | 
|  | vmf.page = NULL; | 
|  |  | 
|  | ret = vma->vm_ops->fault(vma, &vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | 
|  | return ret; | 
|  |  | 
|  | if (unlikely(PageHWPoison(vmf.page))) { | 
|  | if (ret & VM_FAULT_LOCKED) | 
|  | unlock_page(vmf.page); | 
|  | return VM_FAULT_HWPOISON; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For consistency in subsequent calls, make the faulted page always | 
|  | * locked. | 
|  | */ | 
|  | if (unlikely(!(ret & VM_FAULT_LOCKED))) | 
|  | lock_page(vmf.page); | 
|  | else | 
|  | VM_BUG_ON(!PageLocked(vmf.page)); | 
|  |  | 
|  | /* | 
|  | * Should we do an early C-O-W break? | 
|  | */ | 
|  | page = vmf.page; | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | if (!(vma->vm_flags & VM_SHARED)) { | 
|  | anon = 1; | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, | 
|  | vma, address); | 
|  | if (!page) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | page_cache_release(page); | 
|  | goto out; | 
|  | } | 
|  | charged = 1; | 
|  | /* | 
|  | * Don't let another task, with possibly unlocked vma, | 
|  | * keep the mlocked page. | 
|  | */ | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | clear_page_mlock(vmf.page); | 
|  | copy_user_highpage(page, vmf.page, address, vma); | 
|  | __SetPageUptodate(page); | 
|  | } else { | 
|  | /* | 
|  | * If the page will be shareable, see if the backing | 
|  | * address space wants to know that the page is about | 
|  | * to become writable | 
|  | */ | 
|  | if (vma->vm_ops->page_mkwrite) { | 
|  | int tmp; | 
|  |  | 
|  | unlock_page(page); | 
|  | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
|  | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 
|  | if (unlikely(tmp & | 
|  | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 
|  | ret = tmp; | 
|  | goto unwritable_page; | 
|  | } | 
|  | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 
|  | lock_page(page); | 
|  | if (!page->mapping) { | 
|  | ret = 0; /* retry the fault */ | 
|  | unlock_page(page); | 
|  | goto unwritable_page; | 
|  | } | 
|  | } else | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | page_mkwrite = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  |  | 
|  | /* | 
|  | * This silly early PAGE_DIRTY setting removes a race | 
|  | * due to the bad i386 page protection. But it's valid | 
|  | * for other architectures too. | 
|  | * | 
|  | * Note that if FAULT_FLAG_WRITE is set, we either now have | 
|  | * an exclusive copy of the page, or this is a shared mapping, | 
|  | * so we can make it writable and dirty to avoid having to | 
|  | * handle that later. | 
|  | */ | 
|  | /* Only go through if we didn't race with anybody else... */ | 
|  | if (likely(pte_same(*page_table, orig_pte))) { | 
|  | flush_icache_page(vma, page); | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (flags & FAULT_FLAG_WRITE) | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (anon) { | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, address); | 
|  | } else { | 
|  | inc_mm_counter_fast(mm, MM_FILEPAGES); | 
|  | page_add_file_rmap(page); | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | dirty_page = page; | 
|  | get_page(dirty_page); | 
|  | } | 
|  | } | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  |  | 
|  | /* no need to invalidate: a not-present page won't be cached */ | 
|  | update_mmu_cache(vma, address, page_table); | 
|  | } else { | 
|  | if (charged) | 
|  | mem_cgroup_uncharge_page(page); | 
|  | if (anon) | 
|  | page_cache_release(page); | 
|  | else | 
|  | anon = 1; /* no anon but release faulted_page */ | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  |  | 
|  | out: | 
|  | if (dirty_page) { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | if (set_page_dirty(dirty_page)) | 
|  | page_mkwrite = 1; | 
|  | unlock_page(dirty_page); | 
|  | put_page(dirty_page); | 
|  | if (page_mkwrite && mapping) { | 
|  | /* | 
|  | * Some device drivers do not set page.mapping but still | 
|  | * dirty their pages | 
|  | */ | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } | 
|  |  | 
|  | /* file_update_time outside page_lock */ | 
|  | if (vma->vm_file) | 
|  | file_update_time(vma->vm_file); | 
