|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Generic Reed Solomon encoder / decoder library | 
|  | * | 
|  | * Copyright (C) 2004 Thomas Gleixner ([email protected]) | 
|  | * | 
|  | * Reed Solomon code lifted from reed solomon library written by Phil Karn | 
|  | * Copyright 2002 Phil Karn, KA9Q | 
|  | * | 
|  | * Description: | 
|  | * | 
|  | * The generic Reed Solomon library provides runtime configurable | 
|  | * encoding / decoding of RS codes. | 
|  | * | 
|  | * Each user must call init_rs to get a pointer to a rs_control structure | 
|  | * for the given rs parameters. The control struct is unique per instance. | 
|  | * It points to a codec which can be shared by multiple control structures. | 
|  | * If a codec is newly allocated then the polynomial arrays for fast | 
|  | * encoding / decoding are built. This can take some time so make sure not | 
|  | * to call this function from a time critical path.  Usually a module / | 
|  | * driver should initialize the necessary rs_control structure on module / | 
|  | * driver init and release it on exit. | 
|  | * | 
|  | * The encoding puts the calculated syndrome into a given syndrome buffer. | 
|  | * | 
|  | * The decoding is a two step process. The first step calculates the | 
|  | * syndrome over the received (data + syndrome) and calls the second stage, | 
|  | * which does the decoding / error correction itself.  Many hw encoders | 
|  | * provide a syndrome calculation over the received data + syndrome and can | 
|  | * call the second stage directly. | 
|  | */ | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/rslib.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | enum { | 
|  | RS_DECODE_LAMBDA, | 
|  | RS_DECODE_SYN, | 
|  | RS_DECODE_B, | 
|  | RS_DECODE_T, | 
|  | RS_DECODE_OMEGA, | 
|  | RS_DECODE_ROOT, | 
|  | RS_DECODE_REG, | 
|  | RS_DECODE_LOC, | 
|  | RS_DECODE_NUM_BUFFERS | 
|  | }; | 
|  |  | 
|  | /* This list holds all currently allocated rs codec structures */ | 
|  | static LIST_HEAD(codec_list); | 
|  | /* Protection for the list */ | 
|  | static DEFINE_MUTEX(rslistlock); | 
|  |  | 
|  | /** | 
|  | * codec_init - Initialize a Reed-Solomon codec | 
|  | * @symsize:	symbol size, bits (1-8) | 
|  | * @gfpoly:	Field generator polynomial coefficients | 
|  | * @gffunc:	Field generator function | 
|  | * @fcr:	first root of RS code generator polynomial, index form | 
|  | * @prim:	primitive element to generate polynomial roots | 
|  | * @nroots:	RS code generator polynomial degree (number of roots) | 
|  | * @gfp:	GFP_ flags for allocations | 
|  | * | 
|  | * Allocate a codec structure and the polynom arrays for faster | 
|  | * en/decoding. Fill the arrays according to the given parameters. | 
|  | */ | 
|  | static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), | 
|  | int fcr, int prim, int nroots, gfp_t gfp) | 
|  | { | 
|  | int i, j, sr, root, iprim; | 
|  | struct rs_codec *rs; | 
|  |  | 
|  | rs = kzalloc(sizeof(*rs), gfp); | 
|  | if (!rs) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&rs->list); | 
|  |  | 
|  | rs->mm = symsize; | 
|  | rs->nn = (1 << symsize) - 1; | 
|  | rs->fcr = fcr; | 
|  | rs->prim = prim; | 
|  | rs->nroots = nroots; | 
|  | rs->gfpoly = gfpoly; | 
|  | rs->gffunc = gffunc; | 
|  |  | 
|  | /* Allocate the arrays */ | 
|  | rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); | 
|  | if (rs->alpha_to == NULL) | 
|  | goto err; | 
|  |  | 
|  | rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); | 
|  | if (rs->index_of == NULL) | 
|  | goto err; | 
|  |  | 
|  | rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); | 
|  | if(rs->genpoly == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* Generate Galois field lookup tables */ | 
|  | rs->index_of[0] = rs->nn;	/* log(zero) = -inf */ | 
|  | rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */ | 
