|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * tda18271c2dd: Driver for the TDA18271C2 tuner | 
|  | * | 
|  | * Copyright (C) 2010 Digital Devices GmbH | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #include <media/dvb_frontend.h> | 
|  | #include "tda18271c2dd.h" | 
|  |  | 
|  | /* Max transfer size done by I2C transfer functions */ | 
|  | #define MAX_XFER_SIZE  64 | 
|  |  | 
|  | struct SStandardParam { | 
|  | s32   m_IFFrequency; | 
|  | u32   m_BandWidth; | 
|  | u8    m_EP3_4_0; | 
|  | u8    m_EB22; | 
|  | }; | 
|  |  | 
|  | struct SMap { | 
|  | u32   m_Frequency; | 
|  | u8    m_Param; | 
|  | }; | 
|  |  | 
|  | struct SMapI { | 
|  | u32   m_Frequency; | 
|  | s32    m_Param; | 
|  | }; | 
|  |  | 
|  | struct SMap2 { | 
|  | u32   m_Frequency; | 
|  | u8    m_Param1; | 
|  | u8    m_Param2; | 
|  | }; | 
|  |  | 
|  | struct SRFBandMap { | 
|  | u32   m_RF_max; | 
|  | u32   m_RF1_Default; | 
|  | u32   m_RF2_Default; | 
|  | u32   m_RF3_Default; | 
|  | }; | 
|  |  | 
|  | enum ERegister { | 
|  | ID = 0, | 
|  | TM, | 
|  | PL, | 
|  | EP1, EP2, EP3, EP4, EP5, | 
|  | CPD, CD1, CD2, CD3, | 
|  | MPD, MD1, MD2, MD3, | 
|  | EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, | 
|  | EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, | 
|  | EB21, EB22, EB23, | 
|  | NUM_REGS | 
|  | }; | 
|  |  | 
|  | struct tda_state { | 
|  | struct i2c_adapter *i2c; | 
|  | u8 adr; | 
|  |  | 
|  | u32   m_Frequency; | 
|  | u32   IF; | 
|  |  | 
|  | u8    m_IFLevelAnalog; | 
|  | u8    m_IFLevelDigital; | 
|  | u8    m_IFLevelDVBC; | 
|  | u8    m_IFLevelDVBT; | 
|  |  | 
|  | u8    m_EP4; | 
|  | u8    m_EP3_Standby; | 
|  |  | 
|  | bool  m_bMaster; | 
|  |  | 
|  | s32   m_SettlingTime; | 
|  |  | 
|  | u8    m_Regs[NUM_REGS]; | 
|  |  | 
|  | /* Tracking filter settings for band 0..6 */ | 
|  | u32   m_RF1[7]; | 
|  | s32   m_RF_A1[7]; | 
|  | s32   m_RF_B1[7]; | 
|  | u32   m_RF2[7]; | 
|  | s32   m_RF_A2[7]; | 
|  | s32   m_RF_B2[7]; | 
|  | u32   m_RF3[7]; | 
|  |  | 
|  | u8    m_TMValue_RFCal;    /* Calibration temperature */ | 
|  |  | 
|  | bool  m_bFMInput;         /* true to use Pin 8 for FM Radio */ | 
|  |  | 
|  | }; | 
|  |  | 
|  | static int PowerScan(struct tda_state *state, | 
|  | u8 RFBand, u32 RF_in, | 
|  | u32 *pRF_Out, bool *pbcal); | 
|  |  | 
|  | static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) | 
|  | { | 
|  | struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD, | 
|  | .buf  = data, .len   = len} }; | 
|  | return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; | 
|  | } | 
|  |  | 
|  | static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) | 
|  | { | 
|  | struct i2c_msg msg = {.addr = adr, .flags = 0, | 
|  | .buf = data, .len = len}; | 
|  |  | 
|  | if (i2c_transfer(adap, &msg, 1) != 1) { | 
|  | printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int WriteRegs(struct tda_state *state, | 
|  | u8 SubAddr, u8 *Regs, u16 nRegs) | 
|  | { | 
|  | u8 data[MAX_XFER_SIZE]; | 
|  |  | 
|  | if (1 + nRegs > sizeof(data)) { | 
|  | printk(KERN_WARNING | 
|  | "%s: i2c wr: len=%d is too big!\n", | 
|  | KBUILD_MODNAME, nRegs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | data[0] = SubAddr; | 
|  | memcpy(data + 1, Regs, nRegs); | 
|  | return i2c_write(state->i2c, state->adr, data, nRegs + 1); | 
|  | } | 
|  |  | 
|  | static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) | 
|  | { | 
|  | u8 msg[2] = {SubAddr, Reg}; | 
|  |  | 
|  | return i2c_write(state->i2c, state->adr, msg, 2); | 
|  | } | 
|  |  | 
|  | static int Read(struct tda_state *state, u8 * Regs) | 
|  | { | 
|  | return i2c_readn(state->i2c, state->adr, Regs, 16); | 
|  | } | 
|  |  | 
|  | static int ReadExtented(struct tda_state *state, u8 * Regs) | 
|  | { | 
|  | return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); | 
|  | } | 
|  |  | 
|  | static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) | 
|  | { | 
|  | return WriteRegs(state, RegFrom, | 
|  | &state->m_Regs[RegFrom], RegTo-RegFrom+1); | 
|  | } | 
|  | static int UpdateReg(struct tda_state *state, u8 Reg) | 