|  | } else { | 
|  | unlock_page(vmf.page); | 
|  | if (anon) | 
|  | page_cache_release(vmf.page); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | unwritable_page: | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | unsigned int flags, pte_t orig_pte) | 
|  | { | 
|  | pgoff_t pgoff = (((address & PAGE_MASK) | 
|  | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
|  |  | 
|  | pte_unmap(page_table); | 
|  | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fault of a previously existing named mapping. Repopulate the pte | 
|  | * from the encoded file_pte if possible. This enables swappable | 
|  | * nonlinear vmas. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | unsigned int flags, pte_t orig_pte) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | flags |= FAULT_FLAG_NONLINEAR; | 
|  |  | 
|  | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 
|  | /* | 
|  | * Page table corrupted: show pte and kill process. | 
|  | */ | 
|  | print_bad_pte(vma, address, orig_pte, NULL); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | pgoff = pte_to_pgoff(orig_pte); | 
|  | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These routines also need to handle stuff like marking pages dirty | 
|  | * and/or accessed for architectures that don't do it in hardware (most | 
|  | * RISC architectures).  The early dirtying is also good on the i386. | 
|  | * | 
|  | * There is also a hook called "update_mmu_cache()" that architectures | 
|  | * with external mmu caches can use to update those (ie the Sparc or | 
|  | * PowerPC hashed page tables that act as extended TLBs). | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static inline int handle_pte_fault(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, unsigned long address, | 
|  | pte_t *pte, pmd_t *pmd, unsigned int flags) | 
|  | { | 
|  | pte_t entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | entry = *pte; | 
|  | if (!pte_present(entry)) { | 
|  | if (pte_none(entry)) { | 
|  | if (vma->vm_ops) { | 
|  | if (likely(vma->vm_ops->fault)) | 
|  | return do_linear_fault(mm, vma, address, | 
|  | pte, pmd, flags, entry); | 
|  | } | 
|  | return do_anonymous_page(mm, vma, address, | 
|  | pte, pmd, flags); | 
|  | } | 
|  | if (pte_file(entry)) | 
|  | return do_nonlinear_fault(mm, vma, address, | 
|  | pte, pmd, flags, entry); | 
|  | return do_swap_page(mm, vma, address, | 
|  | pte, pmd, flags, entry); | 
|  | } | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | if (unlikely(!pte_same(*pte, entry))) | 
|  | goto unlock; | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | if (!pte_write(entry)) | 
|  | return do_wp_page(mm, vma, address, | 
|  | pte, pmd, ptl, entry); | 
|  | entry = pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { | 
|  | update_mmu_cache(vma, address, pte); | 
|  | } else { | 
|  | /* | 
|  | * This is needed only for protection faults but the arch code | 
|  | * is not yet telling us if this is a protection fault or not. | 
|  | * This still avoids useless tlb flushes for .text page faults | 
|  | * with threads. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_WRITE) | 
|  | flush_tlb_page(vma, address); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | */ | 
|  | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | count_vm_event(PGFAULT); | 
|  |  | 
|  | /* do counter updates before entering really critical section. */ | 
|  | check_sync_rss_stat(current); | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) | 
|  | return hugetlb_fault(mm, vma, address, flags); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | pud = pud_alloc(mm, pgd, address); | 
|  | if (!pud) | 
|  | return VM_FAULT_OOM; | 
|  | pmd = pmd_alloc(mm, pud, address); | 
|  | if (!pmd) | 
|  | return VM_FAULT_OOM; | 
|  | pte = pte_alloc_map(mm, pmd, address); | 
|  | if (!pte) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | 
|  | } | 
|  |  | 
|  | #ifndef __PAGETABLE_PUD_FOLDED | 
|  | /* | 
|  | * Allocate page upper directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | pud_t *new = pud_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pgd_present(*pgd))		/* Another has populated it */ | 