|  | if (gfpoly) { | 
|  | sr = 1; | 
|  | for (i = 0; i < rs->nn; i++) { | 
|  | rs->index_of[sr] = i; | 
|  | rs->alpha_to[i] = sr; | 
|  | sr <<= 1; | 
|  | if (sr & (1 << symsize)) | 
|  | sr ^= gfpoly; | 
|  | sr &= rs->nn; | 
|  | } | 
|  | } else { | 
|  | sr = gffunc(0); | 
|  | for (i = 0; i < rs->nn; i++) { | 
|  | rs->index_of[sr] = i; | 
|  | rs->alpha_to[i] = sr; | 
|  | sr = gffunc(sr); | 
|  | } | 
|  | } | 
|  | /* If it's not primitive, exit */ | 
|  | if(sr != rs->alpha_to[0]) | 
|  | goto err; | 
|  |  | 
|  | /* Find prim-th root of 1, used in decoding */ | 
|  | for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); | 
|  | /* prim-th root of 1, index form */ | 
|  | rs->iprim = iprim / prim; | 
|  |  | 
|  | /* Form RS code generator polynomial from its roots */ | 
|  | rs->genpoly[0] = 1; | 
|  | for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { | 
|  | rs->genpoly[i + 1] = 1; | 
|  | /* Multiply rs->genpoly[] by  @**(root + x) */ | 
|  | for (j = i; j > 0; j--) { | 
|  | if (rs->genpoly[j] != 0) { | 
|  | rs->genpoly[j] = rs->genpoly[j -1] ^ | 
|  | rs->alpha_to[rs_modnn(rs, | 
|  | rs->index_of[rs->genpoly[j]] + root)]; | 
|  | } else | 
|  | rs->genpoly[j] = rs->genpoly[j - 1]; | 
|  | } | 
|  | /* rs->genpoly[0] can never be zero */ | 
|  | rs->genpoly[0] = | 
|  | rs->alpha_to[rs_modnn(rs, | 
|  | rs->index_of[rs->genpoly[0]] + root)]; | 
|  | } | 
|  | /* convert rs->genpoly[] to index form for quicker encoding */ | 
|  | for (i = 0; i <= nroots; i++) | 
|  | rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; | 
|  |  | 
|  | rs->users = 1; | 
|  | list_add(&rs->list, &codec_list); | 
|  | return rs; | 
|  |  | 
|  | err: | 
|  | kfree(rs->genpoly); | 
|  | kfree(rs->index_of); | 
|  | kfree(rs->alpha_to); | 
|  | kfree(rs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *  free_rs - Free the rs control structure | 
|  | *  @rs:	The control structure which is not longer used by the | 
|  | *		caller | 
|  | * | 
|  | * Free the control structure. If @rs is the last user of the associated | 
|  | * codec, free the codec as well. | 
|  | */ | 
|  | void free_rs(struct rs_control *rs) | 
|  | { | 
|  | struct rs_codec *cd; | 
|  |  | 
|  | if (!rs) | 
|  | return; | 
|  |  | 
|  | cd = rs->codec; | 
|  | mutex_lock(&rslistlock); | 
|  | cd->users--; | 
|  | if(!cd->users) { | 
|  | list_del(&cd->list); | 
|  | kfree(cd->alpha_to); | 
|  | kfree(cd->index_of); | 
|  | kfree(cd->genpoly); | 
|  | kfree(cd); | 
|  | } | 
|  | mutex_unlock(&rslistlock); | 
|  | kfree(rs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_rs); | 
|  |  | 
|  | /** | 
|  | * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one | 
|  | *  @symsize:	the symbol size (number of bits) | 
|  | *  @gfpoly:	the extended Galois field generator polynomial coefficients, | 
|  | *		with the 0th coefficient in the low order bit. The polynomial | 
|  | *		must be primitive; | 
|  | *  @gffunc:	pointer to function to generate the next field element, | 
|  | *		or the multiplicative identity element if given 0.  Used | 
|  | *		instead of gfpoly if gfpoly is 0 | 
|  | *  @fcr:	the first consecutive root of the rs code generator polynomial | 
|  | *		in index form | 
|  | *  @prim:	primitive element to generate polynomial roots | 
|  | *  @nroots:	RS code generator polynomial degree (number of roots) | 
|  | *  @gfp:	GFP_ flags for allocations | 
|  | */ | 
|  | static struct rs_control *init_rs_internal(int symsize, int gfpoly, | 
|  | int (*gffunc)(int), int fcr, | 
|  | int prim, int nroots, gfp_t gfp) | 
|  | { | 
|  | struct list_head *tmp; | 
|  | struct rs_control *rs; | 
|  | unsigned int bsize; | 
|  |  | 
|  | /* Sanity checks */ | 
|  | if (symsize < 1) | 
|  | return NULL; | 
|  | if (fcr < 0 || fcr >= (1<<symsize)) | 
|  | return NULL; | 
