|  | /* | 
|  | * hugetlbpage-backed filesystem.  Based on ramfs. | 
|  | * | 
|  | * Nadia Yvette Chambers, 2002 | 
|  | * | 
|  | * Copyright (C) 2002 Linus Torvalds. | 
|  | * License: GPL | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/thread_info.h> | 
|  | #include <asm/current.h> | 
|  | #include <linux/sched/signal.h>		/* remove ASAP */ | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/fs_parser.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/dnotify.h> | 
|  | #include <linux/statfs.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/sched/mm.h> | 
|  |  | 
|  | static const struct super_operations hugetlbfs_ops; | 
|  | static const struct address_space_operations hugetlbfs_aops; | 
|  | const struct file_operations hugetlbfs_file_operations; | 
|  | static const struct inode_operations hugetlbfs_dir_inode_operations; | 
|  | static const struct inode_operations hugetlbfs_inode_operations; | 
|  |  | 
|  | enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; | 
|  |  | 
|  | struct hugetlbfs_fs_context { | 
|  | struct hstate		*hstate; | 
|  | unsigned long long	max_size_opt; | 
|  | unsigned long long	min_size_opt; | 
|  | long			max_hpages; | 
|  | long			nr_inodes; | 
|  | long			min_hpages; | 
|  | enum hugetlbfs_size_type max_val_type; | 
|  | enum hugetlbfs_size_type min_val_type; | 
|  | kuid_t			uid; | 
|  | kgid_t			gid; | 
|  | umode_t			mode; | 
|  | }; | 
|  |  | 
|  | int sysctl_hugetlb_shm_group; | 
|  |  | 
|  | enum hugetlb_param { | 
|  | Opt_gid, | 
|  | Opt_min_size, | 
|  | Opt_mode, | 
|  | Opt_nr_inodes, | 
|  | Opt_pagesize, | 
|  | Opt_size, | 
|  | Opt_uid, | 
|  | }; | 
|  |  | 
|  | static const struct fs_parameter_spec hugetlb_fs_parameters[] = { | 
|  | fsparam_u32   ("gid",		Opt_gid), | 
|  | fsparam_string("min_size",	Opt_min_size), | 
|  | fsparam_u32   ("mode",		Opt_mode), | 
|  | fsparam_string("nr_inodes",	Opt_nr_inodes), | 
|  | fsparam_string("pagesize",	Opt_pagesize), | 
|  | fsparam_string("size",		Opt_size), | 
|  | fsparam_u32   ("uid",		Opt_uid), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, | 
|  | struct inode *inode, pgoff_t index) | 
|  | { | 
|  | vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, | 
|  | index); | 
|  | } | 
|  |  | 
|  | static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) | 
|  | { | 
|  | mpol_cond_put(vma->vm_policy); | 
|  | } | 
|  | #else | 
|  | static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, | 
|  | struct inode *inode, pgoff_t index) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void huge_pagevec_release(struct pagevec *pvec) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(pvec); ++i) | 
|  | put_page(pvec->pages[i]); | 
|  |  | 
|  | pagevec_reinit(pvec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mask used when checking the page offset value passed in via system | 
|  | * calls.  This value will be converted to a loff_t which is signed. | 
|  | * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the | 
|  | * value.  The extra bit (- 1 in the shift value) is to take the sign | 
|  | * bit into account. | 
|  | */ | 
|  | #define PGOFF_LOFFT_MAX \ | 
|  | (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1))) | 
|  |  | 
|  | static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | loff_t len, vma_len; | 
|  | int ret; | 
|  | struct hstate *h = hstate_file(file); | 
|  |  | 
|  | /* | 
|  | * vma address alignment (but not the pgoff alignment) has | 
|  | * already been checked by prepare_hugepage_range.  If you add | 
|  | * any error returns here, do so after setting VM_HUGETLB, so | 
|  | * is_vm_hugetlb_page tests below unmap_region go the right | 
|  | * way when do_mmap unwinds (may be important on powerpc | 
|  | * and ia64). | 
|  | */ | 
|  | vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; | 
|  | vma->vm_ops = &hugetlb_vm_ops; | 
|  |  | 
|  | /* | 
|  | * page based offset in vm_pgoff could be sufficiently large to | 
|  | * overflow a loff_t when converted to byte offset.  This can | 
|  | * only happen on architectures where sizeof(loff_t) == | 
|  | * sizeof(unsigned long).  So, only check in those instances. | 
