| /* | 
 |  * Interface for controlling IO bandwidth on a request queue | 
 |  * | 
 |  * Copyright (C) 2010 Vivek Goyal <[email protected]> | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blktrace_api.h> | 
 | #include "blk-cgroup.h" | 
 | #include "blk.h" | 
 |  | 
 | /* Max dispatch from a group in 1 round */ | 
 | static int throtl_grp_quantum = 8; | 
 |  | 
 | /* Total max dispatch from all groups in one round */ | 
 | static int throtl_quantum = 32; | 
 |  | 
 | /* Throttling is performed over 100ms slice and after that slice is renewed */ | 
 | static unsigned long throtl_slice = HZ/10;	/* 100 ms */ | 
 |  | 
 | static struct blkcg_policy blkcg_policy_throtl; | 
 |  | 
 | /* A workqueue to queue throttle related work */ | 
 | static struct workqueue_struct *kthrotld_workqueue; | 
 | static void throtl_schedule_delayed_work(struct throtl_data *td, | 
 | 				unsigned long delay); | 
 |  | 
 | struct throtl_rb_root { | 
 | 	struct rb_root rb; | 
 | 	struct rb_node *left; | 
 | 	unsigned int count; | 
 | 	unsigned long min_disptime; | 
 | }; | 
 |  | 
 | #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ | 
 | 			.count = 0, .min_disptime = 0} | 
 |  | 
 | #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node) | 
 |  | 
 | /* Per-cpu group stats */ | 
 | struct tg_stats_cpu { | 
 | 	/* total bytes transferred */ | 
 | 	struct blkg_rwstat		service_bytes; | 
 | 	/* total IOs serviced, post merge */ | 
 | 	struct blkg_rwstat		serviced; | 
 | }; | 
 |  | 
 | struct throtl_grp { | 
 | 	/* must be the first member */ | 
 | 	struct blkg_policy_data pd; | 
 |  | 
 | 	/* active throtl group service_tree member */ | 
 | 	struct rb_node rb_node; | 
 |  | 
 | 	/* | 
 | 	 * Dispatch time in jiffies. This is the estimated time when group | 
 | 	 * will unthrottle and is ready to dispatch more bio. It is used as | 
 | 	 * key to sort active groups in service tree. | 
 | 	 */ | 
 | 	unsigned long disptime; | 
 |  | 
 | 	unsigned int flags; | 
 |  | 
 | 	/* Two lists for READ and WRITE */ | 
 | 	struct bio_list bio_lists[2]; | 
 |  | 
 | 	/* Number of queued bios on READ and WRITE lists */ | 
 | 	unsigned int nr_queued[2]; | 
 |  | 
 | 	/* bytes per second rate limits */ | 
 | 	uint64_t bps[2]; | 
 |  | 
 | 	/* IOPS limits */ | 
 | 	unsigned int iops[2]; | 
 |  | 
 | 	/* Number of bytes disptached in current slice */ | 
 | 	uint64_t bytes_disp[2]; | 
 | 	/* Number of bio's dispatched in current slice */ | 
 | 	unsigned int io_disp[2]; | 
 |  | 
 | 	/* When did we start a new slice */ | 
 | 	unsigned long slice_start[2]; | 
 | 	unsigned long slice_end[2]; | 
 |  | 
 | 	/* Some throttle limits got updated for the group */ | 
 | 	int limits_changed; | 
 |  | 
 | 	/* Per cpu stats pointer */ | 
 | 	struct tg_stats_cpu __percpu *stats_cpu; | 
 |  | 
 | 	/* List of tgs waiting for per cpu stats memory to be allocated */ | 
 | 	struct list_head stats_alloc_node; | 
 | }; | 
 |  | 
 | struct throtl_data | 
 | { | 
 | 	/* service tree for active throtl groups */ | 
 | 	struct throtl_rb_root tg_service_tree; | 
 |  | 
 | 	struct request_queue *queue; | 
 |  | 
 | 	/* Total Number of queued bios on READ and WRITE lists */ | 
 | 	unsigned int nr_queued[2]; | 
 |  | 
 | 	/* | 
 | 	 * number of total undestroyed groups | 
 | 	 */ | 
 | 	unsigned int nr_undestroyed_grps; | 
 |  | 
 | 	/* Work for dispatching throttled bios */ | 
 | 	struct delayed_work throtl_work; | 
 |  | 
 | 	int limits_changed; | 
 | }; | 
 |  | 
 | /* list and work item to allocate percpu group stats */ | 
 | static DEFINE_SPINLOCK(tg_stats_alloc_lock); | 
 | static LIST_HEAD(tg_stats_alloc_list); | 
 |  | 
 | static void tg_stats_alloc_fn(struct work_struct *); | 
 | static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn); | 
 |  | 
 | static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) | 
 | { | 
 | 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL; | 
 | } | 
 |  | 
 | static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) | 
 | { | 
 | 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); | 
 | } | 
 |  | 
 | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | 
 | { | 
 | 	return pd_to_blkg(&tg->pd); | 
 | } | 
 |  | 
 | static inline struct throtl_grp *td_root_tg(struct throtl_data *td) | 
 | { | 
 | 	return blkg_to_tg(td->queue->root_blkg); | 
 | } | 
 |  | 
 | enum tg_state_flags { | 
 | 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */ | 
 | }; | 
 |  | 
 | #define THROTL_TG_FNS(name)						\ | 
 | static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\ | 
 | {									\ | 
