| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. | 
 |  * Author: Marc Zyngier <[email protected]> | 
 |  */ | 
 |  | 
 | #include <linux/acpi.h> | 
 | #include <linux/acpi_iort.h> | 
 | #include <linux/bitfield.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-iommu.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/iopoll.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/list.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_pci.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/syscore_ops.h> | 
 |  | 
 | #include <linux/irqchip.h> | 
 | #include <linux/irqchip/arm-gic-v3.h> | 
 | #include <linux/irqchip/arm-gic-v4.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 | #include <asm/exception.h> | 
 |  | 
 | #include "irq-gic-common.h" | 
 |  | 
 | #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0) | 
 | #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1) | 
 | #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2) | 
 |  | 
 | #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0) | 
 | #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1) | 
 |  | 
 | static u32 lpi_id_bits; | 
 |  | 
 | /* | 
 |  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to | 
 |  * deal with (one configuration byte per interrupt). PENDBASE has to | 
 |  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). | 
 |  */ | 
 | #define LPI_NRBITS		lpi_id_bits | 
 | #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K) | 
 | #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) | 
 |  | 
 | #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI | 
 |  | 
 | /* | 
 |  * Collection structure - just an ID, and a redistributor address to | 
 |  * ping. We use one per CPU as a bag of interrupts assigned to this | 
 |  * CPU. | 
 |  */ | 
 | struct its_collection { | 
 | 	u64			target_address; | 
 | 	u16			col_id; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS_BASER structure - contains memory information, cached | 
 |  * value of BASER register configuration and ITS page size. | 
 |  */ | 
 | struct its_baser { | 
 | 	void		*base; | 
 | 	u64		val; | 
 | 	u32		order; | 
 | 	u32		psz; | 
 | }; | 
 |  | 
 | struct its_device; | 
 |  | 
 | /* | 
 |  * The ITS structure - contains most of the infrastructure, with the | 
 |  * top-level MSI domain, the command queue, the collections, and the | 
 |  * list of devices writing to it. | 
 |  * | 
 |  * dev_alloc_lock has to be taken for device allocations, while the | 
 |  * spinlock must be taken to parse data structures such as the device | 
 |  * list. | 
 |  */ | 
 | struct its_node { | 
 | 	raw_spinlock_t		lock; | 
 | 	struct mutex		dev_alloc_lock; | 
 | 	struct list_head	entry; | 
 | 	void __iomem		*base; | 
 | 	void __iomem		*sgir_base; | 
 | 	phys_addr_t		phys_base; | 
 | 	struct its_cmd_block	*cmd_base; | 
 | 	struct its_cmd_block	*cmd_write; | 
 | 	struct its_baser	tables[GITS_BASER_NR_REGS]; | 
 | 	struct its_collection	*collections; | 
 | 	struct fwnode_handle	*fwnode_handle; | 
 | 	u64			(*get_msi_base)(struct its_device *its_dev); | 
 | 	u64			typer; | 
 | 	u64			cbaser_save; | 
 | 	u32			ctlr_save; | 
 | 	u32			mpidr; | 
 | 	struct list_head	its_device_list; | 
 | 	u64			flags; | 
 | 	unsigned long		list_nr; | 
 | 	int			numa_node; | 
 | 	unsigned int		msi_domain_flags; | 
 | 	u32			pre_its_base; /* for Socionext Synquacer */ | 
 | 	int			vlpi_redist_offset; | 
 | }; | 
 |  | 
 | #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS)) | 
 | #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP)) | 
 | #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) | 
 |  | 
 | #define ITS_ITT_ALIGN		SZ_256 | 
 |  | 
 | /* The maximum number of VPEID bits supported by VLPI commands */ | 
 | #define ITS_MAX_VPEID_BITS						\ | 
 | 	({								\ | 
 | 		int nvpeid = 16;					\ | 
 | 		if (gic_rdists->has_rvpeid &&				\ | 
 | 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\ | 
 | 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\ | 
 | 				      GICD_TYPER2_VID);			\ | 
 | 									\ | 
 | 		nvpeid;							\ | 
 | 	}) | 
 | #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS)) | 
 |  | 
 | /* Convert page order to size in bytes */ | 
 | #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o)) | 
 |  | 
 | struct event_lpi_map { | 
 | 	unsigned long		*lpi_map; | 
 | 	u16			*col_map; | 
 | 	irq_hw_number_t		lpi_base; | 
 | 	int			nr_lpis; | 
 | 	raw_spinlock_t		vlpi_lock; | 
 | 	struct its_vm		*vm; | 
 | 	struct its_vlpi_map	*vlpi_maps; | 
 | 	int			nr_vlpis; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS view of a device - belongs to an ITS, owns an interrupt | 
 |  * translation table, and a list of interrupts.  If it some of its | 
 |  * LPIs are injected into a guest (GICv4), the event_map.vm field | 
 |  * indicates which one. | 
 |  */ | 
 | struct its_device { | 
 | 	struct list_head	entry; | 
 | 	struct its_node		*its; | 
 | 	struct event_lpi_map	event_map; | 
 | 	void			*itt; | 
 | 	u32			nr_ites; | 
 | 	u32			device_id; | 
 | 	bool			shared; | 
 | }; | 
 |  | 
 | static struct { | 
 | 	raw_spinlock_t		lock; | 
 | 	struct its_device	*dev; | 
 | 	struct its_vpe		**vpes; | 
 | 	int			next_victim; | 
 | } vpe_proxy; | 
 |  | 
 | struct cpu_lpi_count { | 
 | 	atomic_t	managed; | 
 | 	atomic_t	unmanaged; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); | 
 |  | 
 | static LIST_HEAD(its_nodes); | 
 | static DEFINE_RAW_SPINLOCK(its_lock); | 
 | static struct rdists *gic_rdists; | 
 | static struct irq_domain *its_parent; | 
 |  | 
 | static unsigned long its_list_map; | 
 | static u16 vmovp_seq_num; | 
 | static DEFINE_RAW_SPINLOCK(vmovp_lock); | 
 |  | 
 | static DEFINE_IDA(its_vpeid_ida); | 
 |  | 
 | #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist)) | 
 | #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu)) | 
 | #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base) | 
 | #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K) | 
 |  | 
 | /* | 
 |  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we | 
 |  * always have vSGIs mapped. | 
 |  */ | 
 | static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) | 
 | { | 
 | 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); | 
 | } | 
 |  | 
 | static u16 get_its_list(struct its_vm *vm) | 
 | { | 
 | 	struct its_node *its; | 
 | 	unsigned long its_list = 0; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		if (require_its_list_vmovp(vm, its)) | 
 | 			__set_bit(its->list_nr, &its_list); | 
 | 	} | 
 |  | 
 | 	return (u16)its_list; | 
 | } | 
 |  | 
 | static inline u32 its_get_event_id(struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	return d->hwirq - its_dev->event_map.lpi_base; | 
 | } | 
 |  | 
 | static struct its_collection *dev_event_to_col(struct its_device *its_dev, | 
 | 					       u32 event) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	return its->collections + its_dev->event_map.col_map[event]; | 
 | } | 
 |  | 
 | static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, | 
 | 					       u32 event) | 
 | { | 
 | 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) | 
 | 		return NULL; | 
 |  | 
 | 	return &its_dev->event_map.vlpi_maps[event]; | 
 | } | 
 |  | 
 | static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) | 
 | { | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 		struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 		u32 event = its_get_event_id(d); | 
 |  | 
 | 		return dev_event_to_vlpi_map(its_dev, event); | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) | 
 | { | 
 | 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); | 
 | 	return vpe->col_idx; | 
 | } | 
 |  | 
 | static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) | 
 | { | 
 | 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); | 
 | } | 
 |  | 
 | static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) | 
 | { | 
 | 	struct its_vlpi_map *map = get_vlpi_map(d); | 
 | 	int cpu; | 
 |  | 
 | 	if (map) { | 
 | 		cpu = vpe_to_cpuid_lock(map->vpe, flags); | 
 | 	} else { | 
 | 		/* Physical LPIs are already locked via the irq_desc lock */ | 
 | 		struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 		cpu = its_dev->event_map.col_map[its_get_event_id(d)]; | 
 | 		/* Keep GCC quiet... */ | 
 | 		*flags = 0; | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) | 
 | { | 
 | 	struct its_vlpi_map *map = get_vlpi_map(d); | 
 |  | 
 | 	if (map) | 
 | 		vpe_to_cpuid_unlock(map->vpe, flags); | 
 | } | 
 |  | 
 | static struct its_collection *valid_col(struct its_collection *col) | 
 | { | 
 | 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) | 
 | 		return NULL; | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) | 
 | { | 
 | 	if (valid_col(its->collections + vpe->col_idx)) | 
 | 		return vpe; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * ITS command descriptors - parameters to be encoded in a command | 
 |  * block. | 
 |  */ | 
 | struct its_cmd_desc { | 
 | 	union { | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_inv_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_clear_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_int_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			int valid; | 
 | 		} its_mapd_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_collection *col; | 
 | 			int valid; | 
 | 		} its_mapc_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 phys_id; | 
 | 			u32 event_id; | 
 | 		} its_mapti_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			struct its_collection *col; | 
 | 			u32 event_id; | 
 | 		} its_movi_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_discard_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_collection *col; | 
 | 		} its_invall_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 		} its_vinvall_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_collection *col; | 
 | 			bool valid; | 
 | 		} its_vmapp_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_device *dev; | 
 | 			u32 virt_id; | 
 | 			u32 event_id; | 
 | 			bool db_enabled; | 
 | 		} its_vmapti_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 			bool db_enabled; | 
 | 		} its_vmovi_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_collection *col; | 
 | 			u16 seq_num; | 
 | 			u16 its_list; | 
 | 		} its_vmovp_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 		} its_invdb_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			u8 sgi; | 
 | 			u8 priority; | 
 | 			bool enable; | 
 | 			bool group; | 
 | 			bool clear; | 
 | 		} its_vsgi_cmd; | 
 | 	}; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS command block, which is what the ITS actually parses. | 
 |  */ | 
 | struct its_cmd_block { | 
 | 	union { | 
 | 		u64	raw_cmd[4]; | 
 | 		__le64	raw_cmd_le[4]; | 
 | 	}; | 
 | }; | 
 |  | 
 | #define ITS_CMD_QUEUE_SZ		SZ_64K | 
 | #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) | 
 |  | 
 | typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, | 
 | 						    struct its_cmd_block *, | 
 | 						    struct its_cmd_desc *); | 
 |  | 
 | typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, | 
 | 					      struct its_cmd_block *, | 
 | 					      struct its_cmd_desc *); | 
 |  | 
 | static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) | 
 | { | 
 | 	u64 mask = GENMASK_ULL(h, l); | 
 | 	*raw_cmd &= ~mask; | 
 | 	*raw_cmd |= (val << l) & mask; | 
 | } | 
 |  | 
 | static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); | 
 | } | 
 |  | 
 | static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_size(struct its_cmd_block *cmd, u8 size) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); | 
 | } | 
 |  | 
 | static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); | 
 | } | 
 |  | 
 | static void its_encode_valid(struct its_cmd_block *cmd, int valid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); | 
 | } | 
 |  | 
 | static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); | 
 | } | 
 |  | 
 | static void its_encode_collection(struct its_cmd_block *cmd, u16 col) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); | 
 | } | 
 |  | 
 | static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); | 
 | } | 
 |  | 
 | static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); | 
 | } | 
 |  | 
 | static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); | 
 | } | 
 |  | 
 | static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); | 
 | } | 
 |  | 
 | static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); | 
 | } | 
 |  | 
 | static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); | 
 | } | 
 |  | 
 | static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); | 
 | } | 
 |  | 
 | static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); | 
 | } | 
 |  | 
 | static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); | 
 | } | 
 |  | 
 | static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, | 
 | 					u32 vpe_db_lpi) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, | 
 | 					u32 vpe_db_lpi) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_db(struct its_cmd_block *cmd, bool db) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); | 
 | } | 
 |  | 
 | static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); | 
 | } | 
 |  | 
 | static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); | 
 | } | 
 |  | 
 | static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); | 
 | } | 
 |  | 
 | static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); | 
 | } | 
 |  | 
 | static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); | 
 | } | 
 |  | 
 | static inline void its_fixup_cmd(struct its_cmd_block *cmd) | 
 | { | 
 | 	/* Let's fixup BE commands */ | 
 | 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); | 
 | 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); | 
 | 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); | 
 | 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapd_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	unsigned long itt_addr; | 
 | 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); | 
 |  | 
 | 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); | 
 | 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPD); | 
 | 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); | 
 | 	its_encode_size(cmd, size - 1); | 
 | 	its_encode_itt(cmd, itt_addr); | 
 | 	its_encode_valid(cmd, desc->its_mapd_cmd.valid); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapc_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPC); | 
 | 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
 | 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); | 
 | 	its_encode_valid(cmd, desc->its_mapc_cmd.valid); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_mapc_cmd.col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapti_cmd(struct its_node *its, | 
 | 						  struct its_cmd_block *cmd, | 
 | 						  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_mapti_cmd.dev, | 
 | 			       desc->its_mapti_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPTI); | 
 | 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); | 
 | 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); | 
 | 	its_encode_collection(cmd, col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_movi_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_movi_cmd.dev, | 
 | 			       desc->its_movi_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MOVI); | 
 | 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id); | 
 | 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_discard_cmd(struct its_node *its, | 
 | 						    struct its_cmd_block *cmd, | 
 | 						    struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_discard_cmd.dev, | 
 | 			       desc->its_discard_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_DISCARD); | 
 | 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_inv_cmd(struct its_node *its, | 
 | 						struct its_cmd_block *cmd, | 
 | 						struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_inv_cmd.dev, | 
 | 			       desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INV); | 
 | 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_int_cmd(struct its_node *its, | 
 | 						struct its_cmd_block *cmd, | 
 | 						struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_int_cmd.dev, | 
 | 			       desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INT); | 
 | 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_clear_cmd(struct its_node *its, | 
 | 						  struct its_cmd_block *cmd, | 
 | 						  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_clear_cmd.dev, | 
 | 			       desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
 | 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_col(col); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_invall_cmd(struct its_node *its, | 
 | 						   struct its_cmd_block *cmd, | 
 | 						   struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_INVALL); | 
 | 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, | 
 | 					     struct its_cmd_block *cmd, | 
 | 					     struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_VINVALL); | 
 | 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vinvall_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	unsigned long vpt_addr, vconf_addr; | 
 | 	u64 target; | 
 | 	bool alloc; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMAPP); | 
 | 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); | 
 | 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid); | 
 |  | 
 | 	if (!desc->its_vmapp_cmd.valid) { | 
 | 		if (is_v4_1(its)) { | 
 | 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); | 
 | 			its_encode_alloc(cmd, alloc); | 
 | 		} | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); | 
 | 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; | 
 |  | 
 | 	its_encode_target(cmd, target); | 
 | 	its_encode_vpt_addr(cmd, vpt_addr); | 
 | 	its_encode_vpt_size(cmd, LPI_NRBITS - 1); | 
 |  | 
 | 	if (!is_v4_1(its)) | 
 | 		goto out; | 
 |  | 
 | 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); | 
 |  | 
 | 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); | 
 |  | 
 | 	its_encode_alloc(cmd, alloc); | 
 |  | 
 | 	/* | 
 | 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE | 
 | 	 * to be unmapped first, and in this case, we may remap the vPE | 