|  | */ | 
|  | if (sizeof(unsigned long) == sizeof(loff_t)) { | 
|  | if (vma->vm_pgoff & PGOFF_LOFFT_MAX) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* must be huge page aligned */ | 
|  | if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma_len = (loff_t)(vma->vm_end - vma->vm_start); | 
|  | len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); | 
|  | /* check for overflow */ | 
|  | if (len < vma_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | inode_lock(inode); | 
|  | file_accessed(file); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | if (hugetlb_reserve_pages(inode, | 
|  | vma->vm_pgoff >> huge_page_order(h), | 
|  | len >> huge_page_shift(h), vma, | 
|  | vma->vm_flags)) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (vma->vm_flags & VM_WRITE && inode->i_size < len) | 
|  | i_size_write(inode, len); | 
|  | out: | 
|  | inode_unlock(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called under mmap_write_lock(mm). | 
|  | */ | 
|  |  | 
|  | #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA | 
|  | static unsigned long | 
|  | hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct vm_unmapped_area_info info; | 
|  |  | 
|  | info.flags = 0; | 
|  | info.length = len; | 
|  | info.low_limit = current->mm->mmap_base; | 
|  | info.high_limit = TASK_SIZE; | 
|  | info.align_mask = PAGE_MASK & ~huge_page_mask(h); | 
|  | info.align_offset = 0; | 
|  | return vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct vm_unmapped_area_info info; | 
|  |  | 
|  | info.flags = VM_UNMAPPED_AREA_TOPDOWN; | 
|  | info.length = len; | 
|  | info.low_limit = max(PAGE_SIZE, mmap_min_addr); | 
|  | info.high_limit = current->mm->mmap_base; | 
|  | info.align_mask = PAGE_MASK & ~huge_page_mask(h); | 
|  | info.align_offset = 0; | 
|  | addr = vm_unmapped_area(&info); | 
|  |  | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | if (unlikely(offset_in_page(addr))) { | 
|  | VM_BUG_ON(addr != -ENOMEM); | 
|  | info.flags = 0; | 
|  | info.low_limit = current->mm->mmap_base; | 
|  | info.high_limit = TASK_SIZE; | 
|  | addr = vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | struct hstate *h = hstate_file(file); | 
|  |  | 
|  | if (len & ~huge_page_mask(h)) | 
|  | return -EINVAL; | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) { | 
|  | if (prepare_hugepage_range(file, addr, len)) | 
|  | return -EINVAL; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | if (addr) { | 
|  | addr = ALIGN(addr, huge_page_size(h)); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || addr + len <= vm_start_gap(vma))) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use mm->get_unmapped_area value as a hint to use topdown routine. | 
|  | * If architectures have special needs, they should define their own | 
|  | * version of hugetlb_get_unmapped_area. | 
|  | */ | 
|  | if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) | 
|  | return hugetlb_get_unmapped_area_topdown(file, addr, len, | 
|  | pgoff, flags); | 
|  | return hugetlb_get_unmapped_area_bottomup(file, addr, len, | 
|  | pgoff, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static size_t | 
|  | hugetlbfs_read_actor(struct page *page, unsigned long offset, | 
|  | struct iov_iter *to, unsigned long size) | 
|  | { | 
|  | size_t copied = 0; | 
|  | int i, chunksize; | 
|  |  | 
|  | /* Find which 4k chunk and offset with in that chunk */ | 
|  | i = offset >> PAGE_SHIFT; | 
|  | offset = offset & ~PAGE_MASK; | 
|  |  | 
|  | while (size) { | 
|  | size_t n; | 
|  | chunksize = PAGE_SIZE; | 
|  | if (offset) | 
|  | chunksize -= offset; | 
|  | if (chunksize > size) | 
|  | chunksize = size; | 
|  | n = copy_page_to_iter(&page[i], offset, chunksize, to); | 
|  | copied += n; | 
|  | if (n != chunksize) | 
|  | return copied; | 
|  | offset = 0; | 
|  | size -= chunksize; | 
|  | i++; | 
|  | } | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Support for read() - Find the page attached to f_mapping and copy out the | 
|  | * data. Its *very* similar to do_generic_mapping_read(), we can't use that | 
|  | * since it has PAGE_SIZE assumptions. | 
|  | */ | 