 | 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\ | 
 | }									\ | 
 | static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\ | 
 | {									\ | 
 | 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\ | 
 | }									\ | 
 | static inline int throtl_tg_##name(const struct throtl_grp *tg)		\ | 
 | {									\ | 
 | 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\ | 
 | } | 
 |  | 
 | THROTL_TG_FNS(on_rr); | 
 |  | 
 | #define throtl_log_tg(td, tg, fmt, args...)	do {			\ | 
 | 	char __pbuf[128];						\ | 
 | 									\ | 
 | 	blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));		\ | 
 | 	blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \ | 
 | } while (0) | 
 |  | 
 | #define throtl_log(td, fmt, args...)	\ | 
 | 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) | 
 |  | 
 | static inline unsigned int total_nr_queued(struct throtl_data *td) | 
 | { | 
 | 	return td->nr_queued[0] + td->nr_queued[1]; | 
 | } | 
 |  | 
 | /* | 
 |  * Worker for allocating per cpu stat for tgs. This is scheduled on the | 
 |  * system_wq once there are some groups on the alloc_list waiting for | 
 |  * allocation. | 
 |  */ | 
 | static void tg_stats_alloc_fn(struct work_struct *work) | 
 | { | 
 | 	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */ | 
 | 	struct delayed_work *dwork = to_delayed_work(work); | 
 | 	bool empty = false; | 
 |  | 
 | alloc_stats: | 
 | 	if (!stats_cpu) { | 
 | 		stats_cpu = alloc_percpu(struct tg_stats_cpu); | 
 | 		if (!stats_cpu) { | 
 | 			/* allocation failed, try again after some time */ | 
 | 			schedule_delayed_work(dwork, msecs_to_jiffies(10)); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&tg_stats_alloc_lock); | 
 |  | 
 | 	if (!list_empty(&tg_stats_alloc_list)) { | 
 | 		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list, | 
 | 							 struct throtl_grp, | 
 | 							 stats_alloc_node); | 
 | 		swap(tg->stats_cpu, stats_cpu); | 
 | 		list_del_init(&tg->stats_alloc_node); | 
 | 	} | 
 |  | 
 | 	empty = list_empty(&tg_stats_alloc_list); | 
 | 	spin_unlock_irq(&tg_stats_alloc_lock); | 
 | 	if (!empty) | 
 | 		goto alloc_stats; | 
 | } | 
 |  | 
 | static void throtl_pd_init(struct blkcg_gq *blkg) | 
 | { | 
 | 	struct throtl_grp *tg = blkg_to_tg(blkg); | 
 | 	unsigned long flags; | 
 |  | 
 | 	RB_CLEAR_NODE(&tg->rb_node); | 
 | 	bio_list_init(&tg->bio_lists[0]); | 
 | 	bio_list_init(&tg->bio_lists[1]); | 
 | 	tg->limits_changed = false; | 
 |  | 
 | 	tg->bps[READ] = -1; | 
 | 	tg->bps[WRITE] = -1; | 
 | 	tg->iops[READ] = -1; | 
 | 	tg->iops[WRITE] = -1; | 
 |  | 
 | 	/* | 
 | 	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu | 
 | 	 * but percpu allocator can't be called from IO path.  Queue tg on | 
 | 	 * tg_stats_alloc_list and allocate from work item. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&tg_stats_alloc_lock, flags); | 
 | 	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list); | 
 | 	schedule_delayed_work(&tg_stats_alloc_work, 0); | 
 | 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); | 
 | } | 
 |  | 
 | static void throtl_pd_exit(struct blkcg_gq *blkg) | 
 | { | 
 | 	struct throtl_grp *tg = blkg_to_tg(blkg); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tg_stats_alloc_lock, flags); | 
 | 	list_del_init(&tg->stats_alloc_node); | 
 | 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); | 
 |  | 
 | 	free_percpu(tg->stats_cpu); | 
 | } | 
 |  | 
 | static void throtl_pd_reset_stats(struct blkcg_gq *blkg) | 
 | { | 
 | 	struct throtl_grp *tg = blkg_to_tg(blkg); | 
 | 	int cpu; | 
 |  | 
 | 	if (tg->stats_cpu == NULL) | 
 | 		return; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); | 
 |  | 
 | 		blkg_rwstat_reset(&sc->service_bytes); | 
 | 		blkg_rwstat_reset(&sc->serviced); | 
 | 	} | 
 | } | 
 |  | 
 | static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td, | 
 | 					   struct blkcg *blkcg) | 
 | { | 
 | 	/* | 
 | 	 * This is the common case when there are no blkcgs.  Avoid lookup | 
 | 	 * in this case | 
 | 	 */ | 
 | 	if (blkcg == &blkcg_root) | 
 | 		return td_root_tg(td); | 
 |  | 
 | 	return blkg_to_tg(blkg_lookup(blkcg, td->queue)); | 
 | } | 
 |  | 
 | static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td, | 
 | 						  struct blkcg *blkcg) | 
 | { | 
 | 	struct request_queue *q = td->queue; | 
 | 	struct throtl_grp *tg = NULL; | 
 |  | 
 | 	/* | 
 | 	 * This is the common case when there are no blkcgs.  Avoid lookup | 
 | 	 * in this case | 
 | 	 */ | 
 | 	if (blkcg == &blkcg_root) { | 
 | 		tg = td_root_tg(td); | 