 | 	 * back while the VPT is not empty. So we can't assume that the | 
 | 	 * VPT is empty on map. This is why we never advertise PTZ. | 
 | 	 */ | 
 | 	its_encode_ptz(cmd, false); | 
 | 	its_encode_vconf_addr(cmd, vconf_addr); | 
 | 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); | 
 |  | 
 | out: | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vmapp_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, | 
 | 					    struct its_cmd_block *cmd, | 
 | 					    struct its_cmd_desc *desc) | 
 | { | 
 | 	u32 db; | 
 |  | 
 | 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) | 
 | 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; | 
 | 	else | 
 | 		db = 1023; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMAPTI); | 
 | 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); | 
 | 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); | 
 | 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); | 
 | 	its_encode_db_phys_id(cmd, db); | 
 | 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vmapti_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	u32 db; | 
 |  | 
 | 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) | 
 | 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; | 
 | 	else | 
 | 		db = 1023; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMOVI); | 
 | 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); | 
 | 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); | 
 | 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); | 
 | 	its_encode_db_phys_id(cmd, db); | 
 | 	its_encode_db_valid(cmd, true); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vmovi_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	u64 target; | 
 |  | 
 | 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMOVP); | 
 | 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); | 
 | 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); | 
 | 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); | 
 | 	its_encode_target(cmd, target); | 
 |  | 
 | 	if (is_v4_1(its)) { | 
 | 		its_encode_db(cmd, true); | 
 | 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); | 
 | 	} | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vmovp_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vinv_cmd(struct its_node *its, | 
 | 					  struct its_cmd_block *cmd, | 
 | 					  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_vlpi_map *map; | 
 |  | 
 | 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, | 
 | 				    desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INV); | 
 | 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, map->vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vint_cmd(struct its_node *its, | 
 | 					  struct its_cmd_block *cmd, | 
 | 					  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_vlpi_map *map; | 
 |  | 
 | 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, | 
 | 				    desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INT); | 
 | 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, map->vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vclear_cmd(struct its_node *its, | 
 | 					    struct its_cmd_block *cmd, | 
 | 					    struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_vlpi_map *map; | 
 |  | 
 | 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, | 
 | 				    desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
 | 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, map->vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_invdb_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	if (WARN_ON(!is_v4_1(its))) | 
 | 		return NULL; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INVDB); | 
 | 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_invdb_cmd.vpe); | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, | 
 | 					  struct its_cmd_block *cmd, | 
 | 					  struct its_cmd_desc *desc) | 
 | { | 
 | 	if (WARN_ON(!is_v4_1(its))) | 
 | 		return NULL; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VSGI); | 
 | 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); | 
 | 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); | 
 | 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); | 
 | 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); | 
 | 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); | 
 | 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return valid_vpe(its, desc->its_vsgi_cmd.vpe); | 
 | } | 
 |  | 
 | static u64 its_cmd_ptr_to_offset(struct its_node *its, | 
 | 				 struct its_cmd_block *ptr) | 
 | { | 
 | 	return (ptr - its->cmd_base) * sizeof(*ptr); | 
 | } | 
 |  | 
 | static int its_queue_full(struct its_node *its) | 
 | { | 
 | 	int widx; | 
 | 	int ridx; | 
 |  | 
 | 	widx = its->cmd_write - its->cmd_base; | 
 | 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); | 
 |  | 
 | 	/* This is incredibly unlikely to happen, unless the ITS locks up. */ | 
 | 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct its_cmd_block *its_allocate_entry(struct its_node *its) | 
 | { | 
 | 	struct its_cmd_block *cmd; | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 |  | 
 | 	while (its_queue_full(its)) { | 
 | 		count--; | 
 | 		if (!count) { | 
 | 			pr_err_ratelimited("ITS queue not draining\n"); | 
 | 			return NULL; | 
 | 		} | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	cmd = its->cmd_write++; | 
 |  | 
 | 	/* Handle queue wrapping */ | 
 | 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) | 
 | 		its->cmd_write = its->cmd_base; | 
 |  | 
 | 	/* Clear command  */ | 
 | 	cmd->raw_cmd[0] = 0; | 
 | 	cmd->raw_cmd[1] = 0; | 
 | 	cmd->raw_cmd[2] = 0; | 
 | 	cmd->raw_cmd[3] = 0; | 
 |  | 
 | 	return cmd; | 
 | } | 
 |  | 
 | static struct its_cmd_block *its_post_commands(struct its_node *its) | 
 | { | 
 | 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); | 
 |  | 
 | 	writel_relaxed(wr, its->base + GITS_CWRITER); | 
 |  | 
 | 	return its->cmd_write; | 
 | } | 
 |  | 
 | static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) | 
 | { | 
 | 	/* | 
 | 	 * Make sure the commands written to memory are observable by | 
 | 	 * the ITS. | 
 | 	 */ | 
 | 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) | 
 | 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); | 
 | 	else | 
 | 		dsb(ishst); | 
 | } | 
 |  | 
 | static int its_wait_for_range_completion(struct its_node *its, | 
 | 					 u64	prev_idx, | 
 | 					 struct its_cmd_block *to) | 
 | { | 
 | 	u64 rd_idx, to_idx, linear_idx; | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 |  | 
 | 	/* Linearize to_idx if the command set has wrapped around */ | 
 | 	to_idx = its_cmd_ptr_to_offset(its, to); | 
 | 	if (to_idx < prev_idx) | 
 | 		to_idx += ITS_CMD_QUEUE_SZ; | 
 |  | 
 | 	linear_idx = prev_idx; | 
 |  | 
 | 	while (1) { | 
 | 		s64 delta; | 
 |  | 
 | 		rd_idx = readl_relaxed(its->base + GITS_CREADR); | 
 |  | 
 | 		/* | 
 | 		 * Compute the read pointer progress, taking the | 
 | 		 * potential wrap-around into account. | 
 | 		 */ | 
 | 		delta = rd_idx - prev_idx; | 
 | 		if (rd_idx < prev_idx) | 
 | 			delta += ITS_CMD_QUEUE_SZ; | 
 |  | 
 | 		linear_idx += delta; | 
 | 		if (linear_idx >= to_idx) | 
 | 			break; | 
 |  | 
 | 		count--; | 
 | 		if (!count) { | 
 | 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", | 
 | 					   to_idx, linear_idx); | 
 | 			return -1; | 
 | 		} | 
 | 		prev_idx = rd_idx; | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Warning, macro hell follows */ | 
 | #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\ | 
 | void name(struct its_node *its,						\ | 
 | 	  buildtype builder,						\ | 
 | 	  struct its_cmd_desc *desc)					\ | 
 | {									\ | 
 | 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\ | 
 | 	synctype *sync_obj;						\ | 
 | 	unsigned long flags;						\ | 
 | 	u64 rd_idx;							\ | 
 | 									\ | 
 | 	raw_spin_lock_irqsave(&its->lock, flags);			\ | 
 | 									\ | 
 | 	cmd = its_allocate_entry(its);					\ | 
 | 	if (!cmd) {		/* We're soooooo screewed... */		\ | 
 | 		raw_spin_unlock_irqrestore(&its->lock, flags);		\ | 
 | 		return;							\ | 
 | 	}								\ | 
 | 	sync_obj = builder(its, cmd, desc);				\ | 
 | 	its_flush_cmd(its, cmd);					\ | 
 | 									\ | 
 | 	if (sync_obj) {							\ | 
 | 		sync_cmd = its_allocate_entry(its);			\ | 
 | 		if (!sync_cmd)						\ | 
 | 			goto post;					\ | 
 | 									\ | 
 | 		buildfn(its, sync_cmd, sync_obj);			\ | 
 | 		its_flush_cmd(its, sync_cmd);				\ | 
 | 	}								\ | 
 | 									\ | 
 | post:									\ | 
 | 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\ | 
 | 	next_cmd = its_post_commands(its);				\ | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags);			\ | 
 | 									\ | 
 | 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\ | 
 | 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\ | 
 | } | 
 |  | 
 | static void its_build_sync_cmd(struct its_node *its, | 
 | 			       struct its_cmd_block *sync_cmd, | 
 | 			       struct its_collection *sync_col) | 
 | { | 
 | 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC); | 
 | 	its_encode_target(sync_cmd, sync_col->target_address); | 
 |  | 
 | 	its_fixup_cmd(sync_cmd); | 
 | } | 
 |  | 
 | static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, | 
 | 			     struct its_collection, its_build_sync_cmd) | 
 |  | 
 | static void its_build_vsync_cmd(struct its_node *its, | 
 | 				struct its_cmd_block *sync_cmd, | 
 | 				struct its_vpe *sync_vpe) | 
 | { | 
 | 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); | 
 | 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); | 
 |  | 
 | 	its_fixup_cmd(sync_cmd); | 
 | } | 
 |  | 
 | static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, | 
 | 			     struct its_vpe, its_build_vsync_cmd) | 
 |  | 
 | static void its_send_int(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_int_cmd.dev = dev; | 
 | 	desc.its_int_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_int_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_clear(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_clear_cmd.dev = dev; | 
 | 	desc.its_clear_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_clear_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_inv(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_inv_cmd.dev = dev; | 
 | 	desc.its_inv_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_inv_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapd(struct its_device *dev, int valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapd_cmd.dev = dev; | 
 | 	desc.its_mapd_cmd.valid = !!valid; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapc(struct its_node *its, struct its_collection *col, | 
 | 			  int valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapc_cmd.col = col; | 
 | 	desc.its_mapc_cmd.valid = !!valid; | 
 |  | 
 | 	its_send_single_command(its, its_build_mapc_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapti_cmd.dev = dev; | 
 | 	desc.its_mapti_cmd.phys_id = irq_id; | 
 | 	desc.its_mapti_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_movi(struct its_device *dev, | 
 | 			  struct its_collection *col, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_movi_cmd.dev = dev; | 
 | 	desc.its_movi_cmd.col = col; | 
 | 	desc.its_movi_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_movi_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_discard(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_discard_cmd.dev = dev; | 
 | 	desc.its_discard_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_discard_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_invall(struct its_node *its, struct its_collection *col) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_invall_cmd.col = col; | 
 |  | 
 | 	its_send_single_command(its, its_build_invall_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmapti(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmapti_cmd.vpe = map->vpe; | 
 | 	desc.its_vmapti_cmd.dev = dev; | 
 | 	desc.its_vmapti_cmd.virt_id = map->vintid; | 
 | 	desc.its_vmapti_cmd.event_id = id; | 
 | 	desc.its_vmapti_cmd.db_enabled = map->db_enabled; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmovi(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmovi_cmd.vpe = map->vpe; | 
 | 	desc.its_vmovi_cmd.dev = dev; | 
 | 	desc.its_vmovi_cmd.event_id = id; | 
 | 	desc.its_vmovi_cmd.db_enabled = map->db_enabled; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmapp(struct its_node *its, | 
 | 			   struct its_vpe *vpe, bool valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmapp_cmd.vpe = vpe; | 
 | 	desc.its_vmapp_cmd.valid = valid; | 
 | 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; | 
 |  | 
 | 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmovp(struct its_vpe *vpe) | 
 | { | 
 | 	struct its_cmd_desc desc = {}; | 
 | 	struct its_node *its; | 
 | 	unsigned long flags; | 
 | 	int col_id = vpe->col_idx; | 
 |  | 
 | 	desc.its_vmovp_cmd.vpe = vpe; | 
 |  | 
 | 	if (!its_list_map) { | 
 | 		its = list_first_entry(&its_nodes, struct its_node, entry); | 
 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Yet another marvel of the architecture. If using the | 
 | 	 * its_list "feature", we need to make sure that all ITSs | 
 | 	 * receive all VMOVP commands in the same order. The only way | 
 | 	 * to guarantee this is to make vmovp a serialization point. | 
 | 	 * | 
 | 	 * Wall <-- Head. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; | 
 | 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); | 
 |  | 
 | 	/* Emit VMOVPs */ | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		if (!require_its_list_vmovp(vpe->its_vm, its)) | 
 | 			continue; | 
 |  | 
 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vinvall_cmd.vpe = vpe; | 
 | 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vinv(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	/* | 
 | 	 * There is no real VINV command. This is just a normal INV, | 
 | 	 * with a VSYNC instead of a SYNC. | 
 | 	 */ | 
 | 	desc.its_inv_cmd.dev = dev; | 
 | 	desc.its_inv_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vint(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	/* | 
 | 	 * There is no real VINT command. This is just a normal INT, | 
 | 	 * with a VSYNC instead of a SYNC. | 
 | 	 */ | 
 | 	desc.its_int_cmd.dev = dev; | 
 | 	desc.its_int_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vclear(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	/* | 
 | 	 * There is no real VCLEAR command. This is just a normal CLEAR, | 
 | 	 * with a VSYNC instead of a SYNC. | 
 | 	 */ | 
 | 	desc.its_clear_cmd.dev = dev; | 
 | 	desc.its_clear_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_invdb_cmd.vpe = vpe; | 
 | 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc); | 
 | } | 
 |  | 
 | /* | 
 |  * irqchip functions - assumes MSI, mostly. | 
 |  */ | 
 | static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) | 
 | { | 
 | 	struct its_vlpi_map *map = get_vlpi_map(d); | 
 | 	irq_hw_number_t hwirq; | 
 | 	void *va; | 
 | 	u8 *cfg; | 
 |  | 
 | 	if (map) { | 
 | 		va = page_address(map->vm->vprop_page); | 
 | 		hwirq = map->vintid; | 
 |  | 
 | 		/* Remember the updated property */ | 
 | 		map->properties &= ~clr; | 
 | 		map->properties |= set | LPI_PROP_GROUP1; | 
 | 	} else { | 
 | 		va = gic_rdists->prop_table_va; | 
 | 		hwirq = d->hwirq; | 
 | 	} | 
 |  | 
 | 	cfg = va + hwirq - 8192; | 
 | 	*cfg &= ~clr; | 
 | 	*cfg |= set | LPI_PROP_GROUP1; | 
 |  | 
 | 	/* | 
 | 	 * Make the above write visible to the redistributors. | 
 | 	 * And yes, we're flushing exactly: One. Single. Byte. | 
 | 	 * Humpf... | 
 | 	 */ | 
 | 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) | 
 | 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); | 
 | 	else | 
 | 		dsb(ishst); | 
 | } | 
 |  | 
 | static void wait_for_syncr(void __iomem *rdbase) | 
 | { | 
 | 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | static void direct_lpi_inv(struct irq_data *d) | 
 | { | 
 | 	struct its_vlpi_map *map = get_vlpi_map(d); | 
 | 	void __iomem *rdbase; | 
 | 	unsigned long flags; | 
 | 	u64 val; | 
 | 	int cpu; | 
 |  | 
 | 	if (map) { | 
 | 		struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 		WARN_ON(!is_v4_1(its_dev->its)); | 
 |  | 
 | 		val  = GICR_INVLPIR_V; | 
 | 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); | 
 | 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); | 
 | 	} else { | 
 | 		val = d->hwirq; | 
 | 	} | 
 |  | 
 | 	/* Target the redistributor this LPI is currently routed to */ | 
 | 	cpu = irq_to_cpuid_lock(d, &flags); | 
 | 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; | 
 | 	gic_write_lpir(val, rdbase + GICR_INVLPIR); | 
 |  | 
 | 	wait_for_syncr(rdbase); | 
 | 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	irq_to_cpuid_unlock(d, flags); | 
 | } | 
 |  | 
 | static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	lpi_write_config(d, clr, set); | 
 | 	if (gic_rdists->has_direct_lpi && | 
 | 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) | 
 | 		direct_lpi_inv(d); | 
 | 	else if (!irqd_is_forwarded_to_vcpu(d)) | 
 | 		its_send_inv(its_dev, its_get_event_id(d)); | 
 | 	else | 
 | 		its_send_vinv(its_dev, its_get_event_id(d)); | 
 | } | 
 |  | 
 | static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	struct its_vlpi_map *map; | 
 |  | 
 | 	/* | 
 | 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do | 
 | 	 * here. | 
 | 	 */ | 
 | 	if (is_v4_1(its_dev->its)) | 
 | 		return; | 
 |  | 
 | 	map = dev_event_to_vlpi_map(its_dev, event); | 
 |  | 
 | 	if (map->db_enabled == enable) | 
 | 		return; | 
 |  | 
 | 	map->db_enabled = enable; | 
 |  | 
 | 	/* | 
 | 	 * More fun with the architecture: | 
 | 	 * | 
 | 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI | 
 | 	 * value or to 1023, depending on the enable bit. But that | 
 | 	 * would be issuing a mapping for an /existing/ DevID+EventID | 
 | 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI | 
 | 	 * to the /same/ vPE, using this opportunity to adjust the | 
 | 	 * doorbell. Mouahahahaha. We loves it, Precious. | 
 | 	 */ | 
 | 	its_send_vmovi(its_dev, event); | 
 | } | 
 |  | 
 | static void its_mask_irq(struct irq_data *d) | 
 | { | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		its_vlpi_set_doorbell(d, false); | 
 |  | 
 | 	lpi_update_config(d, LPI_PROP_ENABLED, 0); | 