|  | static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned long index = iocb->ki_pos >> huge_page_shift(h); | 
|  | unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); | 
|  | unsigned long end_index; | 
|  | loff_t isize; | 
|  | ssize_t retval = 0; | 
|  |  | 
|  | while (iov_iter_count(to)) { | 
|  | struct page *page; | 
|  | size_t nr, copied; | 
|  |  | 
|  | /* nr is the maximum number of bytes to copy from this page */ | 
|  | nr = huge_page_size(h); | 
|  | isize = i_size_read(inode); | 
|  | if (!isize) | 
|  | break; | 
|  | end_index = (isize - 1) >> huge_page_shift(h); | 
|  | if (index > end_index) | 
|  | break; | 
|  | if (index == end_index) { | 
|  | nr = ((isize - 1) & ~huge_page_mask(h)) + 1; | 
|  | if (nr <= offset) | 
|  | break; | 
|  | } | 
|  | nr = nr - offset; | 
|  |  | 
|  | /* Find the page */ | 
|  | page = find_lock_page(mapping, index); | 
|  | if (unlikely(page == NULL)) { | 
|  | /* | 
|  | * We have a HOLE, zero out the user-buffer for the | 
|  | * length of the hole or request. | 
|  | */ | 
|  | copied = iov_iter_zero(nr, to); | 
|  | } else { | 
|  | unlock_page(page); | 
|  |  | 
|  | /* | 
|  | * We have the page, copy it to user space buffer. | 
|  | */ | 
|  | copied = hugetlbfs_read_actor(page, offset, to, nr); | 
|  | put_page(page); | 
|  | } | 
|  | offset += copied; | 
|  | retval += copied; | 
|  | if (copied != nr && iov_iter_count(to)) { | 
|  | if (!retval) | 
|  | retval = -EFAULT; | 
|  | break; | 
|  | } | 
|  | index += offset >> huge_page_shift(h); | 
|  | offset &= ~huge_page_mask(h); | 
|  | } | 
|  | iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_write_begin(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | BUG(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void remove_huge_page(struct page *page) | 
|  | { | 
|  | ClearPageDirty(page); | 
|  | ClearPageUptodate(page); | 
|  | delete_from_page_cache(page); | 
|  | } | 
|  |  | 
|  | static void | 
|  | hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * end == 0 indicates that the entire range after | 
|  | * start should be unmapped. | 
|  | */ | 
|  | vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { | 
|  | unsigned long v_offset; | 
|  | unsigned long v_end; | 
|  |  | 
|  | /* | 
|  | * Can the expression below overflow on 32-bit arches? | 
|  | * No, because the interval tree returns us only those vmas | 
|  | * which overlap the truncated area starting at pgoff, | 
|  | * and no vma on a 32-bit arch can span beyond the 4GB. | 
|  | */ | 
|  | if (vma->vm_pgoff < start) | 
|  | v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; | 
|  | else | 
|  | v_offset = 0; | 
|  |  | 
|  | if (!end) | 
|  | v_end = vma->vm_end; | 
|  | else { | 
|  | v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) | 
|  | + vma->vm_start; | 
|  | if (v_end > vma->vm_end) | 
|  | v_end = vma->vm_end; | 
|  | } | 
|  |  | 
|  | unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, | 
|  | NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove_inode_hugepages handles two distinct cases: truncation and hole | 
|  | * punch.  There are subtle differences in operation for each case. | 
|  | * | 
|  | * truncation is indicated by end of range being LLONG_MAX | 
|  | *	In this case, we first scan the range and release found pages. | 
|  | *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv | 
|  | *	maps and global counts.  Page faults can not race with truncation | 
|  | *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents | 
|  | *	page faults in the truncated range by checking i_size.  i_size is | 
|  | *	modified while holding i_mmap_rwsem. | 
|  | * hole punch is indicated if end is not LLONG_MAX | 
|  | *	In the hole punch case we scan the range and release found pages. | 
|  | *	Only when releasing a page is the associated region/reserv map | 
|  | *	deleted.  The region/reserv map for ranges without associated | 
|  | *	pages are not modified.  Page faults can race with hole punch. | 
|  | *	This is indicated if we find a mapped page. | 
|  | * Note: If the passed end of range value is beyond the end of file, but | 