 | 	} else { | 
 | 		struct blkcg_gq *blkg; | 
 |  | 
 | 		blkg = blkg_lookup_create(blkcg, q); | 
 |  | 
 | 		/* if %NULL and @q is alive, fall back to root_tg */ | 
 | 		if (!IS_ERR(blkg)) | 
 | 			tg = blkg_to_tg(blkg); | 
 | 		else if (!blk_queue_dead(q)) | 
 | 			tg = td_root_tg(td); | 
 | 	} | 
 |  | 
 | 	return tg; | 
 | } | 
 |  | 
 | static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) | 
 | { | 
 | 	/* Service tree is empty */ | 
 | 	if (!root->count) | 
 | 		return NULL; | 
 |  | 
 | 	if (!root->left) | 
 | 		root->left = rb_first(&root->rb); | 
 |  | 
 | 	if (root->left) | 
 | 		return rb_entry_tg(root->left); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 
 | { | 
 | 	rb_erase(n, root); | 
 | 	RB_CLEAR_NODE(n); | 
 | } | 
 |  | 
 | static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) | 
 | { | 
 | 	if (root->left == n) | 
 | 		root->left = NULL; | 
 | 	rb_erase_init(n, &root->rb); | 
 | 	--root->count; | 
 | } | 
 |  | 
 | static void update_min_dispatch_time(struct throtl_rb_root *st) | 
 | { | 
 | 	struct throtl_grp *tg; | 
 |  | 
 | 	tg = throtl_rb_first(st); | 
 | 	if (!tg) | 
 | 		return; | 
 |  | 
 | 	st->min_disptime = tg->disptime; | 
 | } | 
 |  | 
 | static void | 
 | tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) | 
 | { | 
 | 	struct rb_node **node = &st->rb.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct throtl_grp *__tg; | 
 | 	unsigned long key = tg->disptime; | 
 | 	int left = 1; | 
 |  | 
 | 	while (*node != NULL) { | 
 | 		parent = *node; | 
 | 		__tg = rb_entry_tg(parent); | 
 |  | 
 | 		if (time_before(key, __tg->disptime)) | 
 | 			node = &parent->rb_left; | 
 | 		else { | 
 | 			node = &parent->rb_right; | 
 | 			left = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (left) | 
 | 		st->left = &tg->rb_node; | 
 |  | 
 | 	rb_link_node(&tg->rb_node, parent, node); | 
 | 	rb_insert_color(&tg->rb_node, &st->rb); | 
 | } | 
 |  | 
 | static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_rb_root *st = &td->tg_service_tree; | 
 |  | 
 | 	tg_service_tree_add(st, tg); | 
 | 	throtl_mark_tg_on_rr(tg); | 
 | 	st->count++; | 
 | } | 
 |  | 
 | static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
 | { | 
 | 	if (!throtl_tg_on_rr(tg)) | 
 | 		__throtl_enqueue_tg(td, tg); | 
 | } | 
 |  | 
 | static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
 | { | 
 | 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); | 
 | 	throtl_clear_tg_on_rr(tg); | 
 | } | 
 |  | 
 | static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
 | { | 
 | 	if (throtl_tg_on_rr(tg)) | 
 | 		__throtl_dequeue_tg(td, tg); | 
 | } | 
 |  | 
 | static void throtl_schedule_next_dispatch(struct throtl_data *td) | 
 | { | 
 | 	struct throtl_rb_root *st = &td->tg_service_tree; | 
 |  | 
 | 	/* | 
 | 	 * If there are more bios pending, schedule more work. | 
 | 	 */ | 
 | 	if (!total_nr_queued(td)) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(!st->count); | 
 |  | 
 | 	update_min_dispatch_time(st); | 
 |  | 
 | 	if (time_before_eq(st->min_disptime, jiffies)) | 
 | 		throtl_schedule_delayed_work(td, 0); | 
 | 	else | 
 | 		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); | 
 | } | 
 |  | 
 | static inline void | 
 | throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	tg->bytes_disp[rw] = 0; | 
 | 	tg->io_disp[rw] = 0; | 
 | 	tg->slice_start[rw] = jiffies; | 
 | 	tg->slice_end[rw] = jiffies + throtl_slice; | 
 | 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", | 
 | 			rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
 | 			tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | static inline void throtl_set_slice_end(struct throtl_data *td, | 
 | 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end) | 
 | { | 
 | 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
 | } | 
 |  | 
 | static inline void throtl_extend_slice(struct throtl_data *td, | 
 | 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end) | 
 | { | 
 | 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
 | 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 
 | 			rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
 | 			tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | /* Determine if previously allocated or extended slice is complete or not */ | 
 | static bool | 
 | throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Trim the used slices and adjust slice start accordingly */ | 
 | static inline void | 
 | throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	unsigned long nr_slices, time_elapsed, io_trim; | 