|  | { | 
|  | return WriteReg(state, Reg, state->m_Regs[Reg]); | 
|  | } | 
|  |  | 
|  | #include "tda18271c2dd_maps.h" | 
|  |  | 
|  | static void reset(struct tda_state *state) | 
|  | { | 
|  | u32   ulIFLevelAnalog = 0; | 
|  | u32   ulIFLevelDigital = 2; | 
|  | u32   ulIFLevelDVBC = 7; | 
|  | u32   ulIFLevelDVBT = 6; | 
|  | u32   ulXTOut = 0; | 
|  | u32   ulStandbyMode = 0x06;    /* Send in stdb, but leave osc on */ | 
|  | u32   ulSlave = 0; | 
|  | u32   ulFMInput = 0; | 
|  | u32   ulSettlingTime = 100; | 
|  |  | 
|  | state->m_Frequency         = 0; | 
|  | state->m_SettlingTime = 100; | 
|  | state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; | 
|  | state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; | 
|  | state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; | 
|  | state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; | 
|  |  | 
|  | state->m_EP4 = 0x20; | 
|  | if (ulXTOut != 0) | 
|  | state->m_EP4 |= 0x40; | 
|  |  | 
|  | state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; | 
|  | state->m_bMaster = (ulSlave == 0); | 
|  |  | 
|  | state->m_SettlingTime = ulSettlingTime; | 
|  |  | 
|  | state->m_bFMInput = (ulFMInput == 2); | 
|  | } | 
|  |  | 
|  | static bool SearchMap1(const struct SMap map[], u32 frequency, u8 *param) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while ((map[i].m_Frequency != 0) && (frequency > map[i].m_Frequency)) | 
|  | i += 1; | 
|  | if (map[i].m_Frequency == 0) | 
|  | return false; | 
|  | *param = map[i].m_Param; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SearchMap2(const struct SMapI map[], u32 frequency, s32 *param) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while ((map[i].m_Frequency != 0) && | 
|  | (frequency > map[i].m_Frequency)) | 
|  | i += 1; | 
|  | if (map[i].m_Frequency == 0) | 
|  | return false; | 
|  | *param = map[i].m_Param; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SearchMap3(const struct SMap2 map[], u32 frequency, u8 *param1, | 
|  | u8 *param2) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while ((map[i].m_Frequency != 0) && | 
|  | (frequency > map[i].m_Frequency)) | 
|  | i += 1; | 
|  | if (map[i].m_Frequency == 0) | 
|  | return false; | 
|  | *param1 = map[i].m_Param1; | 
|  | *param2 = map[i].m_Param2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SearchMap4(const struct SRFBandMap map[], u32 frequency, u8 *rfband) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while (i < 7 && (frequency > map[i].m_RF_max)) | 
|  | i += 1; | 
|  | if (i == 7) | 
|  | return false; | 
|  | *rfband = i; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) | 
|  | { | 
|  | int status = 0; | 
|  |  | 
|  | do { | 
|  | u8 Regs[16]; | 
|  | state->m_Regs[TM] |= 0x10; | 
|  | status = UpdateReg(state, TM); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = Read(state, Regs); | 
|  | if (status < 0) | 
|  | break; | 
|  | if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || | 
|  | ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { | 
|  | state->m_Regs[TM] ^= 0x20; | 
|  | status = UpdateReg(state, TM); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(10); | 
|  | status = Read(state, Regs); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  | *pTM_Value = (Regs[TM] & 0x20) | 
|  | ? m_Thermometer_Map_2[Regs[TM] & 0x0F] | 
|  | : m_Thermometer_Map_1[Regs[TM] & 0x0F] ; | 
|  | state->m_Regs[TM] &= ~0x10;        /* Thermometer off */ | 
|  | status = UpdateReg(state, TM); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EP4] &= ~0x03;       /* CAL_mode = 0 ????????? */ | 
|  | status = UpdateReg(state, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | } while (0); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int StandBy(struct tda_state *state) | 
|  | { | 
|  | int status = 0; | 
|  | do { | 
|  | state->m_Regs[EB12] &= ~0x20;  /* PD_AGC1_Det = 0 */ | 
|  | status = UpdateReg(state, EB12); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB18] &= ~0x83;  /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ | 
|  | status = UpdateReg(state, EB18); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ | 