 | } | 
 |  | 
 | static void its_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		its_vlpi_set_doorbell(d, true); | 
 |  | 
 | 	lpi_update_config(d, 0, LPI_PROP_ENABLED); | 
 | } | 
 |  | 
 | static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) | 
 | { | 
 | 	if (irqd_affinity_is_managed(d)) | 
 | 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
 |  | 
 | 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
 | } | 
 |  | 
 | static void its_inc_lpi_count(struct irq_data *d, int cpu) | 
 | { | 
 | 	if (irqd_affinity_is_managed(d)) | 
 | 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
 | 	else | 
 | 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
 | } | 
 |  | 
 | static void its_dec_lpi_count(struct irq_data *d, int cpu) | 
 | { | 
 | 	if (irqd_affinity_is_managed(d)) | 
 | 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
 | 	else | 
 | 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
 | } | 
 |  | 
 | static unsigned int cpumask_pick_least_loaded(struct irq_data *d, | 
 | 					      const struct cpumask *cpu_mask) | 
 | { | 
 | 	unsigned int cpu = nr_cpu_ids, tmp; | 
 | 	int count = S32_MAX; | 
 |  | 
 | 	for_each_cpu(tmp, cpu_mask) { | 
 | 		int this_count = its_read_lpi_count(d, tmp); | 
 | 		if (this_count < count) { | 
 | 			cpu = tmp; | 
 | 		        count = this_count; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * As suggested by Thomas Gleixner in: | 
 |  * https://lore.kernel.org/r/[email protected] | 
 |  */ | 
 | static int its_select_cpu(struct irq_data *d, | 
 | 			  const struct cpumask *aff_mask) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	cpumask_var_t tmpmask; | 
 | 	int cpu, node; | 
 |  | 
 | 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	node = its_dev->its->numa_node; | 
 |  | 
 | 	if (!irqd_affinity_is_managed(d)) { | 
 | 		/* First try the NUMA node */ | 
 | 		if (node != NUMA_NO_NODE) { | 
 | 			/* | 
 | 			 * Try the intersection of the affinity mask and the | 
 | 			 * node mask (and the online mask, just to be safe). | 
 | 			 */ | 
 | 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); | 
 | 			cpumask_and(tmpmask, tmpmask, cpu_online_mask); | 
 |  | 
 | 			/* | 
 | 			 * Ideally, we would check if the mask is empty, and | 
 | 			 * try again on the full node here. | 
 | 			 * | 
 | 			 * But it turns out that the way ACPI describes the | 
 | 			 * affinity for ITSs only deals about memory, and | 
 | 			 * not target CPUs, so it cannot describe a single | 
 | 			 * ITS placed next to two NUMA nodes. | 
 | 			 * | 
 | 			 * Instead, just fallback on the online mask. This | 
 | 			 * diverges from Thomas' suggestion above. | 
 | 			 */ | 
 | 			cpu = cpumask_pick_least_loaded(d, tmpmask); | 
 | 			if (cpu < nr_cpu_ids) | 
 | 				goto out; | 
 |  | 
 | 			/* If we can't cross sockets, give up */ | 
 | 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) | 
 | 				goto out; | 
 |  | 
 | 			/* If the above failed, expand the search */ | 
 | 		} | 
 |  | 
 | 		/* Try the intersection of the affinity and online masks */ | 
 | 		cpumask_and(tmpmask, aff_mask, cpu_online_mask); | 
 |  | 
 | 		/* If that doesn't fly, the online mask is the last resort */ | 
 | 		if (cpumask_empty(tmpmask)) | 
 | 			cpumask_copy(tmpmask, cpu_online_mask); | 
 |  | 
 | 		cpu = cpumask_pick_least_loaded(d, tmpmask); | 
 | 	} else { | 
 | 		cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask); | 
 |  | 
 | 		/* If we cannot cross sockets, limit the search to that node */ | 
 | 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && | 
 | 		    node != NUMA_NO_NODE) | 
 | 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); | 
 |  | 
 | 		cpu = cpumask_pick_least_loaded(d, tmpmask); | 
 | 	} | 
 | out: | 
 | 	free_cpumask_var(tmpmask); | 
 |  | 
 | 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, | 
 | 			    bool force) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_collection *target_col; | 
 | 	u32 id = its_get_event_id(d); | 
 | 	int cpu, prev_cpu; | 
 |  | 
 | 	/* A forwarded interrupt should use irq_set_vcpu_affinity */ | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	prev_cpu = its_dev->event_map.col_map[id]; | 
 | 	its_dec_lpi_count(d, prev_cpu); | 
 |  | 
 | 	if (!force) | 
 | 		cpu = its_select_cpu(d, mask_val); | 
 | 	else | 
 | 		cpu = cpumask_pick_least_loaded(d, mask_val); | 
 |  | 
 | 	if (cpu < 0 || cpu >= nr_cpu_ids) | 
 | 		goto err; | 
 |  | 
 | 	/* don't set the affinity when the target cpu is same as current one */ | 
 | 	if (cpu != prev_cpu) { | 
 | 		target_col = &its_dev->its->collections[cpu]; | 
 | 		its_send_movi(its_dev, target_col, id); | 
 | 		its_dev->event_map.col_map[id] = cpu; | 
 | 		irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 	} | 
 |  | 
 | 	its_inc_lpi_count(d, cpu); | 
 |  | 
 | 	return IRQ_SET_MASK_OK_DONE; | 
 |  | 
 | err: | 
 | 	its_inc_lpi_count(d, prev_cpu); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static u64 its_irq_get_msi_base(struct its_device *its_dev) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	return its->phys_base + GITS_TRANSLATER; | 
 | } | 
 |  | 
 | static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 | 	u64 addr; | 
 |  | 
 | 	its = its_dev->its; | 
 | 	addr = its->get_msi_base(its_dev); | 
 |  | 
 | 	msg->address_lo		= lower_32_bits(addr); | 
 | 	msg->address_hi		= upper_32_bits(addr); | 
 | 	msg->data		= its_get_event_id(d); | 
 |  | 
 | 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); | 
 | } | 
 |  | 
 | static int its_irq_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, | 
 | 				     bool state) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 |  | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 		if (state) | 
 | 			its_send_vint(its_dev, event); | 
 | 		else | 
 | 			its_send_vclear(its_dev, event); | 
 | 	} else { | 
 | 		if (state) | 
 | 			its_send_int(its_dev, event); | 
 | 		else | 
 | 			its_send_clear(its_dev, event); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_irq_retrigger(struct irq_data *d) | 
 | { | 
 | 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Two favourable cases: | 
 |  * | 
 |  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times | 
 |  *     for vSGI delivery | 
 |  * | 
 |  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough | 
 |  *     and we're better off mapping all VPEs always | 
 |  * | 
 |  * If neither (a) nor (b) is true, then we map vPEs on demand. | 
 |  * | 
 |  */ | 
 | static bool gic_requires_eager_mapping(void) | 
 | { | 
 | 	if (!its_list_map || gic_rdists->has_rvpeid) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void its_map_vm(struct its_node *its, struct its_vm *vm) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (gic_requires_eager_mapping()) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If the VM wasn't mapped yet, iterate over the vpes and get | 
 | 	 * them mapped now. | 
 | 	 */ | 
 | 	vm->vlpi_count[its->list_nr]++; | 
 |  | 
 | 	if (vm->vlpi_count[its->list_nr] == 1) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < vm->nr_vpes; i++) { | 
 | 			struct its_vpe *vpe = vm->vpes[i]; | 
 | 			struct irq_data *d = irq_get_irq_data(vpe->irq); | 
 |  | 
 | 			/* Map the VPE to the first possible CPU */ | 
 | 			vpe->col_idx = cpumask_first(cpu_online_mask); | 
 | 			its_send_vmapp(its, vpe, true); | 
 | 			its_send_vinvall(its, vpe); | 
 | 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static void its_unmap_vm(struct its_node *its, struct its_vm *vm) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Not using the ITS list? Everything is always mapped. */ | 
 | 	if (gic_requires_eager_mapping()) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	if (!--vm->vlpi_count[its->list_nr]) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < vm->nr_vpes; i++) | 
 | 			its_send_vmapp(its, vm->vpes[i], false); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!info->map) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	if (!its_dev->event_map.vm) { | 
 | 		struct its_vlpi_map *maps; | 
 |  | 
 | 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), | 
 | 			       GFP_ATOMIC); | 
 | 		if (!maps) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		its_dev->event_map.vm = info->map->vm; | 
 | 		its_dev->event_map.vlpi_maps = maps; | 
 | 	} else if (its_dev->event_map.vm != info->map->vm) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Get our private copy of the mapping information */ | 
 | 	its_dev->event_map.vlpi_maps[event] = *info->map; | 
 |  | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 		/* Already mapped, move it around */ | 
 | 		its_send_vmovi(its_dev, event); | 
 | 	} else { | 
 | 		/* Ensure all the VPEs are mapped on this ITS */ | 
 | 		its_map_vm(its_dev->its, info->map->vm); | 
 |  | 
 | 		/* | 
 | 		 * Flag the interrupt as forwarded so that we can | 
 | 		 * start poking the virtual property table. | 
 | 		 */ | 
 | 		irqd_set_forwarded_to_vcpu(d); | 
 |  | 
 | 		/* Write out the property to the prop table */ | 
 | 		lpi_write_config(d, 0xff, info->map->properties); | 
 |  | 
 | 		/* Drop the physical mapping */ | 
 | 		its_send_discard(its_dev, event); | 
 |  | 
 | 		/* and install the virtual one */ | 
 | 		its_send_vmapti(its_dev, event); | 
 |  | 
 | 		/* Increment the number of VLPIs */ | 
 | 		its_dev->event_map.nr_vlpis++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_vlpi_map *map; | 
 | 	int ret = 0; | 
 |  | 
 | 	raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	map = get_vlpi_map(d); | 
 |  | 
 | 	if (!its_dev->event_map.vm || !map) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Copy our mapping information to the incoming request */ | 
 | 	*info->map = *map; | 
 |  | 
 | out: | 
 | 	raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_unmap(struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int ret = 0; | 
 |  | 
 | 	raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Drop the virtual mapping */ | 
 | 	its_send_discard(its_dev, event); | 
 |  | 
 | 	/* and restore the physical one */ | 
 | 	irqd_clr_forwarded_to_vcpu(d); | 
 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | | 
 | 				    LPI_PROP_ENABLED | | 
 | 				    LPI_PROP_GROUP1)); | 
 |  | 
 | 	/* Potentially unmap the VM from this ITS */ | 
 | 	its_unmap_vm(its_dev->its, its_dev->event_map.vm); | 
 |  | 
 | 	/* | 
 | 	 * Drop the refcount and make the device available again if | 
 | 	 * this was the last VLPI. | 
 | 	 */ | 
 | 	if (!--its_dev->event_map.nr_vlpis) { | 
 | 		its_dev->event_map.vm = NULL; | 
 | 		kfree(its_dev->event_map.vlpi_maps); | 
 | 	} | 
 |  | 
 | out: | 
 | 	raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) | 
 | 		lpi_update_config(d, 0xff, info->config); | 
 | 	else | 
 | 		lpi_write_config(d, 0xff, info->config); | 
 | 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	/* Need a v4 ITS */ | 
 | 	if (!is_v4(its_dev->its)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Unmap request? */ | 
 | 	if (!info) | 
 | 		return its_vlpi_unmap(d); | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case MAP_VLPI: | 
 | 		return its_vlpi_map(d, info); | 
 |  | 
 | 	case GET_VLPI: | 
 | 		return its_vlpi_get(d, info); | 
 |  | 
 | 	case PROP_UPDATE_VLPI: | 
 | 	case PROP_UPDATE_AND_INV_VLPI: | 
 | 		return its_vlpi_prop_update(d, info); | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static struct irq_chip its_irq_chip = { | 
 | 	.name			= "ITS", | 
 | 	.irq_mask		= its_mask_irq, | 
 | 	.irq_unmask		= its_unmask_irq, | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 	.irq_set_affinity	= its_set_affinity, | 
 | 	.irq_compose_msi_msg	= its_irq_compose_msi_msg, | 
 | 	.irq_set_irqchip_state	= its_irq_set_irqchip_state, | 
 | 	.irq_retrigger		= its_irq_retrigger, | 
 | 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity, | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * How we allocate LPIs: | 
 |  * | 
 |  * lpi_range_list contains ranges of LPIs that are to available to | 
 |  * allocate from. To allocate LPIs, just pick the first range that | 
 |  * fits the required allocation, and reduce it by the required | 
 |  * amount. Once empty, remove the range from the list. | 
 |  * | 
 |  * To free a range of LPIs, add a free range to the list, sort it and | 
 |  * merge the result if the new range happens to be adjacent to an | 
 |  * already free block. | 
 |  * | 
 |  * The consequence of the above is that allocation is cost is low, but | 
 |  * freeing is expensive. We assumes that freeing rarely occurs. | 
 |  */ | 
 | #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */ | 
 |  | 
 | static DEFINE_MUTEX(lpi_range_lock); | 
 | static LIST_HEAD(lpi_range_list); | 
 |  | 
 | struct lpi_range { | 
 | 	struct list_head	entry; | 
 | 	u32			base_id; | 
 | 	u32			span; | 
 | }; | 
 |  | 
 | static struct lpi_range *mk_lpi_range(u32 base, u32 span) | 
 | { | 
 | 	struct lpi_range *range; | 
 |  | 
 | 	range = kmalloc(sizeof(*range), GFP_KERNEL); | 
 | 	if (range) { | 
 | 		range->base_id = base; | 
 | 		range->span = span; | 
 | 	} | 
 |  | 
 | 	return range; | 
 | } | 
 |  | 
 | static int alloc_lpi_range(u32 nr_lpis, u32 *base) | 
 | { | 
 | 	struct lpi_range *range, *tmp; | 
 | 	int err = -ENOSPC; | 
 |  | 
 | 	mutex_lock(&lpi_range_lock); | 
 |  | 
 | 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { | 
 | 		if (range->span >= nr_lpis) { | 
 | 			*base = range->base_id; | 
 | 			range->base_id += nr_lpis; | 
 | 			range->span -= nr_lpis; | 
 |  | 
 | 			if (range->span == 0) { | 
 | 				list_del(&range->entry); | 
 | 				kfree(range); | 
 | 			} | 
 |  | 
 | 			err = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&lpi_range_lock); | 
 |  | 
 | 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) | 
 | { | 
 | 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) | 
 | 		return; | 
 | 	if (a->base_id + a->span != b->base_id) | 
 | 		return; | 
 | 	b->base_id = a->base_id; | 
 | 	b->span += a->span; | 
 | 	list_del(&a->entry); | 
 | 	kfree(a); | 
 | } | 
 |  | 
 | static int free_lpi_range(u32 base, u32 nr_lpis) | 
 | { | 
 | 	struct lpi_range *new, *old; | 
 |  | 
 | 	new = mk_lpi_range(base, nr_lpis); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_lock(&lpi_range_lock); | 
 |  | 
 | 	list_for_each_entry_reverse(old, &lpi_range_list, entry) { | 
 | 		if (old->base_id < base) | 
 | 			break; | 
 | 	} | 
 | 	/* | 
 | 	 * old is the last element with ->base_id smaller than base, | 
 | 	 * so new goes right after it. If there are no elements with | 
 | 	 * ->base_id smaller than base, &old->entry ends up pointing | 
 | 	 * at the head of the list, and inserting new it the start of | 
 | 	 * the list is the right thing to do in that case as well. | 
 | 	 */ | 
 | 	list_add(&new->entry, &old->entry); | 
 | 	/* | 
 | 	 * Now check if we can merge with the preceding and/or | 
 | 	 * following ranges. | 
 | 	 */ | 
 | 	merge_lpi_ranges(old, new); | 
 | 	merge_lpi_ranges(new, list_next_entry(new, entry)); | 
 |  | 
 | 	mutex_unlock(&lpi_range_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init its_lpi_init(u32 id_bits) | 
 | { | 
 | 	u32 lpis = (1UL << id_bits) - 8192; | 
 | 	u32 numlpis; | 
 | 	int err; | 
 |  | 
 | 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); | 
 |  | 
 | 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { | 
 | 		lpis = numlpis; | 
 | 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", | 
 | 			lpis); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initializing the allocator is just the same as freeing the | 
 | 	 * full range of LPIs. | 
 | 	 */ | 
 | 	err = free_lpi_range(8192, lpis); | 
 | 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); | 
 | 	return err; | 
 | } | 
 |  | 
 | static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) | 
 | { | 
 | 	unsigned long *bitmap = NULL; | 
 | 	int err = 0; | 
 |  | 
 | 	do { | 
 | 		err = alloc_lpi_range(nr_irqs, base); | 
 | 		if (!err) | 
 | 			break; | 
 |  | 
 | 		nr_irqs /= 2; | 
 | 	} while (nr_irqs > 0); | 
 |  | 
 | 	if (!nr_irqs) | 
 | 		err = -ENOSPC; | 
 |  | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); | 
 | 	if (!bitmap) | 
 | 		goto out; | 
 |  | 
 | 	*nr_ids = nr_irqs; | 
 |  | 
 | out: | 
 | 	if (!bitmap) | 
 | 		*base = *nr_ids = 0; | 
 |  | 
 | 	return bitmap; | 
 | } | 
 |  | 
 | static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) | 
 | { | 
 | 	WARN_ON(free_lpi_range(base, nr_ids)); | 
 | 	kfree(bitmap); | 
 | } | 
 |  | 
 | static void gic_reset_prop_table(void *va) | 
 | { | 
 | 	/* Priority 0xa0, Group-1, disabled */ | 
 | 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); | 
 |  | 
 | 	/* Make sure the GIC will observe the written configuration */ | 
 | 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); | 
 | } | 
 |  | 
 | static struct page *its_allocate_prop_table(gfp_t gfp_flags) | 
 | { | 
 | 	struct page *prop_page; | 
 |  | 
 | 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); | 
 | 	if (!prop_page) | 
 | 		return NULL; | 
 |  | 
 | 	gic_reset_prop_table(page_address(prop_page)); | 
 |  | 
 | 	return prop_page; | 
 | } | 
 |  | 
 | static void its_free_prop_table(struct page *prop_page) | 
 | { | 
 | 	free_pages((unsigned long)page_address(prop_page), | 
 | 		   get_order(LPI_PROPBASE_SZ)); | 
 | } | 
 |  | 
 | static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) | 
 | { | 
 | 	phys_addr_t start, end, addr_end; | 
 | 	u64 i; | 
 |  | 
 | 	/* | 
 | 	 * We don't bother checking for a kdump kernel as by | 
 | 	 * construction, the LPI tables are out of this kernel's | 
 | 	 * memory map. | 
 | 	 */ | 
 | 	if (is_kdump_kernel()) | 
 | 		return true; | 
 |  | 
 | 	addr_end = addr + size - 1; | 
 |  | 
 | 	for_each_reserved_mem_range(i, &start, &end) { | 
 | 		if (addr >= start && addr_end <= end) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* Not found, not a good sign... */ | 
 | 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", | 
 | 		&addr, &addr_end); | 
 | 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int gic_reserve_range(phys_addr_t addr, unsigned long size) | 
 | { | 
 | 	if (efi_enabled(EFI_CONFIG_TABLES)) | 
 | 		return efi_mem_reserve_persistent(addr, size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init its_setup_lpi_prop_table(void) | 
 | { | 
 | 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { | 
 | 		u64 val; | 
 |  | 