 | 	u64 bytes_trim, tmp; | 
 |  | 
 | 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 
 |  | 
 | 	/* | 
 | 	 * If bps are unlimited (-1), then time slice don't get | 
 | 	 * renewed. Don't try to trim the slice if slice is used. A new | 
 | 	 * slice will start when appropriate. | 
 | 	 */ | 
 | 	if (throtl_slice_used(td, tg, rw)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * A bio has been dispatched. Also adjust slice_end. It might happen | 
 | 	 * that initially cgroup limit was very low resulting in high | 
 | 	 * slice_end, but later limit was bumped up and bio was dispached | 
 | 	 * sooner, then we need to reduce slice_end. A high bogus slice_end | 
 | 	 * is bad because it does not allow new slice to start. | 
 | 	 */ | 
 |  | 
 | 	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); | 
 |  | 
 | 	time_elapsed = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	nr_slices = time_elapsed / throtl_slice; | 
 |  | 
 | 	if (!nr_slices) | 
 | 		return; | 
 | 	tmp = tg->bps[rw] * throtl_slice * nr_slices; | 
 | 	do_div(tmp, HZ); | 
 | 	bytes_trim = tmp; | 
 |  | 
 | 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; | 
 |  | 
 | 	if (!bytes_trim && !io_trim) | 
 | 		return; | 
 |  | 
 | 	if (tg->bytes_disp[rw] >= bytes_trim) | 
 | 		tg->bytes_disp[rw] -= bytes_trim; | 
 | 	else | 
 | 		tg->bytes_disp[rw] = 0; | 
 |  | 
 | 	if (tg->io_disp[rw] >= io_trim) | 
 | 		tg->io_disp[rw] -= io_trim; | 
 | 	else | 
 | 		tg->io_disp[rw] = 0; | 
 |  | 
 | 	tg->slice_start[rw] += nr_slices * throtl_slice; | 
 |  | 
 | 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" | 
 | 			" start=%lu end=%lu jiffies=%lu", | 
 | 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, | 
 | 			tg->slice_start[rw], tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, | 
 | 		struct bio *bio, unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	unsigned int io_allowed; | 
 | 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
 | 	u64 tmp; | 
 |  | 
 | 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	/* Slice has just started. Consider one slice interval */ | 
 | 	if (!jiffy_elapsed) | 
 | 		jiffy_elapsed_rnd = throtl_slice; | 
 |  | 
 | 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
 |  | 
 | 	/* | 
 | 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be | 
 | 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 
 | 	 * will allow dispatch after 1 second and after that slice should | 
 | 	 * have been trimmed. | 
 | 	 */ | 
 |  | 
 | 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; | 
 | 	do_div(tmp, HZ); | 
 |  | 
 | 	if (tmp > UINT_MAX) | 
 | 		io_allowed = UINT_MAX; | 
 | 	else | 
 | 		io_allowed = tmp; | 
 |  | 
 | 	if (tg->io_disp[rw] + 1 <= io_allowed) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Calc approx time to dispatch */ | 
 | 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; | 
 |  | 
 | 	if (jiffy_wait > jiffy_elapsed) | 
 | 		jiffy_wait = jiffy_wait - jiffy_elapsed; | 
 | 	else | 
 | 		jiffy_wait = 1; | 
 |  | 
 | 	if (wait) | 
 | 		*wait = jiffy_wait; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, | 
 | 		struct bio *bio, unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	u64 bytes_allowed, extra_bytes, tmp; | 
 | 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
 |  | 
 | 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	/* Slice has just started. Consider one slice interval */ | 
 | 	if (!jiffy_elapsed) | 
 | 		jiffy_elapsed_rnd = throtl_slice; | 
 |  | 
 | 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
 |  | 
 | 	tmp = tg->bps[rw] * jiffy_elapsed_rnd; | 
 | 	do_div(tmp, HZ); | 
 | 	bytes_allowed = tmp; | 
 |  | 
 | 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Calc approx time to dispatch */ | 
 | 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; | 
 | 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); | 
 |  | 
 | 	if (!jiffy_wait) | 
 | 		jiffy_wait = 1; | 
 |  | 
 | 	/* | 
 | 	 * This wait time is without taking into consideration the rounding | 
 | 	 * up we did. Add that time also. | 
 | 	 */ | 
 | 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 
 | 	if (wait) | 
 | 		*wait = jiffy_wait; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { | 
 | 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns whether one can dispatch a bio or not. Also returns approx number | 
 |  * of jiffies to wait before this bio is with-in IO rate and can be dispatched | 
 |  */ | 
 | static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, | 