|  | state->m_Regs[EP3] = state->m_EP3_Standby; | 
|  | status = UpdateReg(state, EP3); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ | 
|  | status = UpdateRegs(state, EB21, EB23); | 
|  | if (status < 0) | 
|  | break; | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int CalcMainPLL(struct tda_state *state, u32 freq) | 
|  | { | 
|  |  | 
|  | u8  PostDiv; | 
|  | u8  Div; | 
|  | u64 OscFreq; | 
|  | u32 MainDiv; | 
|  |  | 
|  | if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) | 
|  | return -EINVAL; | 
|  |  | 
|  | OscFreq = (u64) freq * (u64) Div; | 
|  | OscFreq *= (u64) 16384; | 
|  | do_div(OscFreq, (u64)16000000); | 
|  | MainDiv = OscFreq; | 
|  |  | 
|  | state->m_Regs[MPD] = PostDiv & 0x77; | 
|  | state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); | 
|  | state->m_Regs[MD2] = ((MainDiv >>  8) & 0xFF); | 
|  | state->m_Regs[MD3] = (MainDiv & 0xFF); | 
|  |  | 
|  | return UpdateRegs(state, MPD, MD3); | 
|  | } | 
|  |  | 
|  | static int CalcCalPLL(struct tda_state *state, u32 freq) | 
|  | { | 
|  | u8 PostDiv; | 
|  | u8 Div; | 
|  | u64 OscFreq; | 
|  | u32 CalDiv; | 
|  |  | 
|  | if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) | 
|  | return -EINVAL; | 
|  |  | 
|  | OscFreq = (u64)freq * (u64)Div; | 
|  | /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ | 
|  | OscFreq *= (u64)16384; | 
|  | do_div(OscFreq, (u64)16000000); | 
|  | CalDiv = OscFreq; | 
|  |  | 
|  | state->m_Regs[CPD] = PostDiv; | 
|  | state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); | 
|  | state->m_Regs[CD2] = ((CalDiv >>  8) & 0xFF); | 
|  | state->m_Regs[CD3] = (CalDiv & 0xFF); | 
|  |  | 
|  | return UpdateRegs(state, CPD, CD3); | 
|  | } | 
|  |  | 
|  | static int CalibrateRF(struct tda_state *state, | 
|  | u8 RFBand, u32 freq, s32 *pCprog) | 
|  | { | 
|  | int status = 0; | 
|  | u8 Regs[NUM_REGS]; | 
|  | do { | 
|  | u8 BP_Filter = 0; | 
|  | u8 GainTaper = 0; | 
|  | u8 RFC_K = 0; | 
|  | u8 RFC_M = 0; | 
|  |  | 
|  | state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ | 
|  | status = UpdateReg(state, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB18] |= 0x03;  /* AGC1_Gain = 3 */ | 
|  | status = UpdateReg(state, EB18); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | /* Switching off LT (as datasheet says) causes calibration on C1 to fail */ | 
|  | /* (Readout of Cprog is always 255) */ | 
|  | if (state->m_Regs[ID] != 0x83)    /* C1: ID == 83, C2: ID == 84 */ | 
|  | state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ | 
|  |  | 
|  | if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && | 
|  | SearchMap1(m_GainTaper_Map, freq, &GainTaper) && | 
|  | SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) | 
|  | return -EINVAL; | 
|  |  | 
|  | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; | 
|  | state->m_Regs[EP2] = (RFBand << 5) | GainTaper; | 
|  |  | 
|  | state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); | 
|  |  | 
|  | status = UpdateRegs(state, EP1, EP3); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EB13); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB4] |= 0x20;    /* LO_ForceSrce = 1 */ | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB7] |= 0x20;    /* CAL_ForceSrce = 1 */ | 
|  | status = UpdateReg(state, EB7); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ | 
|  | status = UpdateReg(state, EB14); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB20] &= ~0x20;  /* ForceLock = 0; */ | 
|  | status = UpdateReg(state, EB20); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EP4] |= 0x03;  /* CAL_Mode = 3 */ | 
|  | status = UpdateRegs(state, EP4, EP5); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | status = CalcCalPLL(state, freq); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = CalcMainPLL(state, freq + 1000000); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB4] &= ~0x20;    /* LO_ForceSrce = 0 */ | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB7] &= ~0x20;    /* CAL_ForceSrce = 0 */ | 