 | 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); | 
 | 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; | 
 |  | 
 | 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); | 
 | 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, | 
 | 						     LPI_PROPBASE_SZ, | 
 | 						     MEMREMAP_WB); | 
 | 		gic_reset_prop_table(gic_rdists->prop_table_va); | 
 | 	} else { | 
 | 		struct page *page; | 
 |  | 
 | 		lpi_id_bits = min_t(u32, | 
 | 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), | 
 | 				    ITS_MAX_LPI_NRBITS); | 
 | 		page = its_allocate_prop_table(GFP_NOWAIT); | 
 | 		if (!page) { | 
 | 			pr_err("Failed to allocate PROPBASE\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		gic_rdists->prop_table_pa = page_to_phys(page); | 
 | 		gic_rdists->prop_table_va = page_address(page); | 
 | 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, | 
 | 					  LPI_PROPBASE_SZ)); | 
 | 	} | 
 |  | 
 | 	pr_info("GICv3: using LPI property table @%pa\n", | 
 | 		&gic_rdists->prop_table_pa); | 
 |  | 
 | 	return its_lpi_init(lpi_id_bits); | 
 | } | 
 |  | 
 | static const char *its_base_type_string[] = { | 
 | 	[GITS_BASER_TYPE_DEVICE]	= "Devices", | 
 | 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs", | 
 | 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)", | 
 | 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections", | 
 | 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)", | 
 | 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)", | 
 | 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)", | 
 | }; | 
 |  | 
 | static u64 its_read_baser(struct its_node *its, struct its_baser *baser) | 
 | { | 
 | 	u32 idx = baser - its->tables; | 
 |  | 
 | 	return gits_read_baser(its->base + GITS_BASER + (idx << 3)); | 
 | } | 
 |  | 
 | static void its_write_baser(struct its_node *its, struct its_baser *baser, | 
 | 			    u64 val) | 
 | { | 
 | 	u32 idx = baser - its->tables; | 
 |  | 
 | 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); | 
 | 	baser->val = its_read_baser(its, baser); | 
 | } | 
 |  | 
 | static int its_setup_baser(struct its_node *its, struct its_baser *baser, | 
 | 			   u64 cache, u64 shr, u32 order, bool indirect) | 
 | { | 
 | 	u64 val = its_read_baser(its, baser); | 
 | 	u64 esz = GITS_BASER_ENTRY_SIZE(val); | 
 | 	u64 type = GITS_BASER_TYPE(val); | 
 | 	u64 baser_phys, tmp; | 
 | 	u32 alloc_pages, psz; | 
 | 	struct page *page; | 
 | 	void *base; | 
 |  | 
 | 	psz = baser->psz; | 
 | 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); | 
 | 	if (alloc_pages > GITS_BASER_PAGES_MAX) { | 
 | 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", | 
 | 			&its->phys_base, its_base_type_string[type], | 
 | 			alloc_pages, GITS_BASER_PAGES_MAX); | 
 | 		alloc_pages = GITS_BASER_PAGES_MAX; | 
 | 		order = get_order(GITS_BASER_PAGES_MAX * psz); | 
 | 	} | 
 |  | 
 | 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	base = (void *)page_address(page); | 
 | 	baser_phys = virt_to_phys(base); | 
 |  | 
 | 	/* Check if the physical address of the memory is above 48bits */ | 
 | 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { | 
 |  | 
 | 		/* 52bit PA is supported only when PageSize=64K */ | 
 | 		if (psz != SZ_64K) { | 
 | 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz); | 
 | 			free_pages((unsigned long)base, order); | 
 | 			return -ENXIO; | 
 | 		} | 
 |  | 
 | 		/* Convert 52bit PA to 48bit field */ | 
 | 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); | 
 | 	} | 
 |  | 
 | retry_baser: | 
 | 	val = (baser_phys					 | | 
 | 		(type << GITS_BASER_TYPE_SHIFT)			 | | 
 | 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 | | 
 | 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 | | 
 | 		cache						 | | 
 | 		shr						 | | 
 | 		GITS_BASER_VALID); | 
 |  | 
 | 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0; | 
 |  | 
 | 	switch (psz) { | 
 | 	case SZ_4K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_4K; | 
 | 		break; | 
 | 	case SZ_16K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_16K; | 
 | 		break; | 
 | 	case SZ_64K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_64K; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	its_write_baser(its, baser, val); | 
 | 	tmp = baser->val; | 
 |  | 
 | 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { | 
 | 		/* | 
 | 		 * Shareability didn't stick. Just use | 
 | 		 * whatever the read reported, which is likely | 
 | 		 * to be the only thing this redistributor | 
 | 		 * supports. If that's zero, make it | 
 | 		 * non-cacheable as well. | 
 | 		 */ | 
 | 		shr = tmp & GITS_BASER_SHAREABILITY_MASK; | 
 | 		if (!shr) { | 
 | 			cache = GITS_BASER_nC; | 
 | 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); | 
 | 		} | 
 | 		goto retry_baser; | 
 | 	} | 
 |  | 
 | 	if (val != tmp) { | 
 | 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", | 
 | 		       &its->phys_base, its_base_type_string[type], | 
 | 		       val, tmp); | 
 | 		free_pages((unsigned long)base, order); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	baser->order = order; | 
 | 	baser->base = base; | 
 | 	baser->psz = psz; | 
 | 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; | 
 |  | 
 | 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", | 
 | 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), | 
 | 		its_base_type_string[type], | 
 | 		(unsigned long)virt_to_phys(base), | 
 | 		indirect ? "indirect" : "flat", (int)esz, | 
 | 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool its_parse_indirect_baser(struct its_node *its, | 
 | 				     struct its_baser *baser, | 
 | 				     u32 *order, u32 ids) | 
 | { | 
 | 	u64 tmp = its_read_baser(its, baser); | 
 | 	u64 type = GITS_BASER_TYPE(tmp); | 
 | 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp); | 
 | 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; | 
 | 	u32 new_order = *order; | 
 | 	u32 psz = baser->psz; | 
 | 	bool indirect = false; | 
 |  | 
 | 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */ | 
 | 	if ((esz << ids) > (psz * 2)) { | 
 | 		/* | 
 | 		 * Find out whether hw supports a single or two-level table by | 
 | 		 * table by reading bit at offset '62' after writing '1' to it. | 
 | 		 */ | 
 | 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT); | 
 | 		indirect = !!(baser->val & GITS_BASER_INDIRECT); | 
 |  | 
 | 		if (indirect) { | 
 | 			/* | 
 | 			 * The size of the lvl2 table is equal to ITS page size | 
 | 			 * which is 'psz'. For computing lvl1 table size, | 
 | 			 * subtract ID bits that sparse lvl2 table from 'ids' | 
 | 			 * which is reported by ITS hardware times lvl1 table | 
 | 			 * entry size. | 
 | 			 */ | 
 | 			ids -= ilog2(psz / (int)esz); | 
 | 			esz = GITS_LVL1_ENTRY_SIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Allocate as many entries as required to fit the | 
 | 	 * range of device IDs that the ITS can grok... The ID | 
 | 	 * space being incredibly sparse, this results in a | 
 | 	 * massive waste of memory if two-level device table | 
 | 	 * feature is not supported by hardware. | 
 | 	 */ | 
 | 	new_order = max_t(u32, get_order(esz << ids), new_order); | 
 | 	if (new_order >= MAX_ORDER) { | 
 | 		new_order = MAX_ORDER - 1; | 
 | 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); | 
 | 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", | 
 | 			&its->phys_base, its_base_type_string[type], | 
 | 			device_ids(its), ids); | 
 | 	} | 
 |  | 
 | 	*order = new_order; | 
 |  | 
 | 	return indirect; | 
 | } | 
 |  | 
 | static u32 compute_common_aff(u64 val) | 
 | { | 
 | 	u32 aff, clpiaff; | 
 |  | 
 | 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val); | 
 | 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); | 
 |  | 
 | 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); | 
 | } | 
 |  | 
 | static u32 compute_its_aff(struct its_node *its) | 
 | { | 
 | 	u64 val; | 
 | 	u32 svpet; | 
 |  | 
 | 	/* | 
 | 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute | 
 | 	 * the resulting affinity. We then use that to see if this match | 
 | 	 * our own affinity. | 
 | 	 */ | 
 | 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); | 
 | 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); | 
 | 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); | 
 | 	return compute_common_aff(val); | 
 | } | 
 |  | 
 | static struct its_node *find_sibling_its(struct its_node *cur_its) | 
 | { | 
 | 	struct its_node *its; | 
 | 	u32 aff; | 
 |  | 
 | 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) | 
 | 		return NULL; | 
 |  | 
 | 	aff = compute_its_aff(cur_its); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		u64 baser; | 
 |  | 
 | 		if (!is_v4_1(its) || its == cur_its) | 
 | 			continue; | 
 |  | 
 | 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) | 
 | 			continue; | 
 |  | 
 | 		if (aff != compute_its_aff(its)) | 
 | 			continue; | 
 |  | 
 | 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ | 
 | 		baser = its->tables[2].val; | 
 | 		if (!(baser & GITS_BASER_VALID)) | 
 | 			continue; | 
 |  | 
 | 		return its; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void its_free_tables(struct its_node *its) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		if (its->tables[i].base) { | 
 | 			free_pages((unsigned long)its->tables[i].base, | 
 | 				   its->tables[i].order); | 
 | 			its->tables[i].base = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) | 
 | { | 
 | 	u64 psz = SZ_64K; | 
 |  | 
 | 	while (psz) { | 
 | 		u64 val, gpsz; | 
 |  | 
 | 		val = its_read_baser(its, baser); | 
 | 		val &= ~GITS_BASER_PAGE_SIZE_MASK; | 
 |  | 
 | 		switch (psz) { | 
 | 		case SZ_64K: | 
 | 			gpsz = GITS_BASER_PAGE_SIZE_64K; | 
 | 			break; | 
 | 		case SZ_16K: | 
 | 			gpsz = GITS_BASER_PAGE_SIZE_16K; | 
 | 			break; | 
 | 		case SZ_4K: | 
 | 		default: | 
 | 			gpsz = GITS_BASER_PAGE_SIZE_4K; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; | 
 |  | 
 | 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); | 
 | 		its_write_baser(its, baser, val); | 
 |  | 
 | 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) | 
 | 			break; | 
 |  | 
 | 		switch (psz) { | 
 | 		case SZ_64K: | 
 | 			psz = SZ_16K; | 
 | 			break; | 
 | 		case SZ_16K: | 
 | 			psz = SZ_4K; | 
 | 			break; | 
 | 		case SZ_4K: | 
 | 		default: | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	baser->psz = psz; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_alloc_tables(struct its_node *its) | 
 | { | 
 | 	u64 shr = GITS_BASER_InnerShareable; | 
 | 	u64 cache = GITS_BASER_RaWaWb; | 
 | 	int err, i; | 
 |  | 
 | 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) | 
 | 		/* erratum 24313: ignore memory access type */ | 
 | 		cache = GITS_BASER_nCnB; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		struct its_baser *baser = its->tables + i; | 
 | 		u64 val = its_read_baser(its, baser); | 
 | 		u64 type = GITS_BASER_TYPE(val); | 
 | 		bool indirect = false; | 
 | 		u32 order; | 
 |  | 
 | 		if (type == GITS_BASER_TYPE_NONE) | 
 | 			continue; | 
 |  | 
 | 		if (its_probe_baser_psz(its, baser)) { | 
 | 			its_free_tables(its); | 
 | 			return -ENXIO; | 
 | 		} | 
 |  | 
 | 		order = get_order(baser->psz); | 
 |  | 
 | 		switch (type) { | 
 | 		case GITS_BASER_TYPE_DEVICE: | 
 | 			indirect = its_parse_indirect_baser(its, baser, &order, | 
 | 							    device_ids(its)); | 
 | 			break; | 
 |  | 
 | 		case GITS_BASER_TYPE_VCPU: | 
 | 			if (is_v4_1(its)) { | 
 | 				struct its_node *sibling; | 
 |  | 
 | 				WARN_ON(i != 2); | 
 | 				if ((sibling = find_sibling_its(its))) { | 
 | 					*baser = sibling->tables[2]; | 
 | 					its_write_baser(its, baser, baser->val); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			indirect = its_parse_indirect_baser(its, baser, &order, | 
 | 							    ITS_MAX_VPEID_BITS); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		err = its_setup_baser(its, baser, cache, shr, order, indirect); | 
 | 		if (err < 0) { | 
 | 			its_free_tables(its); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		/* Update settings which will be used for next BASERn */ | 
 | 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK; | 
 | 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 inherit_vpe_l1_table_from_its(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	u64 val; | 
 | 	u32 aff; | 
 |  | 
 | 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
 | 	aff = compute_common_aff(val); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		u64 baser, addr; | 
 |  | 
 | 		if (!is_v4_1(its)) | 
 | 			continue; | 
 |  | 
 | 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) | 
 | 			continue; | 
 |  | 
 | 		if (aff != compute_its_aff(its)) | 
 | 			continue; | 
 |  | 
 | 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ | 
 | 		baser = its->tables[2].val; | 
 | 		if (!(baser & GITS_BASER_VALID)) | 
 | 			continue; | 
 |  | 
 | 		/* We have a winner! */ | 
 | 		gic_data_rdist()->vpe_l1_base = its->tables[2].base; | 
 |  | 
 | 		val  = GICR_VPROPBASER_4_1_VALID; | 
 | 		if (baser & GITS_BASER_INDIRECT) | 
 | 			val |= GICR_VPROPBASER_4_1_INDIRECT; | 
 | 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, | 
 | 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); | 
 | 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { | 
 | 		case GIC_PAGE_SIZE_64K: | 
 | 			addr = GITS_BASER_ADDR_48_to_52(baser); | 
 | 			break; | 
 | 		default: | 
 | 			addr = baser & GENMASK_ULL(47, 12); | 
 | 			break; | 
 | 		} | 
 | 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); | 
 | 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, | 
 | 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); | 
 | 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, | 
 | 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); | 
 | 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); | 
 |  | 
 | 		return val; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) | 
 | { | 
 | 	u32 aff; | 
 | 	u64 val; | 
 | 	int cpu; | 
 |  | 
 | 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
 | 	aff = compute_common_aff(val); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; | 
 |  | 
 | 		if (!base || cpu == smp_processor_id()) | 
 | 			continue; | 
 |  | 
 | 		val = gic_read_typer(base + GICR_TYPER); | 
 | 		if (aff != compute_common_aff(val)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * At this point, we have a victim. This particular CPU | 
 | 		 * has already booted, and has an affinity that matches | 
 | 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. | 
 | 		 * Make sure we don't write the Z bit in that case. | 
 | 		 */ | 
 | 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); | 
 | 		val &= ~GICR_VPROPBASER_4_1_Z; | 
 |  | 
 | 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; | 
 | 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; | 
 |  | 
 | 		return val; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool allocate_vpe_l2_table(int cpu, u32 id) | 
 | { | 
 | 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; | 
 | 	unsigned int psz, esz, idx, npg, gpsz; | 
 | 	u64 val; | 
 | 	struct page *page; | 
 | 	__le64 *table; | 
 |  | 
 | 	if (!gic_rdists->has_rvpeid) | 
 | 		return true; | 
 |  | 
 | 	/* Skip non-present CPUs */ | 
 | 	if (!base) | 
 | 		return true; | 
 |  | 
 | 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); | 
 |  | 
 | 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; | 
 | 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); | 
 | 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; | 
 |  | 
 | 	switch (gpsz) { | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		fallthrough; | 
 | 	case GIC_PAGE_SIZE_4K: | 
 | 		psz = SZ_4K; | 
 | 		break; | 
 | 	case GIC_PAGE_SIZE_16K: | 
 | 		psz = SZ_16K; | 
 | 		break; | 
 | 	case GIC_PAGE_SIZE_64K: | 
 | 		psz = SZ_64K; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Don't allow vpe_id that exceeds single, flat table limit */ | 
 | 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) | 
 | 		return (id < (npg * psz / (esz * SZ_8))); | 
 |  | 
 | 	/* Compute 1st level table index & check if that exceeds table limit */ | 
 | 	idx = id >> ilog2(psz / (esz * SZ_8)); | 
 | 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) | 
 | 		return false; | 
 |  | 
 | 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base; | 
 |  | 
 | 	/* Allocate memory for 2nd level table */ | 
 | 	if (!table[idx]) { | 
 | 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); | 
 | 		if (!page) | 
 | 			return false; | 
 |  | 
 | 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
 | 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(page_address(page), psz); | 
 |  | 
 | 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
 |  | 
 | 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
 | 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
 |  | 
 | 		/* Ensure updated table contents are visible to RD hardware */ | 
 | 		dsb(sy); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int allocate_vpe_l1_table(void) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val, gpsz, npg, pa; | 
 | 	unsigned int psz = SZ_64K; | 
 | 	unsigned int np, epp, esz; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!gic_rdists->has_rvpeid) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * if VPENDBASER.Valid is set, disable any previously programmed | 
 | 	 * VPE by setting PendingLast while clearing Valid. This has the | 
 | 	 * effect of making sure no doorbell will be generated and we can | 
 | 	 * then safely clear VPROPBASER.Valid. | 
 | 	 */ | 
 | 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) | 
 | 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, | 
 | 				      vlpi_base + GICR_VPENDBASER); | 
 |  | 
 | 	/* | 
 | 	 * If we can inherit the configuration from another RD, let's do | 
 | 	 * so. Otherwise, we have to go through the allocation process. We | 
 | 	 * assume that all RDs have the exact same requirements, as | 
 | 	 * nothing will work otherwise. | 
 | 	 */ | 
 | 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); | 
 | 	if (val & GICR_VPROPBASER_4_1_VALID) | 
 | 		goto out; | 
 |  | 
 | 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); | 
 | 	if (!gic_data_rdist()->vpe_table_mask) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	val = inherit_vpe_l1_table_from_its(); | 
 | 	if (val & GICR_VPROPBASER_4_1_VALID) | 