 | 				struct bio *bio, unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; | 
 |  | 
 | 	/* | 
 |  	 * Currently whole state machine of group depends on first bio | 
 | 	 * queued in the group bio list. So one should not be calling | 
 | 	 * this function with a different bio if there are other bios | 
 | 	 * queued. | 
 | 	 */ | 
 | 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); | 
 |  | 
 | 	/* If tg->bps = -1, then BW is unlimited */ | 
 | 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If previous slice expired, start a new one otherwise renew/extend | 
 | 	 * existing slice to make sure it is at least throtl_slice interval | 
 | 	 * long since now. | 
 | 	 */ | 
 | 	if (throtl_slice_used(td, tg, rw)) | 
 | 		throtl_start_new_slice(td, tg, rw); | 
 | 	else { | 
 | 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) | 
 | 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); | 
 | 	} | 
 |  | 
 | 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) | 
 | 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	max_wait = max(bps_wait, iops_wait); | 
 |  | 
 | 	if (wait) | 
 | 		*wait = max_wait; | 
 |  | 
 | 	if (time_before(tg->slice_end[rw], jiffies + max_wait)) | 
 | 		throtl_extend_slice(td, tg, rw, jiffies + max_wait); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes, | 
 | 					 int rw) | 
 | { | 
 | 	struct throtl_grp *tg = blkg_to_tg(blkg); | 
 | 	struct tg_stats_cpu *stats_cpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* If per cpu stats are not allocated yet, don't do any accounting. */ | 
 | 	if (tg->stats_cpu == NULL) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Disabling interrupts to provide mutual exclusion between two | 
 | 	 * writes on same cpu. It probably is not needed for 64bit. Not | 
 | 	 * optimizing that case yet. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	stats_cpu = this_cpu_ptr(tg->stats_cpu); | 
 |  | 
 | 	blkg_rwstat_add(&stats_cpu->serviced, rw, 1); | 
 | 	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 |  | 
 | 	/* Charge the bio to the group */ | 
 | 	tg->bytes_disp[rw] += bio->bi_size; | 
 | 	tg->io_disp[rw]++; | 
 |  | 
 | 	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw); | 
 | } | 
 |  | 
 | static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, | 
 | 			struct bio *bio) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 |  | 
 | 	bio_list_add(&tg->bio_lists[rw], bio); | 
 | 	/* Take a bio reference on tg */ | 
 | 	blkg_get(tg_to_blkg(tg)); | 
 | 	tg->nr_queued[rw]++; | 
 | 	td->nr_queued[rw]++; | 
 | 	throtl_enqueue_tg(td, tg); | 
 | } | 
 |  | 
 | static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) | 
 | { | 
 | 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if ((bio = bio_list_peek(&tg->bio_lists[READ]))) | 
 | 		tg_may_dispatch(td, tg, bio, &read_wait); | 
 |  | 
 | 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) | 
 | 		tg_may_dispatch(td, tg, bio, &write_wait); | 
 |  | 
 | 	min_wait = min(read_wait, write_wait); | 
 | 	disptime = jiffies + min_wait; | 
 |  | 
 | 	/* Update dispatch time */ | 
 | 	throtl_dequeue_tg(td, tg); | 
 | 	tg->disptime = disptime; | 
 | 	throtl_enqueue_tg(td, tg); | 
 | } | 
 |  | 
 | static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, | 
 | 				bool rw, struct bio_list *bl) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_list_pop(&tg->bio_lists[rw]); | 
 | 	tg->nr_queued[rw]--; | 
 | 	/* Drop bio reference on blkg */ | 
 | 	blkg_put(tg_to_blkg(tg)); | 
 |  | 
 | 	BUG_ON(td->nr_queued[rw] <= 0); | 
 | 	td->nr_queued[rw]--; | 
 |  | 
 | 	throtl_charge_bio(tg, bio); | 
 | 	bio_list_add(bl, bio); | 
 | 	bio->bi_rw |= REQ_THROTTLED; | 
 |  | 
 | 	throtl_trim_slice(td, tg, rw); | 
 | } | 
 |  | 
 | static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, | 
 | 				struct bio_list *bl) | 
 | { | 
 | 	unsigned int nr_reads = 0, nr_writes = 0; | 
 | 	unsigned int max_nr_reads = throtl_grp_quantum*3/4; | 
 | 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* Try to dispatch 75% READS and 25% WRITES */ | 
 |  | 
 | 	while ((bio = bio_list_peek(&tg->bio_lists[READ])) | 
 | 		&& tg_may_dispatch(td, tg, bio, NULL)) { | 
 |  | 
 | 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); | 
 | 		nr_reads++; | 
 |  | 
 | 		if (nr_reads >= max_nr_reads) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) | 
 | 		&& tg_may_dispatch(td, tg, bio, NULL)) { | 
 |  | 
 | 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); | 
 | 		nr_writes++; | 
 |  | 
 | 		if (nr_writes >= max_nr_writes) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_reads + nr_writes; | 