|  | * not LLONG_MAX this routine still performs a hole punch operation. | 
|  | */ | 
|  | static void remove_inode_hugepages(struct inode *inode, loff_t lstart, | 
|  | loff_t lend) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct address_space *mapping = &inode->i_data; | 
|  | const pgoff_t start = lstart >> huge_page_shift(h); | 
|  | const pgoff_t end = lend >> huge_page_shift(h); | 
|  | struct vm_area_struct pseudo_vma; | 
|  | struct pagevec pvec; | 
|  | pgoff_t next, index; | 
|  | int i, freed = 0; | 
|  | bool truncate_op = (lend == LLONG_MAX); | 
|  |  | 
|  | vma_init(&pseudo_vma, current->mm); | 
|  | pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); | 
|  | pagevec_init(&pvec); | 
|  | next = start; | 
|  | while (next < end) { | 
|  | /* | 
|  | * When no more pages are found, we are done. | 
|  | */ | 
|  | if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); ++i) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | u32 hash; | 
|  |  | 
|  | index = page->index; | 
|  | hash = hugetlb_fault_mutex_hash(mapping, index); | 
|  | if (!truncate_op) { | 
|  | /* | 
|  | * Only need to hold the fault mutex in the | 
|  | * hole punch case.  This prevents races with | 
|  | * page faults.  Races are not possible in the | 
|  | * case of truncation. | 
|  | */ | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If page is mapped, it was faulted in after being | 
|  | * unmapped in caller.  Unmap (again) now after taking | 
|  | * the fault mutex.  The mutex will prevent faults | 
|  | * until we finish removing the page. | 
|  | * | 
|  | * This race can only happen in the hole punch case. | 
|  | * Getting here in a truncate operation is a bug. | 
|  | */ | 
|  | if (unlikely(page_mapped(page))) { | 
|  | BUG_ON(truncate_op); | 
|  |  | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | i_mmap_lock_write(mapping); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  | hugetlb_vmdelete_list(&mapping->i_mmap, | 
|  | index * pages_per_huge_page(h), | 
|  | (index + 1) * pages_per_huge_page(h)); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | /* | 
|  | * We must free the huge page and remove from page | 
|  | * cache (remove_huge_page) BEFORE removing the | 
|  | * region/reserve map (hugetlb_unreserve_pages).  In | 
|  | * rare out of memory conditions, removal of the | 
|  | * region/reserve map could fail. Correspondingly, | 
|  | * the subpool and global reserve usage count can need | 
|  | * to be adjusted. | 
|  | */ | 
|  | VM_BUG_ON(PagePrivate(page)); | 
|  | remove_huge_page(page); | 
|  | freed++; | 
|  | if (!truncate_op) { | 
|  | if (unlikely(hugetlb_unreserve_pages(inode, | 
|  | index, index + 1, 1))) | 
|  | hugetlb_fix_reserve_counts(inode); | 
|  | } | 
|  |  | 
|  | unlock_page(page); | 
|  | if (!truncate_op) | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | } | 
|  | huge_pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (truncate_op) | 
|  | (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct resv_map *resv_map; | 
|  |  | 
|  | remove_inode_hugepages(inode, 0, LLONG_MAX); | 
|  |  | 
|  | /* | 
|  | * Get the resv_map from the address space embedded in the inode. | 
|  | * This is the address space which points to any resv_map allocated | 
|  | * at inode creation time.  If this is a device special inode, | 
|  | * i_mapping may not point to the original address space. | 
|  | */ | 
|  | resv_map = (struct resv_map *)(&inode->i_data)->private_data; | 
|  | /* Only regular and link inodes have associated reserve maps */ | 
|  | if (resv_map) | 
|  | resv_map_release(&resv_map->refs); | 
|  | clear_inode(inode); | 
|  | } | 
|  |  | 
|  | static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  |  | 
|  | BUG_ON(offset & ~huge_page_mask(h)); | 
|  | pgoff = offset >> PAGE_SHIFT; | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | i_size_write(inode, offset); | 
|  | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) | 
|  | hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); | 
|  | i_mmap_unlock_write(mapping); | 
|  | remove_inode_hugepages(inode, offset, LLONG_MAX); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | loff_t hpage_size = huge_page_size(h); | 