|  | pud_free(mm, new); | 
|  | else | 
|  | pgd_populate(mm, pgd, new); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PUD_FOLDED */ | 
|  |  | 
|  | #ifndef __PAGETABLE_PMD_FOLDED | 
|  | /* | 
|  | * Allocate page middle directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | pmd_t *new = pmd_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | #ifndef __ARCH_HAS_4LEVEL_HACK | 
|  | if (pud_present(*pud))		/* Another has populated it */ | 
|  | pmd_free(mm, new); | 
|  | else | 
|  | pud_populate(mm, pud, new); | 
|  | #else | 
|  | if (pgd_present(*pud))		/* Another has populated it */ | 
|  | pmd_free(mm, new); | 
|  | else | 
|  | pgd_populate(mm, pud, new); | 
|  | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PMD_FOLDED */ | 
|  |  | 
|  | int make_pages_present(unsigned long addr, unsigned long end) | 
|  | { | 
|  | int ret, len, write; | 
|  | struct vm_area_struct * vma; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | if (!vma) | 
|  | return -ENOMEM; | 
|  | write = (vma->vm_flags & VM_WRITE) != 0; | 
|  | BUG_ON(addr >= end); | 
|  | BUG_ON(end > vma->vm_end); | 
|  | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 
|  | ret = get_user_pages(current, current->mm, addr, | 
|  | len, write, 0, NULL, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return ret == len ? 0 : -EFAULT; | 
|  | } | 
|  |  | 
|  | #if !defined(__HAVE_ARCH_GATE_AREA) | 
|  |  | 
|  | #if defined(AT_SYSINFO_EHDR) | 
|  | static struct vm_area_struct gate_vma; | 
|  |  | 
|  | static int __init gate_vma_init(void) | 
|  | { | 
|  | gate_vma.vm_mm = NULL; | 
|  | gate_vma.vm_start = FIXADDR_USER_START; | 
|  | gate_vma.vm_end = FIXADDR_USER_END; | 
|  | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; | 
|  | gate_vma.vm_page_prot = __P101; | 
|  | /* | 
|  | * Make sure the vDSO gets into every core dump. | 
|  | * Dumping its contents makes post-mortem fully interpretable later | 
|  | * without matching up the same kernel and hardware config to see | 
|  | * what PC values meant. | 
|  | */ | 
|  | gate_vma.vm_flags |= VM_ALWAYSDUMP; | 
|  | return 0; | 
|  | } | 
|  | __initcall(gate_vma_init); | 
|  | #endif | 
|  |  | 
|  | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 
|  | { | 
|  | #ifdef AT_SYSINFO_EHDR | 
|  | return &gate_vma; | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int in_gate_area_no_task(unsigned long addr) | 
|  | { | 
|  | #ifdef AT_SYSINFO_EHDR | 
|  | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 
|  | return 1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
|  |  | 
|  | static int follow_pte(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, spinlock_t **ptlp) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
|  | goto out; | 
|  |  | 
|  | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | 
|  | if (pmd_huge(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | 
|  | if (!ptep) | 
|  | goto out; | 
|  | if (!pte_present(*ptep)) | 
|  | goto unlock; | 
|  | *ptepp = ptep; | 
|  | return 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, *ptlp); | 
|  | out: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * follow_pfn - look up PFN at a user virtual address | 
|  | * @vma: memory mapping | 
|  | * @address: user virtual address | 
|  | * @pfn: location to store found PFN | 
|  | * | 
|  | * Only IO mappings and raw PFN mappings are allowed. | 
|  | * | 
|  | * Returns zero and the pfn at @pfn on success, -ve otherwise. | 
|  | */ | 
|  | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long *pfn) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | return ret; | 
|  |  | 
|  | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | 
|  | if (ret) | 
|  | return ret; | 
|  | *pfn = pte_pfn(*ptep); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(follow_pfn); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
|  | int follow_phys(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, | 
|  | unsigned long *prot, resource_size_t *phys) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | goto out; | 
|  |  | 
|  | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) | 
|  | goto out; | 
|  | pte = *ptep; | 
|  |  | 
|  | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