 | 		goto out; | 
 |  | 
 | 	/* First probe the page size */ | 
 | 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); | 
 | 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 | 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); | 
 | 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); | 
 | 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); | 
 |  | 
 | 	switch (gpsz) { | 
 | 	default: | 
 | 		gpsz = GIC_PAGE_SIZE_4K; | 
 | 		fallthrough; | 
 | 	case GIC_PAGE_SIZE_4K: | 
 | 		psz = SZ_4K; | 
 | 		break; | 
 | 	case GIC_PAGE_SIZE_16K: | 
 | 		psz = SZ_16K; | 
 | 		break; | 
 | 	case GIC_PAGE_SIZE_64K: | 
 | 		psz = SZ_64K; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Start populating the register from scratch, including RO fields | 
 | 	 * (which we want to print in debug cases...) | 
 | 	 */ | 
 | 	val = 0; | 
 | 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); | 
 | 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); | 
 |  | 
 | 	/* How many entries per GIC page? */ | 
 | 	esz++; | 
 | 	epp = psz / (esz * SZ_8); | 
 |  | 
 | 	/* | 
 | 	 * If we need more than just a single L1 page, flag the table | 
 | 	 * as indirect and compute the number of required L1 pages. | 
 | 	 */ | 
 | 	if (epp < ITS_MAX_VPEID) { | 
 | 		int nl2; | 
 |  | 
 | 		val |= GICR_VPROPBASER_4_1_INDIRECT; | 
 |  | 
 | 		/* Number of L2 pages required to cover the VPEID space */ | 
 | 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); | 
 |  | 
 | 		/* Number of L1 pages to point to the L2 pages */ | 
 | 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz); | 
 | 	} else { | 
 | 		npg = 1; | 
 | 	} | 
 |  | 
 | 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); | 
 |  | 
 | 	/* Right, that's the number of CPU pages we need for L1 */ | 
 | 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); | 
 |  | 
 | 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", | 
 | 		 np, npg, psz, epp, esz); | 
 | 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	gic_data_rdist()->vpe_l1_base = page_address(page); | 
 | 	pa = virt_to_phys(page_address(page)); | 
 | 	WARN_ON(!IS_ALIGNED(pa, psz)); | 
 |  | 
 | 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); | 
 | 	val |= GICR_VPROPBASER_RaWb; | 
 | 	val |= GICR_VPROPBASER_InnerShareable; | 
 | 	val |= GICR_VPROPBASER_4_1_Z; | 
 | 	val |= GICR_VPROPBASER_4_1_VALID; | 
 |  | 
 | out: | 
 | 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 | 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); | 
 |  | 
 | 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", | 
 | 		 smp_processor_id(), val, | 
 | 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_alloc_collections(struct its_node *its) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), | 
 | 				   GFP_KERNEL); | 
 | 	if (!its->collections) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < nr_cpu_ids; i++) | 
 | 		its->collections[i].target_address = ~0ULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct page *its_allocate_pending_table(gfp_t gfp_flags) | 
 | { | 
 | 	struct page *pend_page; | 
 |  | 
 | 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO, | 
 | 				get_order(LPI_PENDBASE_SZ)); | 
 | 	if (!pend_page) | 
 | 		return NULL; | 
 |  | 
 | 	/* Make sure the GIC will observe the zero-ed page */ | 
 | 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); | 
 |  | 
 | 	return pend_page; | 
 | } | 
 |  | 
 | static void its_free_pending_table(struct page *pt) | 
 | { | 
 | 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); | 
 | } | 
 |  | 
 | /* | 
 |  * Booting with kdump and LPIs enabled is generally fine. Any other | 
 |  * case is wrong in the absence of firmware/EFI support. | 
 |  */ | 
 | static bool enabled_lpis_allowed(void) | 
 | { | 
 | 	phys_addr_t addr; | 
 | 	u64 val; | 
 |  | 
 | 	/* Check whether the property table is in a reserved region */ | 
 | 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); | 
 | 	addr = val & GENMASK_ULL(51, 12); | 
 |  | 
 | 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); | 
 | } | 
 |  | 
 | static int __init allocate_lpi_tables(void) | 
 | { | 
 | 	u64 val; | 
 | 	int err, cpu; | 
 |  | 
 | 	/* | 
 | 	 * If LPIs are enabled while we run this from the boot CPU, | 
 | 	 * flag the RD tables as pre-allocated if the stars do align. | 
 | 	 */ | 
 | 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); | 
 | 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { | 
 | 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | | 
 | 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); | 
 | 		pr_info("GICv3: Using preallocated redistributor tables\n"); | 
 | 	} | 
 |  | 
 | 	err = its_setup_lpi_prop_table(); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* | 
 | 	 * We allocate all the pending tables anyway, as we may have a | 
 | 	 * mix of RDs that have had LPIs enabled, and some that | 
 | 	 * don't. We'll free the unused ones as each CPU comes online. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct page *pend_page; | 
 |  | 
 | 		pend_page = its_allocate_pending_table(GFP_NOWAIT); | 
 | 		if (!pend_page) { | 
 | 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		gic_data_rdist_cpu(cpu)->pend_page = pend_page; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) | 
 | { | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 | 	bool clean; | 
 | 	u64 val; | 
 |  | 
 | 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 	val &= ~GICR_VPENDBASER_Valid; | 
 | 	val &= ~clr; | 
 | 	val |= set; | 
 | 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 |  | 
 | 	do { | 
 | 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 		clean = !(val & GICR_VPENDBASER_Dirty); | 
 | 		if (!clean) { | 
 | 			count--; | 
 | 			cpu_relax(); | 
 | 			udelay(1); | 
 | 		} | 
 | 	} while (!clean && count); | 
 |  | 
 | 	if (unlikely(val & GICR_VPENDBASER_Dirty)) { | 
 | 		pr_err_ratelimited("ITS virtual pending table not cleaning\n"); | 
 | 		val |= GICR_VPENDBASER_PendingLast; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void its_cpu_init_lpis(void) | 
 | { | 
 | 	void __iomem *rbase = gic_data_rdist_rd_base(); | 
 | 	struct page *pend_page; | 
 | 	phys_addr_t paddr; | 
 | 	u64 val, tmp; | 
 |  | 
 | 	if (gic_data_rdist()->lpi_enabled) | 
 | 		return; | 
 |  | 
 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && | 
 | 	    (val & GICR_CTLR_ENABLE_LPIS)) { | 
 | 		/* | 
 | 		 * Check that we get the same property table on all | 
 | 		 * RDs. If we don't, this is hopeless. | 
 | 		 */ | 
 | 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
 | 		paddr &= GENMASK_ULL(51, 12); | 
 | 		if (WARN_ON(gic_rdists->prop_table_pa != paddr)) | 
 | 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
 |  | 
 | 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
 | 		paddr &= GENMASK_ULL(51, 16); | 
 |  | 
 | 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); | 
 | 		its_free_pending_table(gic_data_rdist()->pend_page); | 
 | 		gic_data_rdist()->pend_page = NULL; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pend_page = gic_data_rdist()->pend_page; | 
 | 	paddr = page_to_phys(pend_page); | 
 | 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); | 
 |  | 
 | 	/* set PROPBASE */ | 
 | 	val = (gic_rdists->prop_table_pa | | 
 | 	       GICR_PROPBASER_InnerShareable | | 
 | 	       GICR_PROPBASER_RaWaWb | | 
 | 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); | 
 |  | 
 | 	gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
 |  | 
 | 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { | 
 | 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { | 
 | 			/* | 
 | 			 * The HW reports non-shareable, we must | 
 | 			 * remove the cacheability attributes as | 
 | 			 * well. | 
 | 			 */ | 
 | 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | | 
 | 				 GICR_PROPBASER_CACHEABILITY_MASK); | 
 | 			val |= GICR_PROPBASER_nC; | 
 | 			gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 		} | 
 | 		pr_info_once("GIC: using cache flushing for LPI property table\n"); | 
 | 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; | 
 | 	} | 
 |  | 
 | 	/* set PENDBASE */ | 
 | 	val = (page_to_phys(pend_page) | | 
 | 	       GICR_PENDBASER_InnerShareable | | 
 | 	       GICR_PENDBASER_RaWaWb); | 
 |  | 
 | 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
 |  | 
 | 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { | 
 | 		/* | 
 | 		 * The HW reports non-shareable, we must remove the | 
 | 		 * cacheability attributes as well. | 
 | 		 */ | 
 | 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | | 
 | 			 GICR_PENDBASER_CACHEABILITY_MASK); | 
 | 		val |= GICR_PENDBASER_nC; | 
 | 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 	} | 
 |  | 
 | 	/* Enable LPIs */ | 
 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 	val |= GICR_CTLR_ENABLE_LPIS; | 
 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 |  | 
 | 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { | 
 | 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 |  | 
 | 		/* | 
 | 		 * It's possible for CPU to receive VLPIs before it is | 
 | 		 * scheduled as a vPE, especially for the first CPU, and the | 
 | 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered | 
 | 		 * as out of range and dropped by GIC. | 
 | 		 * So we initialize IDbits to known value to avoid VLPI drop. | 
 | 		 */ | 
 | 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
 | 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", | 
 | 			smp_processor_id(), val); | 
 | 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 |  | 
 | 		/* | 
 | 		 * Also clear Valid bit of GICR_VPENDBASER, in case some | 
 | 		 * ancient programming gets left in and has possibility of | 
 | 		 * corrupting memory. | 
 | 		 */ | 
 | 		val = its_clear_vpend_valid(vlpi_base, 0, 0); | 
 | 	} | 
 |  | 
 | 	if (allocate_vpe_l1_table()) { | 
 | 		/* | 
 | 		 * If the allocation has failed, we're in massive trouble. | 
 | 		 * Disable direct injection, and pray that no VM was | 
 | 		 * already running... | 
 | 		 */ | 
 | 		gic_rdists->has_rvpeid = false; | 
 | 		gic_rdists->has_vlpis = false; | 
 | 	} | 
 |  | 
 | 	/* Make sure the GIC has seen the above */ | 
 | 	dsb(sy); | 
 | out: | 
 | 	gic_data_rdist()->lpi_enabled = true; | 
 | 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", | 
 | 		smp_processor_id(), | 
 | 		gic_data_rdist()->pend_page ? "allocated" : "reserved", | 
 | 		&paddr); | 
 | } | 
 |  | 
 | static void its_cpu_init_collection(struct its_node *its) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	u64 target; | 
 |  | 
 | 	/* avoid cross node collections and its mapping */ | 
 | 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
 | 		struct device_node *cpu_node; | 
 |  | 
 | 		cpu_node = of_get_cpu_node(cpu, NULL); | 
 | 		if (its->numa_node != NUMA_NO_NODE && | 
 | 			its->numa_node != of_node_to_nid(cpu_node)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We now have to bind each collection to its target | 
 | 	 * redistributor. | 
 | 	 */ | 
 | 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { | 
 | 		/* | 
 | 		 * This ITS wants the physical address of the | 
 | 		 * redistributor. | 
 | 		 */ | 
 | 		target = gic_data_rdist()->phys_base; | 
 | 	} else { | 
 | 		/* This ITS wants a linear CPU number. */ | 
 | 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
 | 		target = GICR_TYPER_CPU_NUMBER(target) << 16; | 
 | 	} | 
 |  | 
 | 	/* Perform collection mapping */ | 
 | 	its->collections[cpu].target_address = target; | 
 | 	its->collections[cpu].col_id = cpu; | 
 |  | 
 | 	its_send_mapc(its, &its->collections[cpu], 1); | 
 | 	its_send_invall(its, &its->collections[cpu]); | 
 | } | 
 |  | 
 | static void its_cpu_init_collections(void) | 
 | { | 
 | 	struct its_node *its; | 
 |  | 
 | 	raw_spin_lock(&its_lock); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) | 
 | 		its_cpu_init_collection(its); | 
 |  | 
 | 	raw_spin_unlock(&its_lock); | 
 | } | 
 |  | 
 | static struct its_device *its_find_device(struct its_node *its, u32 dev_id) | 
 | { | 
 | 	struct its_device *its_dev = NULL, *tmp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 |  | 
 | 	list_for_each_entry(tmp, &its->its_device_list, entry) { | 
 | 		if (tmp->device_id == dev_id) { | 
 | 			its_dev = tmp; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 |  | 
 | 	return its_dev; | 
 | } | 
 |  | 
 | static struct its_baser *its_get_baser(struct its_node *its, u32 type) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		if (GITS_BASER_TYPE(its->tables[i].val) == type) | 
 | 			return &its->tables[i]; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static bool its_alloc_table_entry(struct its_node *its, | 
 | 				  struct its_baser *baser, u32 id) | 
 | { | 
 | 	struct page *page; | 
 | 	u32 esz, idx; | 
 | 	__le64 *table; | 
 |  | 
 | 	/* Don't allow device id that exceeds single, flat table limit */ | 
 | 	esz = GITS_BASER_ENTRY_SIZE(baser->val); | 
 | 	if (!(baser->val & GITS_BASER_INDIRECT)) | 
 | 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); | 
 |  | 
 | 	/* Compute 1st level table index & check if that exceeds table limit */ | 
 | 	idx = id >> ilog2(baser->psz / esz); | 
 | 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) | 
 | 		return false; | 
 |  | 
 | 	table = baser->base; | 
 |  | 
 | 	/* Allocate memory for 2nd level table */ | 
 | 	if (!table[idx]) { | 
 | 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, | 
 | 					get_order(baser->psz)); | 
 | 		if (!page) | 
 | 			return false; | 
 |  | 
 | 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(page_address(page), baser->psz); | 
 |  | 
 | 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
 |  | 
 | 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
 |  | 
 | 		/* Ensure updated table contents are visible to ITS hardware */ | 
 | 		dsb(sy); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool its_alloc_device_table(struct its_node *its, u32 dev_id) | 
 | { | 
 | 	struct its_baser *baser; | 
 |  | 
 | 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); | 
 |  | 
 | 	/* Don't allow device id that exceeds ITS hardware limit */ | 
 | 	if (!baser) | 
 | 		return (ilog2(dev_id) < device_ids(its)); | 
 |  | 
 | 	return its_alloc_table_entry(its, baser, dev_id); | 
 | } | 
 |  | 
 | static bool its_alloc_vpe_table(u32 vpe_id) | 
 | { | 
 | 	struct its_node *its; | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We | 
 | 	 * could try and only do it on ITSs corresponding to devices | 
 | 	 * that have interrupts targeted at this VPE, but the | 
 | 	 * complexity becomes crazy (and you have tons of memory | 
 | 	 * anyway, right?). | 
 | 	 */ | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		struct its_baser *baser; | 
 |  | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); | 
 | 		if (!baser) | 
 | 			return false; | 
 |  | 
 | 		if (!its_alloc_table_entry(its, baser, vpe_id)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* Non v4.1? No need to iterate RDs and go back early. */ | 
 | 	if (!gic_rdists->has_rvpeid) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the L2 tables are allocated for all copies of | 
 | 	 * the L1 table on *all* v4.1 RDs. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (!allocate_vpe_l2_table(cpu, vpe_id)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct its_device *its_create_device(struct its_node *its, u32 dev_id, | 
 | 					    int nvecs, bool alloc_lpis) | 
 | { | 
 | 	struct its_device *dev; | 
 | 	unsigned long *lpi_map = NULL; | 
 | 	unsigned long flags; | 
 | 	u16 *col_map = NULL; | 
 | 	void *itt; | 
 | 	int lpi_base; | 
 | 	int nr_lpis; | 
 | 	int nr_ites; | 
 | 	int sz; | 
 |  | 
 | 	if (!its_alloc_device_table(its, dev_id)) | 
 | 		return NULL; | 
 |  | 
 | 	if (WARN_ON(!is_power_of_2(nvecs))) | 
 | 		nvecs = roundup_pow_of_two(nvecs); | 
 |  | 
 | 	dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
 | 	/* | 
 | 	 * Even if the device wants a single LPI, the ITT must be | 
 | 	 * sized as a power of two (and you need at least one bit...). | 
 | 	 */ | 
 | 	nr_ites = max(2, nvecs); | 
 | 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); | 
 | 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; | 
 | 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); | 
 | 	if (alloc_lpis) { | 
 | 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); | 
 | 		if (lpi_map) | 
 | 			col_map = kcalloc(nr_lpis, sizeof(*col_map), | 
 | 					  GFP_KERNEL); | 
 | 	} else { | 
 | 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); | 
 | 		nr_lpis = 0; | 
 | 		lpi_base = 0; | 
 | 	} | 
 |  | 
 | 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) { | 
 | 		kfree(dev); | 
 | 		kfree(itt); | 
 | 		kfree(lpi_map); | 
 | 		kfree(col_map); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	gic_flush_dcache_to_poc(itt, sz); | 
 |  | 
 | 	dev->its = its; | 
 | 	dev->itt = itt; | 
 | 	dev->nr_ites = nr_ites; | 
 | 	dev->event_map.lpi_map = lpi_map; | 
 | 	dev->event_map.col_map = col_map; | 
 | 	dev->event_map.lpi_base = lpi_base; | 
 | 	dev->event_map.nr_lpis = nr_lpis; | 
 | 	raw_spin_lock_init(&dev->event_map.vlpi_lock); | 
 | 	dev->device_id = dev_id; | 
 | 	INIT_LIST_HEAD(&dev->entry); | 
 |  | 
 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 | 	list_add(&dev->entry, &its->its_device_list); | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 |  | 
 | 	/* Map device to its ITT */ | 
 | 	its_send_mapd(dev, 1); | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 | static void its_free_device(struct its_device *its_dev) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&its_dev->its->lock, flags); | 
 | 	list_del(&its_dev->entry); | 
 | 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); | 
 | 	kfree(its_dev->event_map.col_map); | 
 | 	kfree(its_dev->itt); | 
 | 	kfree(its_dev); | 
 | } | 
 |  | 
 | static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	/* Find a free LPI region in lpi_map and allocate them. */ | 
 | 	idx = bitmap_find_free_region(dev->event_map.lpi_map, | 
 | 				      dev->event_map.nr_lpis, | 
 | 				      get_count_order(nvecs)); | 
 | 	if (idx < 0) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	*hwirq = dev->event_map.lpi_base + idx; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_msi_prepare(struct irq_domain *domain, struct device *dev, | 