|  | status = UpdateReg(state, EB7); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(10); | 
|  |  | 
|  | state->m_Regs[EB20] |= 0x20;  /* ForceLock = 1; */ | 
|  | status = UpdateReg(state, EB20); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(60); | 
|  |  | 
|  | state->m_Regs[EP4] &= ~0x03;  /* CAL_Mode = 0 */ | 
|  | state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ | 
|  | state->m_Regs[EB18] &= ~0x03;  /* AGC1_Gain = 0 */ | 
|  | status = UpdateReg(state, EB18); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateRegs(state, EP3, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | status = ReadExtented(state, Regs); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | *pCprog = Regs[EB14]; | 
|  |  | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int RFTrackingFiltersInit(struct tda_state *state, | 
|  | u8 RFBand) | 
|  | { | 
|  | int status = 0; | 
|  |  | 
|  | u32   RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; | 
|  | u32   RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; | 
|  | u32   RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; | 
|  | bool    bcal = false; | 
|  |  | 
|  | s32    Cprog_cal1 = 0; | 
|  | s32    Cprog_table1 = 0; | 
|  | s32    Cprog_cal2 = 0; | 
|  | s32    Cprog_table2 = 0; | 
|  | s32    Cprog_cal3 = 0; | 
|  | s32    Cprog_table3 = 0; | 
|  |  | 
|  | state->m_RF_A1[RFBand] = 0; | 
|  | state->m_RF_B1[RFBand] = 0; | 
|  | state->m_RF_A2[RFBand] = 0; | 
|  | state->m_RF_B2[RFBand] = 0; | 
|  |  | 
|  | do { | 
|  | status = PowerScan(state, RFBand, RF1, &RF1, &bcal); | 
|  | if (status < 0) | 
|  | break; | 
|  | if (bcal) { | 
|  | status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  | SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); | 
|  | if (!bcal) | 
|  | Cprog_cal1 = Cprog_table1; | 
|  | state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; | 
|  | /* state->m_RF_A1[RF_Band] = ???? */ | 
|  |  | 
|  | if (RF2 == 0) | 
|  | break; | 
|  |  | 
|  | status = PowerScan(state, RFBand, RF2, &RF2, &bcal); | 
|  | if (status < 0) | 
|  | break; | 
|  | if (bcal) { | 
|  | status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  | SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); | 
|  | if (!bcal) | 
|  | Cprog_cal2 = Cprog_table2; | 
|  |  | 
|  | state->m_RF_A1[RFBand] = | 
|  | (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / | 
|  | ((s32)(RF2) - (s32)(RF1)); | 
|  |  | 
|  | if (RF3 == 0) | 
|  | break; | 
|  |  | 
|  | status = PowerScan(state, RFBand, RF3, &RF3, &bcal); | 
|  | if (status < 0) | 
|  | break; | 
|  | if (bcal) { | 
|  | status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  | SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); | 
|  | if (!bcal) | 
|  | Cprog_cal3 = Cprog_table3; | 
|  | state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); | 
|  | state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; | 
|  |  | 
|  | } while (0); | 
|  |  | 
|  | state->m_RF1[RFBand] = RF1; | 
|  | state->m_RF2[RFBand] = RF2; | 
|  | state->m_RF3[RFBand] = RF3; | 
|  |  | 
|  | #if 0 | 
|  | printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, | 
|  | RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, | 
|  | state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); | 
|  | #endif | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int PowerScan(struct tda_state *state, | 
|  | u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) | 
|  | { | 
|  | int status = 0; | 
|  | do { | 
|  | u8   Gain_Taper = 0; | 
|  | s32  RFC_Cprog = 0; | 
|  | u8   CID_Target = 0; | 
|  | u8   CountLimit = 0; | 
|  | u32  freq_MainPLL; | 
|  | u8   Regs[NUM_REGS]; | 
|  | u8   CID_Gain; | 
|  | s32  Count = 0; | 
|  | int  sign  = 1; | 
|  | bool wait = false; | 
|  |  | 
|  | if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && | 
|  | SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && | 
|  | SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { | 
|  |  | 
|  | printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; | 
|  | state->m_Regs[EB14] = (RFC_Cprog); | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EB14); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | freq_MainPLL = RF_in + 1000000; | 