 | } | 
 |  | 
 | static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) | 
 | { | 
 | 	unsigned int nr_disp = 0; | 
 | 	struct throtl_grp *tg; | 
 | 	struct throtl_rb_root *st = &td->tg_service_tree; | 
 |  | 
 | 	while (1) { | 
 | 		tg = throtl_rb_first(st); | 
 |  | 
 | 		if (!tg) | 
 | 			break; | 
 |  | 
 | 		if (time_before(jiffies, tg->disptime)) | 
 | 			break; | 
 |  | 
 | 		throtl_dequeue_tg(td, tg); | 
 |  | 
 | 		nr_disp += throtl_dispatch_tg(td, tg, bl); | 
 |  | 
 | 		if (tg->nr_queued[0] || tg->nr_queued[1]) { | 
 | 			tg_update_disptime(td, tg); | 
 | 			throtl_enqueue_tg(td, tg); | 
 | 		} | 
 |  | 
 | 		if (nr_disp >= throtl_quantum) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_disp; | 
 | } | 
 |  | 
 | static void throtl_process_limit_change(struct throtl_data *td) | 
 | { | 
 | 	struct request_queue *q = td->queue; | 
 | 	struct blkcg_gq *blkg, *n; | 
 |  | 
 | 	if (!td->limits_changed) | 
 | 		return; | 
 |  | 
 | 	xchg(&td->limits_changed, false); | 
 |  | 
 | 	throtl_log(td, "limits changed"); | 
 |  | 
 | 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { | 
 | 		struct throtl_grp *tg = blkg_to_tg(blkg); | 
 |  | 
 | 		if (!tg->limits_changed) | 
 | 			continue; | 
 |  | 
 | 		if (!xchg(&tg->limits_changed, false)) | 
 | 			continue; | 
 |  | 
 | 		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" | 
 | 			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE], | 
 | 			tg->iops[READ], tg->iops[WRITE]); | 
 |  | 
 | 		/* | 
 | 		 * Restart the slices for both READ and WRITES. It | 
 | 		 * might happen that a group's limit are dropped | 
 | 		 * suddenly and we don't want to account recently | 
 | 		 * dispatched IO with new low rate | 
 | 		 */ | 
 | 		throtl_start_new_slice(td, tg, 0); | 
 | 		throtl_start_new_slice(td, tg, 1); | 
 |  | 
 | 		if (throtl_tg_on_rr(tg)) | 
 | 			tg_update_disptime(td, tg); | 
 | 	} | 
 | } | 
 |  | 
 | /* Dispatch throttled bios. Should be called without queue lock held. */ | 
 | static int throtl_dispatch(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 | 	unsigned int nr_disp = 0; | 
 | 	struct bio_list bio_list_on_stack; | 
 | 	struct bio *bio; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 |  | 
 | 	throtl_process_limit_change(td); | 
 |  | 
 | 	if (!total_nr_queued(td)) | 
 | 		goto out; | 
 |  | 
 | 	bio_list_init(&bio_list_on_stack); | 
 |  | 
 | 	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", | 
 | 			total_nr_queued(td), td->nr_queued[READ], | 
 | 			td->nr_queued[WRITE]); | 
 |  | 
 | 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); | 
 |  | 
 | 	if (nr_disp) | 
 | 		throtl_log(td, "bios disp=%u", nr_disp); | 
 |  | 
 | 	throtl_schedule_next_dispatch(td); | 
 | out: | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we dispatched some requests, unplug the queue to make sure | 
 | 	 * immediate dispatch | 
 | 	 */ | 
 | 	if (nr_disp) { | 
 | 		blk_start_plug(&plug); | 
 | 		while((bio = bio_list_pop(&bio_list_on_stack))) | 
 | 			generic_make_request(bio); | 
 | 		blk_finish_plug(&plug); | 
 | 	} | 
 | 	return nr_disp; | 
 | } | 
 |  | 
 | void blk_throtl_work(struct work_struct *work) | 
 | { | 
 | 	struct throtl_data *td = container_of(work, struct throtl_data, | 
 | 					throtl_work.work); | 
 | 	struct request_queue *q = td->queue; | 
 |  | 
 | 	throtl_dispatch(q); | 
 | } | 
 |  | 
 | /* Call with queue lock held */ | 
 | static void | 
 | throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) | 
 | { | 
 |  | 
 | 	struct delayed_work *dwork = &td->throtl_work; | 
 |  | 
 | 	/* schedule work if limits changed even if no bio is queued */ | 
 | 	if (total_nr_queued(td) || td->limits_changed) { | 
 | 		mod_delayed_work(kthrotld_workqueue, dwork, delay); | 
 | 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu", | 
 | 				delay, jiffies); | 
 | 	} | 
 | } | 
 |  | 
 | static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, | 
 | 				struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	struct blkg_rwstat rwstat = { }, tmp; | 
 | 	int i, cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); | 
 |  | 
 | 		tmp = blkg_rwstat_read((void *)sc + off); | 
 | 		for (i = 0; i < BLKG_RWSTAT_NR; i++) | 
 | 			rwstat.cnt[i] += tmp.cnt[i]; | 
 | 	} | 
 |  | 
 | 	return __blkg_prfill_rwstat(sf, pd, &rwstat); | 
 | } | 
 |  | 
 | static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft, | 
 | 			       struct seq_file *sf) | 
 | { | 
 | 	struct blkcg *blkcg = cgroup_to_blkcg(cgrp); | 
 |  | 