 | 			   int nvec, msi_alloc_info_t *info) | 
 | { | 
 | 	struct its_node *its; | 
 | 	struct its_device *its_dev; | 
 | 	struct msi_domain_info *msi_info; | 
 | 	u32 dev_id; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * We ignore "dev" entirely, and rely on the dev_id that has | 
 | 	 * been passed via the scratchpad. This limits this domain's | 
 | 	 * usefulness to upper layers that definitely know that they | 
 | 	 * are built on top of the ITS. | 
 | 	 */ | 
 | 	dev_id = info->scratchpad[0].ul; | 
 |  | 
 | 	msi_info = msi_get_domain_info(domain); | 
 | 	its = msi_info->data; | 
 |  | 
 | 	if (!gic_rdists->has_direct_lpi && | 
 | 	    vpe_proxy.dev && | 
 | 	    vpe_proxy.dev->its == its && | 
 | 	    dev_id == vpe_proxy.dev->device_id) { | 
 | 		/* Bad luck. Get yourself a better implementation */ | 
 | 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", | 
 | 			  dev_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&its->dev_alloc_lock); | 
 | 	its_dev = its_find_device(its, dev_id); | 
 | 	if (its_dev) { | 
 | 		/* | 
 | 		 * We already have seen this ID, probably through | 
 | 		 * another alias (PCI bridge of some sort). No need to | 
 | 		 * create the device. | 
 | 		 */ | 
 | 		its_dev->shared = true; | 
 | 		pr_debug("Reusing ITT for devID %x\n", dev_id); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	its_dev = its_create_device(its, dev_id, nvec, true); | 
 | 	if (!its_dev) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) | 
 | 		its_dev->shared = true; | 
 |  | 
 | 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); | 
 | out: | 
 | 	mutex_unlock(&its->dev_alloc_lock); | 
 | 	info->scratchpad[0].ptr = its_dev; | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct msi_domain_ops its_msi_domain_ops = { | 
 | 	.msi_prepare	= its_msi_prepare, | 
 | }; | 
 |  | 
 | static int its_irq_gic_domain_alloc(struct irq_domain *domain, | 
 | 				    unsigned int virq, | 
 | 				    irq_hw_number_t hwirq) | 
 | { | 
 | 	struct irq_fwspec fwspec; | 
 |  | 
 | 	if (irq_domain_get_of_node(domain->parent)) { | 
 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 		fwspec.param_count = 3; | 
 | 		fwspec.param[0] = GIC_IRQ_TYPE_LPI; | 
 | 		fwspec.param[1] = hwirq; | 
 | 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING; | 
 | 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) { | 
 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 		fwspec.param_count = 2; | 
 | 		fwspec.param[0] = hwirq; | 
 | 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
 | } | 
 |  | 
 | static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs, void *args) | 
 | { | 
 | 	msi_alloc_info_t *info = args; | 
 | 	struct its_device *its_dev = info->scratchpad[0].ptr; | 
 | 	struct its_node *its = its_dev->its; | 
 | 	struct irq_data *irqd; | 
 | 	irq_hw_number_t hwirq; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, | 
 | 					      hwirq + i, &its_irq_chip, its_dev); | 
 | 		irqd = irq_get_irq_data(virq + i); | 
 | 		irqd_set_single_target(irqd); | 
 | 		irqd_set_affinity_on_activate(irqd); | 
 | 		pr_debug("ID:%d pID:%d vID:%d\n", | 
 | 			 (int)(hwirq + i - its_dev->event_map.lpi_base), | 
 | 			 (int)(hwirq + i), virq + i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_irq_domain_activate(struct irq_domain *domain, | 
 | 				   struct irq_data *d, bool reserve) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int cpu; | 
 |  | 
 | 	cpu = its_select_cpu(d, cpu_online_mask); | 
 | 	if (cpu < 0 || cpu >= nr_cpu_ids) | 
 | 		return -EINVAL; | 
 |  | 
 | 	its_inc_lpi_count(d, cpu); | 
 | 	its_dev->event_map.col_map[event] = cpu; | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 |  | 
 | 	/* Map the GIC IRQ and event to the device */ | 
 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_irq_domain_deactivate(struct irq_domain *domain, | 
 | 				      struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 |  | 
 | 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]); | 
 | 	/* Stop the delivery of interrupts */ | 
 | 	its_send_discard(its_dev, event); | 
 | } | 
 |  | 
 | static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs) | 
 | { | 
 | 	struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its = its_dev->its; | 
 | 	int i; | 
 |  | 
 | 	bitmap_release_region(its_dev->event_map.lpi_map, | 
 | 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)), | 
 | 			      get_count_order(nr_irqs)); | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 								virq + i); | 
 | 		/* Nuke the entry in the domain */ | 
 | 		irq_domain_reset_irq_data(data); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&its->dev_alloc_lock); | 
 |  | 
 | 	/* | 
 | 	 * If all interrupts have been freed, start mopping the | 
 | 	 * floor. This is conditioned on the device not being shared. | 
 | 	 */ | 
 | 	if (!its_dev->shared && | 
 | 	    bitmap_empty(its_dev->event_map.lpi_map, | 
 | 			 its_dev->event_map.nr_lpis)) { | 
 | 		its_lpi_free(its_dev->event_map.lpi_map, | 
 | 			     its_dev->event_map.lpi_base, | 
 | 			     its_dev->event_map.nr_lpis); | 
 |  | 
 | 		/* Unmap device/itt */ | 
 | 		its_send_mapd(its_dev, 0); | 
 | 		its_free_device(its_dev); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&its->dev_alloc_lock); | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops its_domain_ops = { | 
 | 	.alloc			= its_irq_domain_alloc, | 
 | 	.free			= its_irq_domain_free, | 
 | 	.activate		= its_irq_domain_activate, | 
 | 	.deactivate		= its_irq_domain_deactivate, | 
 | }; | 
 |  | 
 | /* | 
 |  * This is insane. | 
 |  * | 
 |  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely | 
 |  * likely), the only way to perform an invalidate is to use a fake | 
 |  * device to issue an INV command, implying that the LPI has first | 
 |  * been mapped to some event on that device. Since this is not exactly | 
 |  * cheap, we try to keep that mapping around as long as possible, and | 
 |  * only issue an UNMAP if we're short on available slots. | 
 |  * | 
 |  * Broken by design(tm). | 
 |  * | 
 |  * GICv4.1, on the other hand, mandates that we're able to invalidate | 
 |  * by writing to a MMIO register. It doesn't implement the whole of | 
 |  * DirectLPI, but that's good enough. And most of the time, we don't | 
 |  * even have to invalidate anything, as the redistributor can be told | 
 |  * whether to generate a doorbell or not (we thus leave it enabled, | 
 |  * always). | 
 |  */ | 
 | static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) | 
 | { | 
 | 	/* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		return; | 
 |  | 
 | 	/* Already unmapped? */ | 
 | 	if (vpe->vpe_proxy_event == -1) | 
 | 		return; | 
 |  | 
 | 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 | 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We don't track empty slots at all, so let's move the | 
 | 	 * next_victim pointer if we can quickly reuse that slot | 
 | 	 * instead of nuking an existing entry. Not clear that this is | 
 | 	 * always a win though, and this might just generate a ripple | 
 | 	 * effect... Let's just hope VPEs don't migrate too often. | 
 | 	 */ | 
 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 		vpe_proxy.next_victim = vpe->vpe_proxy_event; | 
 |  | 
 | 	vpe->vpe_proxy_event = -1; | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) | 
 | { | 
 | 	/* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		return; | 
 |  | 
 | 	if (!gic_rdists->has_direct_lpi) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 | 		its_vpe_db_proxy_unmap_locked(vpe); | 
 | 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) | 
 | { | 
 | 	/* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		return; | 
 |  | 
 | 	/* Already mapped? */ | 
 | 	if (vpe->vpe_proxy_event != -1) | 
 | 		return; | 
 |  | 
 | 	/* This slot was already allocated. Kick the other VPE out. */ | 
 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); | 
 |  | 
 | 	/* Map the new VPE instead */ | 
 | 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; | 
 | 	vpe->vpe_proxy_event = vpe_proxy.next_victim; | 
 | 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; | 
 |  | 
 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; | 
 | 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct its_collection *target_col; | 
 |  | 
 | 	/* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		return; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; | 
 | 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 		wait_for_syncr(rdbase); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 |  | 
 | 	its_vpe_db_proxy_map_locked(vpe); | 
 |  | 
 | 	target_col = &vpe_proxy.dev->its->collections[to]; | 
 | 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); | 
 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | } | 
 |  | 
 | static int its_vpe_set_affinity(struct irq_data *d, | 
 | 				const struct cpumask *mask_val, | 
 | 				bool force) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	int from, cpu = cpumask_first(mask_val); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Changing affinity is mega expensive, so let's be as lazy as | 
 | 	 * we can and only do it if we really have to. Also, if mapped | 
 | 	 * into the proxy device, we need to move the doorbell | 
 | 	 * interrupt to its new location. | 
 | 	 * | 
 | 	 * Another thing is that changing the affinity of a vPE affects | 
 | 	 * *other interrupts* such as all the vLPIs that are routed to | 
 | 	 * this vPE. This means that the irq_desc lock is not enough to | 
 | 	 * protect us, and that we must ensure nobody samples vpe->col_idx | 
 | 	 * during the update, hence the lock below which must also be | 
 | 	 * taken on any vLPI handling path that evaluates vpe->col_idx. | 
 | 	 */ | 
 | 	from = vpe_to_cpuid_lock(vpe, &flags); | 
 | 	if (from == cpu) | 
 | 		goto out; | 
 |  | 
 | 	vpe->col_idx = cpu; | 
 |  | 
 | 	/* | 
 | 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD | 
 | 	 * is sharing its VPE table with the current one. | 
 | 	 */ | 
 | 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask && | 
 | 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) | 
 | 		goto out; | 
 |  | 
 | 	its_send_vmovp(vpe); | 
 | 	its_vpe_db_proxy_move(vpe, from, cpu); | 
 |  | 
 | out: | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 	vpe_to_cpuid_unlock(vpe, flags); | 
 |  | 
 | 	return IRQ_SET_MASK_OK_DONE; | 
 | } | 
 |  | 
 | static void its_wait_vpt_parse_complete(void) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val; | 
 |  | 
 | 	if (!gic_rdists->has_vpend_valid_dirty) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, | 
 | 						       val, | 
 | 						       !(val & GICR_VPENDBASER_Dirty), | 
 | 						       1, 500)); | 
 | } | 
 |  | 
 | static void its_vpe_schedule(struct its_vpe *vpe) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val; | 
 |  | 
 | 	/* Schedule the VPE */ | 
 | 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & | 
 | 		GENMASK_ULL(51, 12); | 
 | 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
 | 	val |= GICR_VPROPBASER_RaWb; | 
 | 	val |= GICR_VPROPBASER_InnerShareable; | 
 | 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 |  | 
 | 	val  = virt_to_phys(page_address(vpe->vpt_page)) & | 
 | 		GENMASK_ULL(51, 16); | 
 | 	val |= GICR_VPENDBASER_RaWaWb; | 
 | 	val |= GICR_VPENDBASER_InnerShareable; | 
 | 	/* | 
 | 	 * There is no good way of finding out if the pending table is | 
 | 	 * empty as we can race against the doorbell interrupt very | 
 | 	 * easily. So in the end, vpe->pending_last is only an | 
 | 	 * indication that the vcpu has something pending, not one | 
 | 	 * that the pending table is empty. A good implementation | 
 | 	 * would be able to read its coarse map pretty quickly anyway, | 
 | 	 * making this a tolerable issue. | 
 | 	 */ | 
 | 	val |= GICR_VPENDBASER_PendingLast; | 
 | 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; | 
 | 	val |= GICR_VPENDBASER_Valid; | 
 | 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 | } | 
 |  | 
 | static void its_vpe_deschedule(struct its_vpe *vpe) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val; | 
 |  | 
 | 	val = its_clear_vpend_valid(vlpi_base, 0, 0); | 
 |  | 
 | 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI); | 
 | 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
 | } | 
 |  | 
 | static void its_vpe_invall(struct its_vpe *vpe) | 
 | { | 
 | 	struct its_node *its; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Sending a VINVALL to a single ITS is enough, as all | 
 | 		 * we need is to reach the redistributors. | 
 | 		 */ | 
 | 		its_send_vinvall(its, vpe); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case SCHEDULE_VPE: | 
 | 		its_vpe_schedule(vpe); | 
 | 		return 0; | 
 |  | 
 | 	case DESCHEDULE_VPE: | 
 | 		its_vpe_deschedule(vpe); | 
 | 		return 0; | 
 |  | 
 | 	case COMMIT_VPE: | 
 | 		its_wait_vpt_parse_complete(); | 
 | 		return 0; | 
 |  | 
 | 	case INVALL_VPE: | 
 | 		its_vpe_invall(vpe); | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_send_cmd(struct its_vpe *vpe, | 
 | 			     void (*cmd)(struct its_device *, u32)) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 |  | 
 | 	its_vpe_db_proxy_map_locked(vpe); | 
 | 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | } | 
 |  | 
 | static void its_vpe_send_inv(struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		/* Target the redistributor this VPE is currently known on */ | 
 | 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); | 
 | 		wait_for_syncr(rdbase); | 
 | 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); | 
 | 	} else { | 
 | 		its_vpe_send_cmd(vpe, its_send_inv); | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_mask_irq(struct irq_data *d) | 
 | { | 
 | 	/* | 
 | 	 * We need to unmask the LPI, which is described by the parent | 
 | 	 * irq_data. Instead of calling into the parent (which won't | 
 | 	 * exactly do the right thing, let's simply use the | 
 | 	 * parent_data pointer. Yes, I'm naughty. | 
 | 	 */ | 
 | 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
 | 	its_vpe_send_inv(d); | 
 | } | 
 |  | 
 | static void its_vpe_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	/* Same hack as above... */ | 
 | 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
 | 	its_vpe_send_inv(d); | 
 | } | 
 |  | 
 | static int its_vpe_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, | 
 | 				     bool state) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 		if (state) { | 
 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); | 
 | 		} else { | 
 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 			wait_for_syncr(rdbase); | 
 | 		} | 
 | 	} else { | 
 | 		if (state) | 
 | 			its_vpe_send_cmd(vpe, its_send_int); | 
 | 		else | 
 | 			its_vpe_send_cmd(vpe, its_send_clear); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_vpe_retrigger(struct irq_data *d) | 
 | { | 
 | 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); | 
 | } | 
 |  | 
 | static struct irq_chip its_vpe_irq_chip = { | 
 | 	.name			= "GICv4-vpe", | 
 | 	.irq_mask		= its_vpe_mask_irq, | 
 | 	.irq_unmask		= its_vpe_unmask_irq, | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 	.irq_set_affinity	= its_vpe_set_affinity, | 
 | 	.irq_retrigger		= its_vpe_retrigger, | 
 | 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state, | 
 | 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity, | 
 | }; | 
 |  | 
 | static struct its_node *find_4_1_its(void) | 
 | { | 
 | 	static struct its_node *its = NULL; | 
 |  | 
 | 	if (!its) { | 
 | 		list_for_each_entry(its, &its_nodes, entry) { | 
 | 			if (is_v4_1(its)) | 
 | 				return its; | 
 | 		} | 
 |  | 
 | 		/* Oops? */ | 
 | 		its = NULL; | 
 | 	} | 
 |  | 
 | 	return its; | 
 | } | 
 |  | 
 | static void its_vpe_4_1_send_inv(struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* | 
 | 	 * GICv4.1 wants doorbells to be invalidated using the | 
 | 	 * INVDB command in order to be broadcast to all RDs. Send | 
 | 	 * it to the first valid ITS, and let the HW do its magic. | 
 | 	 */ | 
 | 	its = find_4_1_its(); | 
 | 	if (its) | 
 | 		its_send_invdb(its, vpe); | 
 | } | 
 |  | 
 | static void its_vpe_4_1_mask_irq(struct irq_data *d) | 
 | { | 
 | 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
 | 	its_vpe_4_1_send_inv(d); | 
 | } | 
 |  | 
 | static void its_vpe_4_1_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
 | 	its_vpe_4_1_send_inv(d); | 
 | } | 
 |  | 
 | static void its_vpe_4_1_schedule(struct its_vpe *vpe, | 
 | 				 struct its_cmd_info *info) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val = 0; | 
 |  | 
 | 	/* Schedule the VPE */ | 
 | 	val |= GICR_VPENDBASER_Valid; | 
 | 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; | 
 | 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; | 
 | 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); | 
 |  | 
 | 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 | } | 
 |  | 
 | static void its_vpe_4_1_deschedule(struct its_vpe *vpe, | 
 | 				   struct its_cmd_info *info) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val; | 
 |  | 
 | 	if (info->req_db) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* | 
 | 		 * vPE is going to block: make the vPE non-resident with | 
 | 		 * PendingLast clear and DB set. The GIC guarantees that if | 
 | 		 * we read-back PendingLast clear, then a doorbell will be | 
 | 		 * delivered when an interrupt comes. | 
 | 		 * | 
 | 		 * Note the locking to deal with the concurrent update of | 
 | 		 * pending_last from the doorbell interrupt handler that can | 
 | 		 * run concurrently. | 
 | 		 */ | 
 | 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags); | 
 | 		val = its_clear_vpend_valid(vlpi_base, | 
 | 					    GICR_VPENDBASER_PendingLast, | 
 | 					    GICR_VPENDBASER_4_1_DB); | 
 | 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
 | 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We're not blocking, so just make the vPE non-resident | 
 | 		 * with PendingLast set, indicating that we'll be back. | 
 | 		 */ | 
 | 		val = its_clear_vpend_valid(vlpi_base, | 
 | 					    0, | 
 | 					    GICR_VPENDBASER_PendingLast); | 
 | 		vpe->pending_last = true; | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_4_1_invall(struct its_vpe *vpe) | 
 | { | 
 | 	void __iomem *rdbase; | 
 | 	unsigned long flags; | 
 | 	u64 val; | 