|  | goto unlock; | 
|  |  | 
|  | *prot = pgprot_val(pte_pgprot(pte)); | 
|  | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 
|  |  | 
|  | ret = 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
|  | void *buf, int len, int write) | 
|  | { | 
|  | resource_size_t phys_addr; | 
|  | unsigned long prot = 0; | 
|  | void __iomem *maddr; | 
|  | int offset = addr & (PAGE_SIZE-1); | 
|  |  | 
|  | if (follow_phys(vma, addr, write, &prot, &phys_addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | 
|  | if (write) | 
|  | memcpy_toio(maddr + offset, buf, len); | 
|  | else | 
|  | memcpy_fromio(buf, maddr + offset, len); | 
|  | iounmap(maddr); | 
|  |  | 
|  | return len; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Access another process' address space. | 
|  | * Source/target buffer must be kernel space, | 
|  | * Do not walk the page table directly, use get_user_pages | 
|  | */ | 
|  | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | void *old_buf = buf; | 
|  |  | 
|  | mm = get_task_mm(tsk); | 
|  | if (!mm) | 
|  | return 0; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | /* ignore errors, just check how much was successfully transferred */ | 
|  | while (len) { | 
|  | int bytes, ret, offset; | 
|  | void *maddr; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | ret = get_user_pages(tsk, mm, addr, 1, | 
|  | write, 1, &page, &vma); | 
|  | if (ret <= 0) { | 
|  | /* | 
|  | * Check if this is a VM_IO | VM_PFNMAP VMA, which | 
|  | * we can access using slightly different code. | 
|  | */ | 
|  | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma) | 
|  | break; | 
|  | if (vma->vm_ops && vma->vm_ops->access) | 
|  | ret = vma->vm_ops->access(vma, addr, buf, | 
|  | len, write); | 
|  | if (ret <= 0) | 
|  | #endif | 
|  | break; | 
|  | bytes = ret; | 
|  | } else { | 
|  | bytes = len; | 
|  | offset = addr & (PAGE_SIZE-1); | 
|  | if (bytes > PAGE_SIZE-offset) | 
|  | bytes = PAGE_SIZE-offset; | 
|  |  | 
|  | maddr = kmap(page); | 
|  | if (write) { | 
|  | copy_to_user_page(vma, page, addr, | 
|  | maddr + offset, buf, bytes); | 
|  | set_page_dirty_lock(page); | 
|  | } else { | 
|  | copy_from_user_page(vma, page, addr, | 
|  | buf, maddr + offset, bytes); | 
|  | } | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | len -= bytes; | 
|  | buf += bytes; | 
|  | addr += bytes; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  |  | 
|  | return buf - old_buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print the name of a VMA. | 
|  | */ | 
|  | void print_vma_addr(char *prefix, unsigned long ip) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * Do not print if we are in atomic | 
|  | * contexts (in exception stacks, etc.): | 
|  | */ | 
|  | if (preempt_count()) | 
|  | return; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = find_vma(mm, ip); | 
|  | if (vma && vma->vm_file) { | 
|  | struct file *f = vma->vm_file; | 
|  | char *buf = (char *)__get_free_page(GFP_KERNEL); | 
|  | if (buf) { | 
|  | char *p, *s; | 
|  |  | 
|  | p = d_path(&f->f_path, buf, PAGE_SIZE); | 
|  | if (IS_ERR(p)) | 
|  | p = "?"; | 
|  | s = strrchr(p, '/'); | 
|  | if (s) | 
|  | p = s+1; | 
|  | printk("%s%s[%lx+%lx]", prefix, p, | 
|  | vma->vm_start, | 
|  | vma->vm_end - vma->vm_start); | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | } | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | void might_fault(void) | 
|  | { | 
|  | /* | 
|  | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | 
|  | * holding the mmap_sem, this is safe because kernel memory doesn't | 
|  | * get paged out, therefore we'll never actually fault, and the | 
|  | * below annotations will generate false positives. | 
|  | */ | 
|  | if (segment_eq(get_fs(), KERNEL_DS)) | 
|  | return; | 
|  |  | 
|  | might_sleep(); | 
|  | /* | 
|  | * it would be nicer only to annotate paths which are not under | 
|  | * pagefault_disable, however that requires a larger audit and | 
|  | * providing helpers like get_user_atomic. | 
|  | */ | 
|  | if (!in_atomic() && current->mm) | 
|  | might_lock_read(¤t->mm->mmap_sem); | 
|  | } | 
|  | EXPORT_SYMBOL(might_fault); | 
|  | #endif |