 | 	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl, | 
 | 			  cft->private, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			      int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	u64 v = *(u64 *)((void *)tg + off); | 
 |  | 
 | 	if (v == -1) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, v); | 
 | } | 
 |  | 
 | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			       int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	unsigned int v = *(unsigned int *)((void *)tg + off); | 
 |  | 
 | 	if (v == -1) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, v); | 
 | } | 
 |  | 
 | static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft, | 
 | 			     struct seq_file *sf) | 
 | { | 
 | 	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64, | 
 | 			  &blkcg_policy_throtl, cft->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft, | 
 | 			      struct seq_file *sf) | 
 | { | 
 | 	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint, | 
 | 			  &blkcg_policy_throtl, cft->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf, | 
 | 		       bool is_u64) | 
 | { | 
 | 	struct blkcg *blkcg = cgroup_to_blkcg(cgrp); | 
 | 	struct blkg_conf_ctx ctx; | 
 | 	struct throtl_grp *tg; | 
 | 	struct throtl_data *td; | 
 | 	int ret; | 
 |  | 
 | 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	tg = blkg_to_tg(ctx.blkg); | 
 | 	td = ctx.blkg->q->td; | 
 |  | 
 | 	if (!ctx.v) | 
 | 		ctx.v = -1; | 
 |  | 
 | 	if (is_u64) | 
 | 		*(u64 *)((void *)tg + cft->private) = ctx.v; | 
 | 	else | 
 | 		*(unsigned int *)((void *)tg + cft->private) = ctx.v; | 
 |  | 
 | 	/* XXX: we don't need the following deferred processing */ | 
 | 	xchg(&tg->limits_changed, true); | 
 | 	xchg(&td->limits_changed, true); | 
 | 	throtl_schedule_delayed_work(td, 0); | 
 |  | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft, | 
 | 			   const char *buf) | 
 | { | 
 | 	return tg_set_conf(cgrp, cft, buf, true); | 
 | } | 
 |  | 
 | static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft, | 
 | 			    const char *buf) | 
 | { | 
 | 	return tg_set_conf(cgrp, cft, buf, false); | 
 | } | 
 |  | 
 | static struct cftype throtl_files[] = { | 
 | 	{ | 
 | 		.name = "throttle.read_bps_device", | 
 | 		.private = offsetof(struct throtl_grp, bps[READ]), | 
 | 		.read_seq_string = tg_print_conf_u64, | 
 | 		.write_string = tg_set_conf_u64, | 
 | 		.max_write_len = 256, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.write_bps_device", | 
 | 		.private = offsetof(struct throtl_grp, bps[WRITE]), | 
 | 		.read_seq_string = tg_print_conf_u64, | 
 | 		.write_string = tg_set_conf_u64, | 
 | 		.max_write_len = 256, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.read_iops_device", | 
 | 		.private = offsetof(struct throtl_grp, iops[READ]), | 
 | 		.read_seq_string = tg_print_conf_uint, | 
 | 		.write_string = tg_set_conf_uint, | 
 | 		.max_write_len = 256, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.write_iops_device", | 
 | 		.private = offsetof(struct throtl_grp, iops[WRITE]), | 
 | 		.read_seq_string = tg_print_conf_uint, | 
 | 		.write_string = tg_set_conf_uint, | 
 | 		.max_write_len = 256, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_service_bytes", | 
 | 		.private = offsetof(struct tg_stats_cpu, service_bytes), | 
 | 		.read_seq_string = tg_print_cpu_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_serviced", | 
 | 		.private = offsetof(struct tg_stats_cpu, serviced), | 
 | 		.read_seq_string = tg_print_cpu_rwstat, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | static void throtl_shutdown_wq(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 |  | 
 | 	cancel_delayed_work_sync(&td->throtl_work); | 
 | } | 
 |  | 
 | static struct blkcg_policy blkcg_policy_throtl = { | 
 | 	.pd_size		= sizeof(struct throtl_grp), | 
 | 	.cftypes		= throtl_files, | 
 |  | 
 | 	.pd_init_fn		= throtl_pd_init, | 
 | 	.pd_exit_fn		= throtl_pd_exit, | 
 | 	.pd_reset_stats_fn	= throtl_pd_reset_stats, | 
 | }; | 
 |  | 
 | bool blk_throtl_bio(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 | 	struct throtl_grp *tg; | 
 | 	bool rw = bio_data_dir(bio), update_disptime = true; | 
 | 	struct blkcg *blkcg; | 
 | 	bool throttled = false; | 
 |  | 
 | 	if (bio->bi_rw & REQ_THROTTLED) { | 
 | 		bio->bi_rw &= ~REQ_THROTTLED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A throtl_grp pointer retrieved under rcu can be used to access | 
 | 	 * basic fields like stats and io rates. If a group has no rules, | 