 | 	int cpu; | 
 |  | 
 | 	val  = GICR_INVALLR_V; | 
 | 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); | 
 |  | 
 | 	/* Target the redistributor this vPE is currently known on */ | 
 | 	cpu = vpe_to_cpuid_lock(vpe, &flags); | 
 | 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; | 
 | 	gic_write_lpir(val, rdbase + GICR_INVALLR); | 
 |  | 
 | 	wait_for_syncr(rdbase); | 
 | 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	vpe_to_cpuid_unlock(vpe, flags); | 
 | } | 
 |  | 
 | static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case SCHEDULE_VPE: | 
 | 		its_vpe_4_1_schedule(vpe, info); | 
 | 		return 0; | 
 |  | 
 | 	case DESCHEDULE_VPE: | 
 | 		its_vpe_4_1_deschedule(vpe, info); | 
 | 		return 0; | 
 |  | 
 | 	case COMMIT_VPE: | 
 | 		its_wait_vpt_parse_complete(); | 
 | 		return 0; | 
 |  | 
 | 	case INVALL_VPE: | 
 | 		its_vpe_4_1_invall(vpe); | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static struct irq_chip its_vpe_4_1_irq_chip = { | 
 | 	.name			= "GICv4.1-vpe", | 
 | 	.irq_mask		= its_vpe_4_1_mask_irq, | 
 | 	.irq_unmask		= its_vpe_4_1_unmask_irq, | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 	.irq_set_affinity	= its_vpe_set_affinity, | 
 | 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity, | 
 | }; | 
 |  | 
 | static void its_configure_sgi(struct irq_data *d, bool clear) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vsgi_cmd.vpe = vpe; | 
 | 	desc.its_vsgi_cmd.sgi = d->hwirq; | 
 | 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; | 
 | 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; | 
 | 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; | 
 | 	desc.its_vsgi_cmd.clear = clear; | 
 |  | 
 | 	/* | 
 | 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the | 
 | 	 * destination VPE is mapped there. Since we map them eagerly at | 
 | 	 * activation time, we're pretty sure the first GICv4.1 ITS will do. | 
 | 	 */ | 
 | 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_sgi_mask_irq(struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	vpe->sgi_config[d->hwirq].enabled = false; | 
 | 	its_configure_sgi(d, false); | 
 | } | 
 |  | 
 | static void its_sgi_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	vpe->sgi_config[d->hwirq].enabled = true; | 
 | 	its_configure_sgi(d, false); | 
 | } | 
 |  | 
 | static int its_sgi_set_affinity(struct irq_data *d, | 
 | 				const struct cpumask *mask_val, | 
 | 				bool force) | 
 | { | 
 | 	/* | 
 | 	 * There is no notion of affinity for virtual SGIs, at least | 
 | 	 * not on the host (since they can only be targeting a vPE). | 
 | 	 * Tell the kernel we've done whatever it asked for. | 
 | 	 */ | 
 | 	irq_data_update_effective_affinity(d, mask_val); | 
 | 	return IRQ_SET_MASK_OK; | 
 | } | 
 |  | 
 | static int its_sgi_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, | 
 | 				     bool state) | 
 | { | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (state) { | 
 | 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 		struct its_node *its = find_4_1_its(); | 
 | 		u64 val; | 
 |  | 
 | 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); | 
 | 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); | 
 | 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); | 
 | 	} else { | 
 | 		its_configure_sgi(d, true); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_sgi_get_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, bool *val) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	void __iomem *base; | 
 | 	unsigned long flags; | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 | 	u32 status; | 
 | 	int cpu; | 
 |  | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Locking galore! We can race against two different events: | 
 | 	 * | 
 | 	 * - Concurrent vPE affinity change: we must make sure it cannot | 
 | 	 *   happen, or we'll talk to the wrong redistributor. This is | 
 | 	 *   identical to what happens with vLPIs. | 
 | 	 * | 
 | 	 * - Concurrent VSGIPENDR access: As it involves accessing two | 
 | 	 *   MMIO registers, this must be made atomic one way or another. | 
 | 	 */ | 
 | 	cpu = vpe_to_cpuid_lock(vpe, &flags); | 
 | 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; | 
 | 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); | 
 | 	do { | 
 | 		status = readl_relaxed(base + GICR_VSGIPENDR); | 
 | 		if (!(status & GICR_VSGIPENDR_BUSY)) | 
 | 			goto out; | 
 |  | 
 | 		count--; | 
 | 		if (!count) { | 
 | 			pr_err_ratelimited("Unable to get SGI status\n"); | 
 | 			goto out; | 
 | 		} | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} while (count); | 
 |  | 
 | out: | 
 | 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
 | 	vpe_to_cpuid_unlock(vpe, flags); | 
 |  | 
 | 	if (!count) | 
 | 		return -ENXIO; | 
 |  | 
 | 	*val = !!(status & (1 << d->hwirq)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case PROP_UPDATE_VSGI: | 
 | 		vpe->sgi_config[d->hwirq].priority = info->priority; | 
 | 		vpe->sgi_config[d->hwirq].group = info->group; | 
 | 		its_configure_sgi(d, false); | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static struct irq_chip its_sgi_irq_chip = { | 
 | 	.name			= "GICv4.1-sgi", | 
 | 	.irq_mask		= its_sgi_mask_irq, | 
 | 	.irq_unmask		= its_sgi_unmask_irq, | 
 | 	.irq_set_affinity	= its_sgi_set_affinity, | 
 | 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state, | 
 | 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state, | 
 | 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity, | 
 | }; | 
 |  | 
 | static int its_sgi_irq_domain_alloc(struct irq_domain *domain, | 
 | 				    unsigned int virq, unsigned int nr_irqs, | 
 | 				    void *args) | 
 | { | 
 | 	struct its_vpe *vpe = args; | 
 | 	int i; | 
 |  | 
 | 	/* Yes, we do want 16 SGIs */ | 
 | 	WARN_ON(nr_irqs != 16); | 
 |  | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		vpe->sgi_config[i].priority = 0; | 
 | 		vpe->sgi_config[i].enabled = false; | 
 | 		vpe->sgi_config[i].group = false; | 
 |  | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
 | 					      &its_sgi_irq_chip, vpe); | 
 | 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_sgi_irq_domain_free(struct irq_domain *domain, | 
 | 				    unsigned int virq, | 
 | 				    unsigned int nr_irqs) | 
 | { | 
 | 	/* Nothing to do */ | 
 | } | 
 |  | 
 | static int its_sgi_irq_domain_activate(struct irq_domain *domain, | 
 | 				       struct irq_data *d, bool reserve) | 
 | { | 
 | 	/* Write out the initial SGI configuration */ | 
 | 	its_configure_sgi(d, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, | 
 | 					  struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	/* | 
 | 	 * The VSGI command is awkward: | 
 | 	 * | 
 | 	 * - To change the configuration, CLEAR must be set to false, | 
 | 	 *   leaving the pending bit unchanged. | 
 | 	 * - To clear the pending bit, CLEAR must be set to true, leaving | 
 | 	 *   the configuration unchanged. | 
 | 	 * | 
 | 	 * You just can't do both at once, hence the two commands below. | 
 | 	 */ | 
 | 	vpe->sgi_config[d->hwirq].enabled = false; | 
 | 	its_configure_sgi(d, false); | 
 | 	its_configure_sgi(d, true); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops its_sgi_domain_ops = { | 
 | 	.alloc		= its_sgi_irq_domain_alloc, | 
 | 	.free		= its_sgi_irq_domain_free, | 
 | 	.activate	= its_sgi_irq_domain_activate, | 
 | 	.deactivate	= its_sgi_irq_domain_deactivate, | 
 | }; | 
 |  | 
 | static int its_vpe_id_alloc(void) | 
 | { | 
 | 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); | 
 | } | 
 |  | 
 | static void its_vpe_id_free(u16 id) | 
 | { | 
 | 	ida_simple_remove(&its_vpeid_ida, id); | 
 | } | 
 |  | 
 | static int its_vpe_init(struct its_vpe *vpe) | 
 | { | 
 | 	struct page *vpt_page; | 
 | 	int vpe_id; | 
 |  | 
 | 	/* Allocate vpe_id */ | 
 | 	vpe_id = its_vpe_id_alloc(); | 
 | 	if (vpe_id < 0) | 
 | 		return vpe_id; | 
 |  | 
 | 	/* Allocate VPT */ | 
 | 	vpt_page = its_allocate_pending_table(GFP_KERNEL); | 
 | 	if (!vpt_page) { | 
 | 		its_vpe_id_free(vpe_id); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (!its_alloc_vpe_table(vpe_id)) { | 
 | 		its_vpe_id_free(vpe_id); | 
 | 		its_free_pending_table(vpt_page); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_init(&vpe->vpe_lock); | 
 | 	vpe->vpe_id = vpe_id; | 
 | 	vpe->vpt_page = vpt_page; | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		atomic_set(&vpe->vmapp_count, 0); | 
 | 	else | 
 | 		vpe->vpe_proxy_event = -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_vpe_teardown(struct its_vpe *vpe) | 
 | { | 
 | 	its_vpe_db_proxy_unmap(vpe); | 
 | 	its_vpe_id_free(vpe->vpe_id); | 
 | 	its_free_pending_table(vpe->vpt_page); | 
 | } | 
 |  | 
 | static void its_vpe_irq_domain_free(struct irq_domain *domain, | 
 | 				    unsigned int virq, | 
 | 				    unsigned int nr_irqs) | 
 | { | 
 | 	struct its_vm *vm = domain->host_data; | 
 | 	int i; | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 								virq + i); | 
 | 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data); | 
 |  | 
 | 		BUG_ON(vm != vpe->its_vm); | 
 |  | 
 | 		clear_bit(data->hwirq, vm->db_bitmap); | 
 | 		its_vpe_teardown(vpe); | 
 | 		irq_domain_reset_irq_data(data); | 
 | 	} | 
 |  | 
 | 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { | 
 | 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); | 
 | 		its_free_prop_table(vm->vprop_page); | 
 | 	} | 
 | } | 
 |  | 
 | static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				    unsigned int nr_irqs, void *args) | 
 | { | 
 | 	struct irq_chip *irqchip = &its_vpe_irq_chip; | 
 | 	struct its_vm *vm = args; | 
 | 	unsigned long *bitmap; | 
 | 	struct page *vprop_page; | 
 | 	int base, nr_ids, i, err = 0; | 
 |  | 
 | 	BUG_ON(!vm); | 
 |  | 
 | 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); | 
 | 	if (!bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (nr_ids < nr_irqs) { | 
 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vprop_page = its_allocate_prop_table(GFP_KERNEL); | 
 | 	if (!vprop_page) { | 
 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vm->db_bitmap = bitmap; | 
 | 	vm->db_lpi_base = base; | 
 | 	vm->nr_db_lpis = nr_ids; | 
 | 	vm->vprop_page = vprop_page; | 
 |  | 
 | 	if (gic_rdists->has_rvpeid) | 
 | 		irqchip = &its_vpe_4_1_irq_chip; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		vm->vpes[i]->vpe_db_lpi = base + i; | 
 | 		err = its_vpe_init(vm->vpes[i]); | 
 | 		if (err) | 
 | 			break; | 
 | 		err = its_irq_gic_domain_alloc(domain, virq + i, | 
 | 					       vm->vpes[i]->vpe_db_lpi); | 
 | 		if (err) | 
 | 			break; | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
 | 					      irqchip, vm->vpes[i]); | 
 | 		set_bit(i, bitmap); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		if (i > 0) | 
 | 			its_vpe_irq_domain_free(domain, virq, i - 1); | 
 |  | 
 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 		its_free_prop_table(vprop_page); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int its_vpe_irq_domain_activate(struct irq_domain *domain, | 
 | 				       struct irq_data *d, bool reserve) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* | 
 | 	 * If we use the list map, we issue VMAPP on demand... Unless | 
 | 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs | 
 | 	 * so that VSGIs can work. | 
 | 	 */ | 
 | 	if (!gic_requires_eager_mapping()) | 
 | 		return 0; | 
 |  | 
 | 	/* Map the VPE to the first possible CPU */ | 
 | 	vpe->col_idx = cpumask_first(cpu_online_mask); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		its_send_vmapp(its, vpe, true); | 
 | 		its_send_vinvall(its, vpe); | 
 | 	} | 
 |  | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, | 
 | 					  struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* | 
 | 	 * If we use the list map on GICv4.0, we unmap the VPE once no | 
 | 	 * VLPIs are associated with the VM. | 
 | 	 */ | 
 | 	if (!gic_requires_eager_mapping()) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!is_v4(its)) | 
 | 			continue; | 
 |  | 
 | 		its_send_vmapp(its, vpe, false); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There may be a direct read to the VPT after unmapping the | 
 | 	 * vPE, to guarantee the validity of this, we make the VPT | 
 | 	 * memory coherent with the CPU caches here. | 
 | 	 */ | 
 | 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) | 
 | 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page), | 
 | 					LPI_PENDBASE_SZ); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops its_vpe_domain_ops = { | 
 | 	.alloc			= its_vpe_irq_domain_alloc, | 
 | 	.free			= its_vpe_irq_domain_free, | 
 | 	.activate		= its_vpe_irq_domain_activate, | 
 | 	.deactivate		= its_vpe_irq_domain_deactivate, | 
 | }; | 
 |  | 
 | static int its_force_quiescent(void __iomem *base) | 
 | { | 
 | 	u32 count = 1000000;	/* 1s */ | 
 | 	u32 val; | 
 |  | 
 | 	val = readl_relaxed(base + GITS_CTLR); | 
 | 	/* | 
 | 	 * GIC architecture specification requires the ITS to be both | 
 | 	 * disabled and quiescent for writes to GITS_BASER<n> or | 
 | 	 * GITS_CBASER to not have UNPREDICTABLE results. | 
 | 	 */ | 
 | 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) | 
 | 		return 0; | 
 |  | 
 | 	/* Disable the generation of all interrupts to this ITS */ | 
 | 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); | 
 | 	writel_relaxed(val, base + GITS_CTLR); | 
 |  | 
 | 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */ | 
 | 	while (1) { | 
 | 		val = readl_relaxed(base + GITS_CTLR); | 
 | 		if (val & GITS_CTLR_QUIESCENT) | 
 | 			return 0; | 
 |  | 
 | 		count--; | 
 | 		if (!count) | 
 | 			return -EBUSY; | 
 |  | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* erratum 22375: only alloc 8MB table size (20 bits) */ | 
 | 	its->typer &= ~GITS_TYPER_DEVBITS; | 
 | 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); | 
 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* On QDF2400, the size of the ITE is 16Bytes */ | 
 | 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; | 
 | 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	/* | 
 | 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS', | 
 | 	 * which maps 32-bit writes targeted at a separate window of | 
 | 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER | 
 | 	 * with device ID taken from bits [device_id_bits + 1:2] of | 
 | 	 * the window offset. | 
 | 	 */ | 
 | 	return its->pre_its_base + (its_dev->device_id << 2); | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 | 	u32 pre_its_window[2]; | 
 | 	u32 ids; | 
 |  | 
 | 	if (!fwnode_property_read_u32_array(its->fwnode_handle, | 
 | 					   "socionext,synquacer-pre-its", | 
 | 					   pre_its_window, | 
 | 					   ARRAY_SIZE(pre_its_window))) { | 
 |  | 
 | 		its->pre_its_base = pre_its_window[0]; | 
 | 		its->get_msi_base = its_irq_get_msi_base_pre_its; | 
 |  | 
 | 		ids = ilog2(pre_its_window[1]) - 2; | 
 | 		if (device_ids(its) > ids) { | 
 | 			its->typer &= ~GITS_TYPER_DEVBITS; | 
 | 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); | 
 | 		} | 
 |  | 
 | 		/* the pre-ITS breaks isolation, so disable MSI remapping */ | 
 | 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* | 
 | 	 * Hip07 insists on using the wrong address for the VLPI | 
 | 	 * page. Trick it into doing the right thing... | 
 | 	 */ | 
 | 	its->vlpi_redist_offset = SZ_128K; | 
 | 	return true; | 
 | } | 
 |  | 
 | static const struct gic_quirk its_quirks[] = { | 
 | #ifdef CONFIG_CAVIUM_ERRATUM_22375 | 
 | 	{ | 
 | 		.desc	= "ITS: Cavium errata 22375, 24313", | 
 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 		.mask	= 0xffff0fff, | 
 | 		.init	= its_enable_quirk_cavium_22375, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_CAVIUM_ERRATUM_23144 | 
 | 	{ | 
 | 		.desc	= "ITS: Cavium erratum 23144", | 
 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 		.mask	= 0xffff0fff, | 
 | 		.init	= its_enable_quirk_cavium_23144, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 | 
 | 	{ | 
 | 		.desc	= "ITS: QDF2400 erratum 0065", | 
 | 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */ | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_qdf2400_e0065, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS | 
 | 	{ | 
 | 		/* | 
 | 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 | 
 | 		 * implementation, but with a 'pre-ITS' added that requires | 
 | 		 * special handling in software. | 
 | 		 */ | 
 | 		.desc	= "ITS: Socionext Synquacer pre-ITS", | 
 | 		.iidr	= 0x0001143b, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_socionext_synquacer, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_HISILICON_ERRATUM_161600802 | 
 | 	{ | 
 | 		.desc	= "ITS: Hip07 erratum 161600802", | 
 | 		.iidr	= 0x00000004, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_hip07_161600802, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 	} | 
 | }; | 
 |  | 
 | static void its_enable_quirks(struct its_node *its) | 
 | { | 
 | 	u32 iidr = readl_relaxed(its->base + GITS_IIDR); | 
 |  | 
 | 	gic_enable_quirks(iidr, its_quirks, its); | 
 | } | 
 |  | 
 | static int its_save_disable(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	int err = 0; | 
 |  | 
 | 	raw_spin_lock(&its_lock); | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		void __iomem *base; | 
 |  | 
 | 		base = its->base; | 
 | 		its->ctlr_save = readl_relaxed(base + GITS_CTLR); | 
 | 		err = its_force_quiescent(base); | 
 | 		if (err) { | 
 | 			pr_err("ITS@%pa: failed to quiesce: %d\n", | 
 | 			       &its->phys_base, err); | 
 | 			writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); | 
 | 	} | 
 |  | 
 | err: | 
 | 	if (err) { | 
 | 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) { | 
 | 			void __iomem *base; | 
 |  | 
 | 			base = its->base; | 
 | 			writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 | 		} | 
 | 	} | 
 | 	raw_spin_unlock(&its_lock); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void its_restore_enable(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	int ret; | 
 |  | 
 | 	raw_spin_lock(&its_lock); | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		void __iomem *base; | 
 | 		int i; | 
 |  | 
 | 		base = its->base; | 
 |  | 
 | 		/* | 
 | 		 * Make sure that the ITS is disabled. If it fails to quiesce, | 
 | 		 * don't restore it since writing to CBASER or BASER<n> | 
 | 		 * registers is undefined according to the GIC v3 ITS | 