|  | status = CalcMainPLL(state, freq_MainPLL); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    /* CAL_mode = 1 */ | 
|  | status = UpdateReg(state, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP2);  /* Launch power measurement */ | 
|  | if (status < 0) | 
|  | break; | 
|  | status = ReadExtented(state, Regs); | 
|  | if (status < 0) | 
|  | break; | 
|  | CID_Gain = Regs[EB10] & 0x3F; | 
|  | state->m_Regs[ID] = Regs[ID];  /* Chip version, (needed for C1 workaround in CalibrateRF) */ | 
|  |  | 
|  | *pRF_Out = RF_in; | 
|  |  | 
|  | while (CID_Gain < CID_Target) { | 
|  | freq_MainPLL = RF_in + sign * Count + 1000000; | 
|  | status = CalcMainPLL(state, freq_MainPLL); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(wait ? 5 : 1); | 
|  | wait = false; | 
|  | status = UpdateReg(state, EP2);  /* Launch power measurement */ | 
|  | if (status < 0) | 
|  | break; | 
|  | status = ReadExtented(state, Regs); | 
|  | if (status < 0) | 
|  | break; | 
|  | CID_Gain = Regs[EB10] & 0x3F; | 
|  | Count += 200000; | 
|  |  | 
|  | if (Count < CountLimit * 100000) | 
|  | continue; | 
|  | if (sign < 0) | 
|  | break; | 
|  |  | 
|  | sign = -sign; | 
|  | Count = 200000; | 
|  | wait = true; | 
|  | } | 
|  | if (status < 0) | 
|  | break; | 
|  | if (CID_Gain >= CID_Target) { | 
|  | *pbcal = true; | 
|  | *pRF_Out = freq_MainPLL - 1000000; | 
|  | } else | 
|  | *pbcal = false; | 
|  | } while (0); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int PowerScanInit(struct tda_state *state) | 
|  | { | 
|  | int status = 0; | 
|  | do { | 
|  | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; | 
|  | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ | 
|  | status = UpdateRegs(state, EP3, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ | 
|  | status = UpdateReg(state, EB18); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ | 
|  | state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ | 
|  | status = UpdateRegs(state, EB21, EB23); | 
|  | if (status < 0) | 
|  | break; | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int CalcRFFilterCurve(struct tda_state *state) | 
|  | { | 
|  | int status = 0; | 
|  | do { | 
|  | msleep(200);      /* Temperature stabilisation */ | 
|  | status = PowerScanInit(state); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 0); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 1); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 2); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 3); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 4); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 5); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = RFTrackingFiltersInit(state, 6); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ | 
|  | if (status < 0) | 
|  | break; | 
|  | } while (0); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int FixedContentsI2CUpdate(struct tda_state *state) | 
|  | { | 
|  | static u8 InitRegs[] = { | 
|  | 0x08, 0x80, 0xC6, | 
|  | 0xDF, 0x16, 0x60, 0x80, | 
|  | 0x80, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, | 
|  | 0xFC, 0x01, 0x84, 0x41, | 
|  | 0x01, 0x84, 0x40, 0x07, | 
|  | 0x00, 0x00, 0x96, 0x3F, | 
|  | 0xC1, 0x00, 0x8F, 0x00, | 
|  | 0x00, 0x8C, 0x00, 0x20, | 
|  | 0xB3, 0x48, 0xB0, | 
|  | }; | 
|  | int status = 0; | 
|  | memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); | 
|  | do { | 
|  | status = UpdateRegs(state, TM, EB23); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | /* AGC1 gain setup */ | 
|  | state->m_Regs[EB17] = 0x00; | 
|  | status = UpdateReg(state, EB17); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB17] = 0x03; | 
|  | status = UpdateReg(state, EB17); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB17] = 0x43; | 
|  | status = UpdateReg(state, EB17); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB17] = 0x4C; | 
|  | status = UpdateReg(state, EB17); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | /* IRC Cal Low band */ | 
|  | state->m_Regs[EP3] = 0x1F; | 