|  | if (prim <= 0 || prim >= (1<<symsize)) | 
|  | return NULL; | 
|  | if (nroots < 0 || nroots >= (1<<symsize)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * The decoder needs buffers in each control struct instance to | 
|  | * avoid variable size or large fixed size allocations on | 
|  | * stack. Size the buffers to arrays of [nroots + 1]. | 
|  | */ | 
|  | bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); | 
|  | rs = kzalloc(sizeof(*rs) + bsize, gfp); | 
|  | if (!rs) | 
|  | return NULL; | 
|  |  | 
|  | mutex_lock(&rslistlock); | 
|  |  | 
|  | /* Walk through the list and look for a matching entry */ | 
|  | list_for_each(tmp, &codec_list) { | 
|  | struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); | 
|  |  | 
|  | if (symsize != cd->mm) | 
|  | continue; | 
|  | if (gfpoly != cd->gfpoly) | 
|  | continue; | 
|  | if (gffunc != cd->gffunc) | 
|  | continue; | 
|  | if (fcr != cd->fcr) | 
|  | continue; | 
|  | if (prim != cd->prim) | 
|  | continue; | 
|  | if (nroots != cd->nroots) | 
|  | continue; | 
|  | /* We have a matching one already */ | 
|  | cd->users++; | 
|  | rs->codec = cd; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Create a new one */ | 
|  | rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); | 
|  | if (!rs->codec) { | 
|  | kfree(rs); | 
|  | rs = NULL; | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&rslistlock); | 
|  | return rs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_rs_gfp - Create a RS control struct and initialize it | 
|  | *  @symsize:	the symbol size (number of bits) | 
|  | *  @gfpoly:	the extended Galois field generator polynomial coefficients, | 
|  | *		with the 0th coefficient in the low order bit. The polynomial | 
|  | *		must be primitive; | 
|  | *  @fcr:	the first consecutive root of the rs code generator polynomial | 
|  | *		in index form | 
|  | *  @prim:	primitive element to generate polynomial roots | 
|  | *  @nroots:	RS code generator polynomial degree (number of roots) | 
|  | *  @gfp:	Memory allocation flags. | 
|  | */ | 
|  | struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, | 
|  | int nroots, gfp_t gfp) | 
|  | { | 
|  | return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(init_rs_gfp); | 
|  |  | 
|  | /** | 
|  | * init_rs_non_canonical - Allocate rs control struct for fields with | 
|  | *                         non-canonical representation | 
|  | *  @symsize:	the symbol size (number of bits) | 
|  | *  @gffunc:	pointer to function to generate the next field element, | 
|  | *		or the multiplicative identity element if given 0.  Used | 
|  | *		instead of gfpoly if gfpoly is 0 | 
|  | *  @fcr:	the first consecutive root of the rs code generator polynomial | 
|  | *		in index form | 
|  | *  @prim:	primitive element to generate polynomial roots | 
|  | *  @nroots:	RS code generator polynomial degree (number of roots) | 
|  | */ | 
|  | struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), | 
|  | int fcr, int prim, int nroots) | 
|  | { | 
|  | return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, | 
|  | GFP_KERNEL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(init_rs_non_canonical); | 
|  |  | 
|  | #ifdef CONFIG_REED_SOLOMON_ENC8 | 
|  | /** | 
|  | *  encode_rs8 - Calculate the parity for data values (8bit data width) | 
|  | *  @rsc:	the rs control structure | 
|  | *  @data:	data field of a given type | 
|  | *  @len:	data length | 
|  | *  @par:	parity data, must be initialized by caller (usually all 0) | 
|  | *  @invmsk:	invert data mask (will be xored on data) | 
|  | * | 
|  | *  The parity uses a uint16_t data type to enable | 
|  | *  symbol size > 8. The calling code must take care of encoding of the | 
|  | *  syndrome result for storage itself. | 
|  | */ | 
|  | int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, | 