 | 		 * Specification. | 
 | 		 * | 
 | 		 * Firmware resuming with the ITS enabled is terminally broken. | 
 | 		 */ | 
 | 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); | 
 | 		ret = its_force_quiescent(base); | 
 | 		if (ret) { | 
 | 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n", | 
 | 			       &its->phys_base, ret); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); | 
 |  | 
 | 		/* | 
 | 		 * Writing CBASER resets CREADR to 0, so make CWRITER and | 
 | 		 * cmd_write line up with it. | 
 | 		 */ | 
 | 		its->cmd_write = its->cmd_base; | 
 | 		gits_write_cwriter(0, base + GITS_CWRITER); | 
 |  | 
 | 		/* Restore GITS_BASER from the value cache. */ | 
 | 		for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 			struct its_baser *baser = &its->tables[i]; | 
 |  | 
 | 			if (!(baser->val & GITS_BASER_VALID)) | 
 | 				continue; | 
 |  | 
 | 			its_write_baser(its, baser, baser->val); | 
 | 		} | 
 | 		writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 |  | 
 | 		/* | 
 | 		 * Reinit the collection if it's stored in the ITS. This is | 
 | 		 * indicated by the col_id being less than the HCC field. | 
 | 		 * CID < HCC as specified in the GIC v3 Documentation. | 
 | 		 */ | 
 | 		if (its->collections[smp_processor_id()].col_id < | 
 | 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) | 
 | 			its_cpu_init_collection(its); | 
 | 	} | 
 | 	raw_spin_unlock(&its_lock); | 
 | } | 
 |  | 
 | static struct syscore_ops its_syscore_ops = { | 
 | 	.suspend = its_save_disable, | 
 | 	.resume = its_restore_enable, | 
 | }; | 
 |  | 
 | static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) | 
 | { | 
 | 	struct irq_domain *inner_domain; | 
 | 	struct msi_domain_info *info; | 
 |  | 
 | 	info = kzalloc(sizeof(*info), GFP_KERNEL); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); | 
 | 	if (!inner_domain) { | 
 | 		kfree(info); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	inner_domain->parent = its_parent; | 
 | 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); | 
 | 	inner_domain->flags |= its->msi_domain_flags; | 
 | 	info->ops = &its_msi_domain_ops; | 
 | 	info->data = its; | 
 | 	inner_domain->host_data = info; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_init_vpe_domain(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	u32 devid; | 
 | 	int entries; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		pr_info("ITS: Using DirectLPI for VPE invalidation\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Any ITS will do, even if not v4 */ | 
 | 	its = list_first_entry(&its_nodes, struct its_node, entry); | 
 |  | 
 | 	entries = roundup_pow_of_two(nr_cpu_ids); | 
 | 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), | 
 | 				 GFP_KERNEL); | 
 | 	if (!vpe_proxy.vpes) { | 
 | 		pr_err("ITS: Can't allocate GICv4 proxy device array\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Use the last possible DevID */ | 
 | 	devid = GENMASK(device_ids(its) - 1, 0); | 
 | 	vpe_proxy.dev = its_create_device(its, devid, entries, false); | 
 | 	if (!vpe_proxy.dev) { | 
 | 		kfree(vpe_proxy.vpes); | 
 | 		pr_err("ITS: Can't allocate GICv4 proxy device\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	BUG_ON(entries > vpe_proxy.dev->nr_ites); | 
 |  | 
 | 	raw_spin_lock_init(&vpe_proxy.lock); | 
 | 	vpe_proxy.next_victim = 0; | 
 | 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", | 
 | 		devid, vpe_proxy.dev->nr_ites); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init its_compute_its_list_map(struct resource *res, | 
 | 					   void __iomem *its_base) | 
 | { | 
 | 	int its_number; | 
 | 	u32 ctlr; | 
 |  | 
 | 	/* | 
 | 	 * This is assumed to be done early enough that we're | 
 | 	 * guaranteed to be single-threaded, hence no | 
 | 	 * locking. Should this change, we should address | 
 | 	 * this. | 
 | 	 */ | 
 | 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); | 
 | 	if (its_number >= GICv4_ITS_LIST_MAX) { | 
 | 		pr_err("ITS@%pa: No ITSList entry available!\n", | 
 | 		       &res->start); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 	ctlr &= ~GITS_CTLR_ITS_NUMBER; | 
 | 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 	writel_relaxed(ctlr, its_base + GITS_CTLR); | 
 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { | 
 | 		its_number = ctlr & GITS_CTLR_ITS_NUMBER; | 
 | 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (test_and_set_bit(its_number, &its_list_map)) { | 
 | 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n", | 
 | 		       &res->start, its_number); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return its_number; | 
 | } | 
 |  | 
 | static int __init its_probe_one(struct resource *res, | 
 | 				struct fwnode_handle *handle, int numa_node) | 
 | { | 
 | 	struct its_node *its; | 
 | 	void __iomem *its_base; | 
 | 	u32 val, ctlr; | 
 | 	u64 baser, tmp, typer; | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	its_base = ioremap(res->start, SZ_64K); | 
 | 	if (!its_base) { | 
 | 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 | 	if (val != 0x30 && val != 0x40) { | 
 | 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); | 
 | 		err = -ENODEV; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	err = its_force_quiescent(its_base); | 
 | 	if (err) { | 
 | 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	pr_info("ITS %pR\n", res); | 
 |  | 
 | 	its = kzalloc(sizeof(*its), GFP_KERNEL); | 
 | 	if (!its) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_init(&its->lock); | 
 | 	mutex_init(&its->dev_alloc_lock); | 
 | 	INIT_LIST_HEAD(&its->entry); | 
 | 	INIT_LIST_HEAD(&its->its_device_list); | 
 | 	typer = gic_read_typer(its_base + GITS_TYPER); | 
 | 	its->typer = typer; | 
 | 	its->base = its_base; | 
 | 	its->phys_base = res->start; | 
 | 	if (is_v4(its)) { | 
 | 		if (!(typer & GITS_TYPER_VMOVP)) { | 
 | 			err = its_compute_its_list_map(res, its_base); | 
 | 			if (err < 0) | 
 | 				goto out_free_its; | 
 |  | 
 | 			its->list_nr = err; | 
 |  | 
 | 			pr_info("ITS@%pa: Using ITS number %d\n", | 
 | 				&res->start, err); | 
 | 		} else { | 
 | 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); | 
 | 		} | 
 |  | 
 | 		if (is_v4_1(its)) { | 
 | 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); | 
 |  | 
 | 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); | 
 | 			if (!its->sgir_base) { | 
 | 				err = -ENOMEM; | 
 | 				goto out_free_its; | 
 | 			} | 
 |  | 
 | 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR); | 
 |  | 
 | 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", | 
 | 				&res->start, its->mpidr, svpet); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	its->numa_node = numa_node; | 
 |  | 
 | 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, | 
 | 				get_order(ITS_CMD_QUEUE_SZ)); | 
 | 	if (!page) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unmap_sgir; | 
 | 	} | 
 | 	its->cmd_base = (void *)page_address(page); | 
 | 	its->cmd_write = its->cmd_base; | 
 | 	its->fwnode_handle = handle; | 
 | 	its->get_msi_base = its_irq_get_msi_base; | 
 | 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 |  | 
 | 	its_enable_quirks(its); | 
 |  | 
 | 	err = its_alloc_tables(its); | 
 | 	if (err) | 
 | 		goto out_free_cmd; | 
 |  | 
 | 	err = its_alloc_collections(its); | 
 | 	if (err) | 
 | 		goto out_free_tables; | 
 |  | 
 | 	baser = (virt_to_phys(its->cmd_base)	| | 
 | 		 GITS_CBASER_RaWaWb		| | 
 | 		 GITS_CBASER_InnerShareable	| | 
 | 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	| | 
 | 		 GITS_CBASER_VALID); | 
 |  | 
 | 	gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 	tmp = gits_read_cbaser(its->base + GITS_CBASER); | 
 |  | 
 | 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { | 
 | 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { | 
 | 			/* | 
 | 			 * The HW reports non-shareable, we must | 
 | 			 * remove the cacheability attributes as | 
 | 			 * well. | 
 | 			 */ | 
 | 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK | | 
 | 				   GITS_CBASER_CACHEABILITY_MASK); | 
 | 			baser |= GITS_CBASER_nC; | 
 | 			gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 		} | 
 | 		pr_info("ITS: using cache flushing for cmd queue\n"); | 
 | 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; | 
 | 	} | 
 |  | 
 | 	gits_write_cwriter(0, its->base + GITS_CWRITER); | 
 | 	ctlr = readl_relaxed(its->base + GITS_CTLR); | 
 | 	ctlr |= GITS_CTLR_ENABLE; | 
 | 	if (is_v4(its)) | 
 | 		ctlr |= GITS_CTLR_ImDe; | 
 | 	writel_relaxed(ctlr, its->base + GITS_CTLR); | 
 |  | 
 | 	err = its_init_domain(handle, its); | 
 | 	if (err) | 
 | 		goto out_free_tables; | 
 |  | 
 | 	raw_spin_lock(&its_lock); | 
 | 	list_add(&its->entry, &its_nodes); | 
 | 	raw_spin_unlock(&its_lock); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_tables: | 
 | 	its_free_tables(its); | 
 | out_free_cmd: | 
 | 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); | 
 | out_unmap_sgir: | 
 | 	if (its->sgir_base) | 
 | 		iounmap(its->sgir_base); | 
 | out_free_its: | 
 | 	kfree(its); | 
 | out_unmap: | 
 | 	iounmap(its_base); | 
 | 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool gic_rdists_supports_plpis(void) | 
 | { | 
 | 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); | 
 | } | 
 |  | 
 | static int redist_disable_lpis(void) | 
 | { | 
 | 	void __iomem *rbase = gic_data_rdist_rd_base(); | 
 | 	u64 timeout = USEC_PER_SEC; | 
 | 	u64 val; | 
 |  | 
 | 	if (!gic_rdists_supports_plpis()) { | 
 | 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 	if (!(val & GICR_CTLR_ENABLE_LPIS)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If coming via a CPU hotplug event, we don't need to disable | 
 | 	 * LPIs before trying to re-enable them. They are already | 
 | 	 * configured and all is well in the world. | 
 | 	 * | 
 | 	 * If running with preallocated tables, there is nothing to do. | 
 | 	 */ | 
 | 	if (gic_data_rdist()->lpi_enabled || | 
 | 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * From that point on, we only try to do some damage control. | 
 | 	 */ | 
 | 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", | 
 | 		smp_processor_id()); | 
 | 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
 |  | 
 | 	/* Disable LPIs */ | 
 | 	val &= ~GICR_CTLR_ENABLE_LPIS; | 
 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 |  | 
 | 	/* Make sure any change to GICR_CTLR is observable by the GIC */ | 
 | 	dsb(sy); | 
 |  | 
 | 	/* | 
 | 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs | 
 | 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. | 
 | 	 * Error out if we time out waiting for RWP to clear. | 
 | 	 */ | 
 | 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { | 
 | 		if (!timeout) { | 
 | 			pr_err("CPU%d: Timeout while disabling LPIs\n", | 
 | 			       smp_processor_id()); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		udelay(1); | 
 | 		timeout--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * After it has been written to 1, it is IMPLEMENTATION | 
 | 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be | 
 | 	 * cleared to 0. Error out if clearing the bit failed. | 
 | 	 */ | 
 | 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { | 
 | 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int its_cpu_init(void) | 
 | { | 
 | 	if (!list_empty(&its_nodes)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = redist_disable_lpis(); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		its_cpu_init_lpis(); | 
 | 		its_cpu_init_collections(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct of_device_id its_device_id[] = { | 
 | 	{	.compatible	= "arm,gic-v3-its",	}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static int __init its_of_probe(struct device_node *node) | 
 | { | 
 | 	struct device_node *np; | 
 | 	struct resource res; | 
 |  | 
 | 	for (np = of_find_matching_node(node, its_device_id); np; | 
 | 	     np = of_find_matching_node(np, its_device_id)) { | 
 | 		if (!of_device_is_available(np)) | 
 | 			continue; | 
 | 		if (!of_property_read_bool(np, "msi-controller")) { | 
 | 			pr_warn("%pOF: no msi-controller property, ITS ignored\n", | 
 | 				np); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (of_address_to_resource(np, 0, &res)) { | 
 | 			pr_warn("%pOF: no regs?\n", np); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 |  | 
 | #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) | 
 |  | 
 | #ifdef CONFIG_ACPI_NUMA | 
 | struct its_srat_map { | 
 | 	/* numa node id */ | 
 | 	u32	numa_node; | 
 | 	/* GIC ITS ID */ | 
 | 	u32	its_id; | 
 | }; | 
 |  | 
 | static struct its_srat_map *its_srat_maps __initdata; | 
 | static int its_in_srat __initdata; | 
 |  | 
 | static int __init acpi_get_its_numa_node(u32 its_id) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < its_in_srat; i++) { | 
 | 		if (its_id == its_srat_maps[i].its_id) | 
 | 			return its_srat_maps[i].numa_node; | 
 | 	} | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 |  | 
 | static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, | 
 | 					  const unsigned long end) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, | 
 | 			 const unsigned long end) | 
 | { | 
 | 	int node; | 
 | 	struct acpi_srat_gic_its_affinity *its_affinity; | 
 |  | 
 | 	its_affinity = (struct acpi_srat_gic_its_affinity *)header; | 
 | 	if (!its_affinity) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (its_affinity->header.length < sizeof(*its_affinity)) { | 
 | 		pr_err("SRAT: Invalid header length %d in ITS affinity\n", | 
 | 			its_affinity->header.length); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note that in theory a new proximity node could be created by this | 
 | 	 * entry as it is an SRAT resource allocation structure. | 
 | 	 * We do not currently support doing so. | 
 | 	 */ | 
 | 	node = pxm_to_node(its_affinity->proximity_domain); | 
 |  | 
 | 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { | 
 | 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	its_srat_maps[its_in_srat].numa_node = node; | 
 | 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id; | 
 | 	its_in_srat++; | 
 | 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", | 
 | 		its_affinity->proximity_domain, its_affinity->its_id, node); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init acpi_table_parse_srat_its(void) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	count = acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 			sizeof(struct acpi_table_srat), | 
 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 			gic_acpi_match_srat_its, 0); | 
 | 	if (count <= 0) | 
 | 		return; | 
 |  | 
 | 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), | 
 | 				      GFP_KERNEL); | 
 | 	if (!its_srat_maps) { | 
 | 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 			sizeof(struct acpi_table_srat), | 
 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 			gic_acpi_parse_srat_its, 0); | 
 | } | 
 |  | 
 | /* free the its_srat_maps after ITS probing */ | 
 | static void __init acpi_its_srat_maps_free(void) | 
 | { | 
 | 	kfree(its_srat_maps); | 
 | } | 
 | #else | 
 | static void __init acpi_table_parse_srat_its(void)	{ } | 
 | static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } | 
 | static void __init acpi_its_srat_maps_free(void) { } | 
 | #endif | 
 |  | 
 | static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, | 
 | 					  const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_translator *its_entry; | 
 | 	struct fwnode_handle *dom_handle; | 
 | 	struct resource res; | 
 | 	int err; | 
 |  | 
 | 	its_entry = (struct acpi_madt_generic_translator *)header; | 
 | 	memset(&res, 0, sizeof(res)); | 
 | 	res.start = its_entry->base_address; | 
 | 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; | 
 | 	res.flags = IORESOURCE_MEM; | 
 |  | 
 | 	dom_handle = irq_domain_alloc_fwnode(&res.start); | 
 | 	if (!dom_handle) { | 
 | 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", | 
 | 		       &res.start); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	err = iort_register_domain_token(its_entry->translation_id, res.start, | 
 | 					 dom_handle); | 
 | 	if (err) { | 
 | 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", | 
 | 		       &res.start, its_entry->translation_id); | 
 | 		goto dom_err; | 
 | 	} | 
 |  | 
 | 	err = its_probe_one(&res, dom_handle, | 
 | 			acpi_get_its_numa_node(its_entry->translation_id)); | 
 | 	if (!err) | 
 | 		return 0; | 
 |  | 
 | 	iort_deregister_domain_token(its_entry->translation_id); | 
 | dom_err: | 
 | 	irq_domain_free_fwnode(dom_handle); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __init its_acpi_probe(void) | 
 | { | 
 | 	acpi_table_parse_srat_its(); | 
 | 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, | 
 | 			      gic_acpi_parse_madt_its, 0); | 
 | 	acpi_its_srat_maps_free(); | 
 | } | 
 | #else | 
 | static void __init its_acpi_probe(void) { } | 
 | #endif | 
 |  | 
 | int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, | 
 | 		    struct irq_domain *parent_domain) | 
 | { | 
 | 	struct device_node *of_node; | 
 | 	struct its_node *its; | 
 | 	bool has_v4 = false; | 
 | 	bool has_v4_1 = false; | 
 | 	int err; | 
 |  | 
 | 	gic_rdists = rdists; | 
 |  | 
 | 	its_parent = parent_domain; | 
 | 	of_node = to_of_node(handle); | 
 | 	if (of_node) | 
 | 		its_of_probe(of_node); | 
 | 	else | 
 | 		its_acpi_probe(); | 
 |  | 
 | 	if (list_empty(&its_nodes)) { | 
 | 		pr_warn("ITS: No ITS available, not enabling LPIs\n"); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	err = allocate_lpi_tables(); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		has_v4 |= is_v4(its); | 
 | 		has_v4_1 |= is_v4_1(its); | 
 | 	} | 
 |  | 
 | 	/* Don't bother with inconsistent systems */ | 
 | 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) | 
 | 		rdists->has_rvpeid = false; | 
 |  | 
 | 	if (has_v4 & rdists->has_vlpis) { | 
 | 		const struct irq_domain_ops *sgi_ops; | 
 |  | 
 | 		if (has_v4_1) | 
 | 			sgi_ops = &its_sgi_domain_ops; | 
 | 		else | 
 | 			sgi_ops = NULL; | 
 |  | 
 | 		if (its_init_vpe_domain() || | 
 | 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { | 
 | 			rdists->has_vlpis = false; | 
 | 			pr_err("ITS: Disabling GICv4 support\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	register_syscore_ops(&its_syscore_ops); | 
 |  | 
 | 	return 0; | 
 | } |