|  | state->m_Regs[EP4] = 0x66; | 
|  | state->m_Regs[EP5] = 0x81; | 
|  | state->m_Regs[CPD] = 0xCC; | 
|  | state->m_Regs[CD1] = 0x6C; | 
|  | state->m_Regs[CD2] = 0x00; | 
|  | state->m_Regs[CD3] = 0x00; | 
|  | state->m_Regs[MPD] = 0xC5; | 
|  | state->m_Regs[MD1] = 0x77; | 
|  | state->m_Regs[MD2] = 0x08; | 
|  | state->m_Regs[MD3] = 0x00; | 
|  | status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | #if 0 | 
|  | state->m_Regs[EB4] = 0x61;          /* missing in sw */ | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(1); | 
|  | state->m_Regs[EB4] = 0x41; | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  |  | 
|  | state->m_Regs[EP5] = 0x85; | 
|  | state->m_Regs[CPD] = 0xCB; | 
|  | state->m_Regs[CD1] = 0x66; | 
|  | state->m_Regs[CD2] = 0x70; | 
|  | status = UpdateRegs(state, EP3, CD3); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(30); | 
|  |  | 
|  | /* IRC Cal mid band */ | 
|  | state->m_Regs[EP5] = 0x82; | 
|  | state->m_Regs[CPD] = 0xA8; | 
|  | state->m_Regs[CD2] = 0x00; | 
|  | state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ | 
|  | state->m_Regs[MD1] = 0x73; | 
|  | state->m_Regs[MD2] = 0x1A; | 
|  | status = UpdateRegs(state, EP3, MD3); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  |  | 
|  | state->m_Regs[EP5] = 0x86; | 
|  | state->m_Regs[CPD] = 0xA8; | 
|  | state->m_Regs[CD1] = 0x66; | 
|  | state->m_Regs[CD2] = 0xA0; | 
|  | status = UpdateRegs(state, EP3, CD3); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(30); | 
|  |  | 
|  | /* IRC Cal high band */ | 
|  | state->m_Regs[EP5] = 0x83; | 
|  | state->m_Regs[CPD] = 0x98; | 
|  | state->m_Regs[CD1] = 0x65; | 
|  | state->m_Regs[CD2] = 0x00; | 
|  | state->m_Regs[MPD] = 0x91;  /* Datasheet = 0x91 */ | 
|  | state->m_Regs[MD1] = 0x71; | 
|  | state->m_Regs[MD2] = 0xCD; | 
|  | status = UpdateRegs(state, EP3, MD3); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | state->m_Regs[EP5] = 0x87; | 
|  | state->m_Regs[CD1] = 0x65; | 
|  | state->m_Regs[CD2] = 0x50; | 
|  | status = UpdateRegs(state, EP3, CD3); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(5); | 
|  | status = UpdateReg(state, EP2); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(30); | 
|  |  | 
|  | /* Back to normal */ | 
|  | state->m_Regs[EP4] = 0x64; | 
|  | status = UpdateReg(state, EP4); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateReg(state, EP1); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int InitCal(struct tda_state *state) | 
|  | { | 
|  | int status = 0; | 
|  |  | 
|  | do { | 
|  | status = FixedContentsI2CUpdate(state); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = CalcRFFilterCurve(state); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = StandBy(state); | 
|  | if (status < 0) | 
|  | break; | 
|  | /* m_bInitDone = true; */ | 
|  | } while (0); | 
|  | return status; | 
|  | }; | 
|  |  | 
|  | static int RFTrackingFiltersCorrection(struct tda_state *state, | 
|  | u32 Frequency) | 
|  | { | 
|  | int status = 0; | 
|  | s32 Cprog_table; | 
|  | u8 RFBand; | 
|  | u8 dCoverdT; | 
|  |  | 
|  | if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || | 
|  | !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || | 
|  | !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) | 
|  |  | 
|  | return -EINVAL; | 
|  |  | 
|  | do { | 
|  | u8 TMValue_Current; | 
|  | u32   RF1 = state->m_RF1[RFBand]; | 
|  | u32   RF2 = state->m_RF1[RFBand]; | 
|  | u32   RF3 = state->m_RF1[RFBand]; | 
|  | s32    RF_A1 = state->m_RF_A1[RFBand]; | 
|  | s32    RF_B1 = state->m_RF_B1[RFBand]; | 
|  | s32    RF_A2 = state->m_RF_A2[RFBand]; | 
|  | s32    RF_B2 = state->m_RF_B2[RFBand]; | 
|  | s32 Capprox = 0; | 
|  | int TComp; | 
|  |  | 
|  | state->m_Regs[EP3] &= ~0xE0;  /* Power up */ | 
|  | status = UpdateReg(state, EP3); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | status = ThermometerRead(state, &TMValue_Current); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | if (RF3 == 0 || Frequency < RF2) | 
|  | Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; | 
|  | else | 
|  | Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; | 