 | 	 * just update the dispatch stats in lockless manner and return. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	blkcg = bio_blkcg(bio); | 
 | 	tg = throtl_lookup_tg(td, blkcg); | 
 | 	if (tg) { | 
 | 		if (tg_no_rule_group(tg, rw)) { | 
 | 			throtl_update_dispatch_stats(tg_to_blkg(tg), | 
 | 						     bio->bi_size, bio->bi_rw); | 
 | 			goto out_unlock_rcu; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Either group has not been allocated yet or it is not an unlimited | 
 | 	 * IO group | 
 | 	 */ | 
 | 	spin_lock_irq(q->queue_lock); | 
 | 	tg = throtl_lookup_create_tg(td, blkcg); | 
 | 	if (unlikely(!tg)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (tg->nr_queued[rw]) { | 
 | 		/* | 
 | 		 * There is already another bio queued in same dir. No | 
 | 		 * need to update dispatch time. | 
 | 		 */ | 
 | 		update_disptime = false; | 
 | 		goto queue_bio; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* Bio is with-in rate limit of group */ | 
 | 	if (tg_may_dispatch(td, tg, bio, NULL)) { | 
 | 		throtl_charge_bio(tg, bio); | 
 |  | 
 | 		/* | 
 | 		 * We need to trim slice even when bios are not being queued | 
 | 		 * otherwise it might happen that a bio is not queued for | 
 | 		 * a long time and slice keeps on extending and trim is not | 
 | 		 * called for a long time. Now if limits are reduced suddenly | 
 | 		 * we take into account all the IO dispatched so far at new | 
 | 		 * low rate and * newly queued IO gets a really long dispatch | 
 | 		 * time. | 
 | 		 * | 
 | 		 * So keep on trimming slice even if bio is not queued. | 
 | 		 */ | 
 | 		throtl_trim_slice(td, tg, rw); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | queue_bio: | 
 | 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" | 
 | 			" iodisp=%u iops=%u queued=%d/%d", | 
 | 			rw == READ ? 'R' : 'W', | 
 | 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], | 
 | 			tg->io_disp[rw], tg->iops[rw], | 
 | 			tg->nr_queued[READ], tg->nr_queued[WRITE]); | 
 |  | 
 | 	bio_associate_current(bio); | 
 | 	throtl_add_bio_tg(q->td, tg, bio); | 
 | 	throttled = true; | 
 |  | 
 | 	if (update_disptime) { | 
 | 		tg_update_disptime(td, tg); | 
 | 		throtl_schedule_next_dispatch(td); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(q->queue_lock); | 
 | out_unlock_rcu: | 
 | 	rcu_read_unlock(); | 
 | out: | 
 | 	return throttled; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_throtl_drain - drain throttled bios | 
 |  * @q: request_queue to drain throttled bios for | 
 |  * | 
 |  * Dispatch all currently throttled bios on @q through ->make_request_fn(). | 
 |  */ | 
 | void blk_throtl_drain(struct request_queue *q) | 
 | 	__releases(q->queue_lock) __acquires(q->queue_lock) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 | 	struct throtl_rb_root *st = &td->tg_service_tree; | 
 | 	struct throtl_grp *tg; | 
 | 	struct bio_list bl; | 
 | 	struct bio *bio; | 
 |  | 
 | 	queue_lockdep_assert_held(q); | 
 |  | 
 | 	bio_list_init(&bl); | 
 |  | 
 | 	while ((tg = throtl_rb_first(st))) { | 
 | 		throtl_dequeue_tg(td, tg); | 
 |  | 
 | 		while ((bio = bio_list_peek(&tg->bio_lists[READ]))) | 
 | 			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); | 
 | 		while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) | 
 | 			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); | 
 | 	} | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bl))) | 
 | 		generic_make_request(bio); | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 | } | 
 |  | 
 | int blk_throtl_init(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td; | 
 | 	int ret; | 
 |  | 
 | 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 
 | 	if (!td) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	td->tg_service_tree = THROTL_RB_ROOT; | 
 | 	td->limits_changed = false; | 
 | 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); | 
 |  | 
 | 	q->td = td; | 
 | 	td->queue = q; | 
 |  | 
 | 	/* activate policy */ | 
 | 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl); | 
 | 	if (ret) | 
 | 		kfree(td); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void blk_throtl_exit(struct request_queue *q) | 
 | { | 
 | 	BUG_ON(!q->td); | 
 | 	throtl_shutdown_wq(q); | 
 | 	blkcg_deactivate_policy(q, &blkcg_policy_throtl); | 
 | 	kfree(q->td); | 
 | } | 
 |  | 
 | static int __init throtl_init(void) | 
 | { | 
 | 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 
 | 	if (!kthrotld_workqueue) | 
 | 		panic("Failed to create kthrotld\n"); | 
 |  | 
 | 	return blkcg_policy_register(&blkcg_policy_throtl); | 
 | } | 
 |  | 
 | module_init(throtl_init); |