|  | uint16_t invmsk) | 
|  | { | 
|  | #include "encode_rs.c" | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(encode_rs8); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_REED_SOLOMON_DEC8 | 
|  | /** | 
|  | *  decode_rs8 - Decode codeword (8bit data width) | 
|  | *  @rsc:	the rs control structure | 
|  | *  @data:	data field of a given type | 
|  | *  @par:	received parity data field | 
|  | *  @len:	data length | 
|  | *  @s: 	syndrome data field, must be in index form | 
|  | *		(if NULL, syndrome is calculated) | 
|  | *  @no_eras:	number of erasures | 
|  | *  @eras_pos:	position of erasures, can be NULL | 
|  | *  @invmsk:	invert data mask (will be xored on data, not on parity!) | 
|  | *  @corr:	buffer to store correction bitmask on eras_pos | 
|  | * | 
|  | *  The syndrome and parity uses a uint16_t data type to enable | 
|  | *  symbol size > 8. The calling code must take care of decoding of the | 
|  | *  syndrome result and the received parity before calling this code. | 
|  | * | 
|  | *  Note: The rs_control struct @rsc contains buffers which are used for | 
|  | *  decoding, so the caller has to ensure that decoder invocations are | 
|  | *  serialized. | 
|  | * | 
|  | *  Returns the number of corrected symbols or -EBADMSG for uncorrectable | 
|  | *  errors. The count includes errors in the parity. | 
|  | */ | 
|  | int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, | 
|  | uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, | 
|  | uint16_t *corr) | 
|  | { | 
|  | #include "decode_rs.c" | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(decode_rs8); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_REED_SOLOMON_ENC16 | 
|  | /** | 
|  | *  encode_rs16 - Calculate the parity for data values (16bit data width) | 
|  | *  @rsc:	the rs control structure | 
|  | *  @data:	data field of a given type | 
|  | *  @len:	data length | 
|  | *  @par:	parity data, must be initialized by caller (usually all 0) | 
|  | *  @invmsk:	invert data mask (will be xored on data, not on parity!) | 
|  | * | 
|  | *  Each field in the data array contains up to symbol size bits of valid data. | 
|  | */ | 
|  | int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, | 
|  | uint16_t invmsk) | 
|  | { | 
|  | #include "encode_rs.c" | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(encode_rs16); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_REED_SOLOMON_DEC16 | 
|  | /** | 
|  | *  decode_rs16 - Decode codeword (16bit data width) | 
|  | *  @rsc:	the rs control structure | 
|  | *  @data:	data field of a given type | 
|  | *  @par:	received parity data field | 
|  | *  @len:	data length | 
|  | *  @s: 	syndrome data field, must be in index form | 
|  | *		(if NULL, syndrome is calculated) | 
|  | *  @no_eras:	number of erasures | 
|  | *  @eras_pos:	position of erasures, can be NULL | 
|  | *  @invmsk:	invert data mask (will be xored on data, not on parity!) | 
|  | *  @corr:	buffer to store correction bitmask on eras_pos | 
|  | * | 
|  | *  Each field in the data array contains up to symbol size bits of valid data. | 
|  | * | 
|  | *  Note: The rc_control struct @rsc contains buffers which are used for | 
|  | *  decoding, so the caller has to ensure that decoder invocations are | 
|  | *  serialized. | 
|  | * | 
|  | *  Returns the number of corrected symbols or -EBADMSG for uncorrectable | 
|  | *  errors. The count includes errors in the parity. | 
|  | */ | 
|  | int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, | 
|  | uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, | 
|  | uint16_t *corr) | 
|  | { | 
|  | #include "decode_rs.c" | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(decode_rs16); | 
|  | #endif | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); | 
|  | MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); | 
|  |  |