|  |  | 
|  | TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; | 
|  |  | 
|  | Capprox += TComp; | 
|  |  | 
|  | if (Capprox < 0) | 
|  | Capprox = 0; | 
|  | else if (Capprox > 255) | 
|  | Capprox = 255; | 
|  |  | 
|  |  | 
|  | /* TODO Temperature compensation. There is defenitely a scale factor */ | 
|  | /*      missing in the datasheet, so leave it out for now.           */ | 
|  | state->m_Regs[EB14] = Capprox; | 
|  |  | 
|  | status = UpdateReg(state, EB14); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int ChannelConfiguration(struct tda_state *state, | 
|  | u32 Frequency, int Standard) | 
|  | { | 
|  |  | 
|  | s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; | 
|  | int status = 0; | 
|  |  | 
|  | u8 BP_Filter = 0; | 
|  | u8 RF_Band = 0; | 
|  | u8 GainTaper = 0; | 
|  | u8 IR_Meas = 0; | 
|  |  | 
|  | state->IF = IntermediateFrequency; | 
|  | /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ | 
|  | /* get values from tables */ | 
|  |  | 
|  | if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && | 
|  | SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && | 
|  | SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && | 
|  | SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { | 
|  |  | 
|  | printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | do { | 
|  | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; | 
|  | state->m_Regs[EP3] &= ~0x04;   /* switch RFAGC to high speed mode */ | 
|  |  | 
|  | /* m_EP4 default for XToutOn, CAL_Mode (0) */ | 
|  | state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); | 
|  | /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ | 
|  | if (Standard <= HF_AnalogMax) | 
|  | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; | 
|  | else if (Standard <= HF_ATSC) | 
|  | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; | 
|  | else if (Standard <= HF_DVBC) | 
|  | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; | 
|  | else | 
|  | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; | 
|  |  | 
|  | if ((Standard == HF_FM_Radio) && state->m_bFMInput) | 
|  | state->m_Regs[EP4] |= 0x80; | 
|  |  | 
|  | state->m_Regs[MPD] &= ~0x80; | 
|  | if (Standard > HF_AnalogMax) | 
|  | state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ | 
|  |  | 
|  | state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; | 
|  |  | 
|  | /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ | 
|  | if (Standard == HF_FM_Radio) | 
|  | state->m_Regs[EB23] |=  0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ | 
|  | else | 
|  | state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ | 
|  |  | 
|  | status = UpdateRegs(state, EB22, EB23); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   /* Dis_Power_level = 1, Filter */ | 
|  | state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; | 
|  | state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; | 
|  |  | 
|  | state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | | 
|  | (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ | 
|  | /* AGC1_always_master = 0 */ | 
|  | /* AGC_firstn = 0 */ | 
|  | status = UpdateReg(state, EB1); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | if (state->m_bMaster) { | 
|  | status = CalcMainPLL(state, Frequency + IntermediateFrequency); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateRegs(state, TM, EP5); | 
|  | if (status < 0) | 
|  | break; | 
|  | state->m_Regs[EB4] |= 0x20;    /* LO_forceSrce = 1 */ | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(1); | 
|  | state->m_Regs[EB4] &= ~0x20;   /* LO_forceSrce = 0 */ | 
|  | status = UpdateReg(state, EB4); | 
|  | if (status < 0) | 
|  | break; | 
|  | } else { | 
|  | u8 PostDiv = 0; | 
|  | u8 Div; | 
|  | status = CalcCalPLL(state, Frequency + IntermediateFrequency); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); | 
|  | state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); | 
|  | status = UpdateReg(state, MPD); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = UpdateRegs(state, TM, EP5); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | state->m_Regs[EB7] |= 0x20;    /* CAL_forceSrce = 1 */ | 
|  | status = UpdateReg(state, EB7); | 
|  | if (status < 0) | 
|  | break; | 
|  | msleep(1); | 
|  | state->m_Regs[EB7] &= ~0x20;   /* CAL_forceSrce = 0 */ | 
|  | status = UpdateReg(state, EB7); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  | msleep(20); | 
|  | if (Standard != HF_FM_Radio) | 
|  | state->m_Regs[EP3] |= 0x04;    /* RFAGC to normal mode */ | 
|  | status = UpdateReg(state, EP3); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int sleep(struct dvb_frontend *fe) | 
|  | { | 
|  | struct tda_state *state = fe->tuner_priv; | 
|  |  | 
|  | StandBy(state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init(struct dvb_frontend *fe) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void release(struct dvb_frontend *fe) | 
|  | { | 
|  | kfree(fe->tuner_priv); | 
|  | fe->tuner_priv = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int set_params(struct dvb_frontend *fe) | 
|  | { | 
|  | struct tda_state *state = fe->tuner_priv; | 
|  | int status = 0; | 
|  | int Standard; | 
|  | u32 bw = fe->dtv_property_cache.bandwidth_hz; | 
|  | u32 delsys  = fe->dtv_property_cache.delivery_system; | 
|  |  | 
|  | state->m_Frequency = fe->dtv_property_cache.frequency; | 
|  |  | 
|  | switch (delsys) { | 
|  | case  SYS_DVBT: | 
|  | case  SYS_DVBT2: | 
|  | switch (bw) { | 
|  | case 6000000: | 
|  | Standard = HF_DVBT_6MHZ; | 
|  | break; | 
|  | case 7000000: | 
|  | Standard = HF_DVBT_7MHZ; | 
|  | break; | 
|  | case 8000000: | 
|  | Standard = HF_DVBT_8MHZ; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case SYS_DVBC_ANNEX_A: | 
|  | case SYS_DVBC_ANNEX_C: | 
|  | if (bw <= 6000000) | 
|  | Standard = HF_DVBC_6MHZ; | 
|  | else if (bw <= 7000000) | 
|  | Standard = HF_DVBC_7MHZ; | 
|  | else | 
|  | Standard = HF_DVBC_8MHZ; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | do { | 
|  | status = RFTrackingFiltersCorrection(state, state->m_Frequency); | 
|  | if (status < 0) | 
|  | break; | 
|  | status = ChannelConfiguration(state, state->m_Frequency, | 
|  | Standard); | 
|  | if (status < 0) | 
|  | break; | 
|  |  | 
|  | msleep(state->m_SettlingTime);  /* Allow AGC's to settle down */ | 
|  | } while (0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) | 
|  | { | 
|  | if (IFAgc < 500) { | 
|  | /* Scale this from 0 to 50000 */ | 
|  | *pSignalStrength = IFAgc * 100; | 
|  | } else { | 
|  | /* Scale range 500-1500 to 50000-80000 */ | 
|  | *pSignalStrength = 50000 + (IFAgc - 500) * 30; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) | 
|  | { | 
|  | struct tda_state *state = fe->tuner_priv; | 
|  |  | 
|  | *frequency = state->IF; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) | 
|  | { | 
|  | /* struct tda_state *state = fe->tuner_priv; */ | 
|  | /* *bandwidth = priv->bandwidth; */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const struct dvb_tuner_ops tuner_ops = { | 
|  | .info = { | 
|  | .name = "NXP TDA18271C2D", | 
|  | .frequency_min_hz  =  47125 * kHz, | 
|  | .frequency_max_hz  =    865 * MHz, | 
|  | .frequency_step_hz =  62500 | 
|  | }, | 
|  | .init              = init, | 
|  | .sleep             = sleep, | 
|  | .set_params        = set_params, | 
|  | .release           = release, | 
|  | .get_if_frequency  = get_if_frequency, | 
|  | .get_bandwidth     = get_bandwidth, | 
|  | }; | 
|  |  | 
|  | struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, | 
|  | struct i2c_adapter *i2c, u8 adr) | 
|  | { | 
|  | struct tda_state *state; | 
|  |  | 
|  | state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); | 
|  | if (!state) | 
|  | return NULL; | 
|  |  | 
|  | fe->tuner_priv = state; | 
|  | state->adr = adr; | 
|  | state->i2c = i2c; | 
|  | memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); | 
|  | reset(state); | 
|  | InitCal(state); | 
|  |  | 
|  | return fe; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tda18271c2dd_attach); | 
|  |  | 
|  | MODULE_DESCRIPTION("TDA18271C2 driver"); | 
|  | MODULE_AUTHOR("DD"); | 
|  | MODULE_LICENSE("GPL"); |