|  | loff_t hole_start, hole_end; | 
|  |  | 
|  | /* | 
|  | * For hole punch round up the beginning offset of the hole and | 
|  | * round down the end. | 
|  | */ | 
|  | hole_start = round_up(offset, hpage_size); | 
|  | hole_end = round_down(offset + len, hpage_size); | 
|  |  | 
|  | if (hole_end > hole_start) { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  |  | 
|  | inode_lock(inode); | 
|  |  | 
|  | /* protected by i_mutex */ | 
|  | if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { | 
|  | inode_unlock(inode); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) | 
|  | hugetlb_vmdelete_list(&mapping->i_mmap, | 
|  | hole_start >> PAGE_SHIFT, | 
|  | hole_end  >> PAGE_SHIFT); | 
|  | i_mmap_unlock_write(mapping); | 
|  | remove_inode_hugepages(inode, hole_start, hole_end); | 
|  | inode_unlock(inode); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, | 
|  | loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct vm_area_struct pseudo_vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | loff_t hpage_size = huge_page_size(h); | 
|  | unsigned long hpage_shift = huge_page_shift(h); | 
|  | pgoff_t start, index, end; | 
|  | int error; | 
|  | u32 hash; | 
|  |  | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) | 
|  | return hugetlbfs_punch_hole(inode, offset, len); | 
|  |  | 
|  | /* | 
|  | * Default preallocate case. | 
|  | * For this range, start is rounded down and end is rounded up | 
|  | * as well as being converted to page offsets. | 
|  | */ | 
|  | start = offset >> hpage_shift; | 
|  | end = (offset + len + hpage_size - 1) >> hpage_shift; | 
|  |  | 
|  | inode_lock(inode); | 
|  |  | 
|  | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
|  | error = inode_newsize_ok(inode, offset + len); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a pseudo vma as this is required by the huge page | 
|  | * allocation routines.  If NUMA is configured, use page index | 
|  | * as input to create an allocation policy. | 
|  | */ | 
|  | vma_init(&pseudo_vma, mm); | 
|  | pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); | 
|  | pseudo_vma.vm_file = file; | 
|  |  | 
|  | for (index = start; index < end; index++) { | 
|  | /* | 
|  | * This is supposed to be the vaddr where the page is being | 
|  | * faulted in, but we have no vaddr here. | 
|  | */ | 
|  | struct page *page; | 
|  | unsigned long addr; | 
|  | int avoid_reserve = 0; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * fallocate(2) manpage permits EINTR; we may have been | 
|  | * interrupted because we are using up too much memory. | 
|  | */ | 
|  | if (signal_pending(current)) { | 
|  | error = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set numa allocation policy based on index */ | 
|  | hugetlb_set_vma_policy(&pseudo_vma, inode, index); | 
|  |  | 
|  | /* addr is the offset within the file (zero based) */ | 
|  | addr = index * hpage_size; | 
|  |  | 
|  | /* | 
|  | * fault mutex taken here, protects against fault path | 
|  | * and hole punch.  inode_lock previously taken protects | 
|  | * against truncation. | 
|  | */ | 
|  | hash = hugetlb_fault_mutex_hash(mapping, index); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | /* See if already present in mapping to avoid alloc/free */ | 
|  | page = find_get_page(mapping, index); | 
|  | if (page) { | 
|  | put_page(page); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | hugetlb_drop_vma_policy(&pseudo_vma); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Allocate page and add to page cache */ | 
|  | page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); | 
|  | hugetlb_drop_vma_policy(&pseudo_vma); | 
|  | if (IS_ERR(page)) { | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | error = PTR_ERR(page); | 
|  | goto out; | 
|  | } | 
|  | clear_huge_page(page, addr, pages_per_huge_page(h)); | 
|  | __SetPageUptodate(page); | 
|  | error = huge_add_to_page_cache(page, mapping, index); | 
|  | if (unlikely(error)) { | 
|  | put_page(page); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | /* | 
|  | * unlock_page because locked by add_to_page_cache() | 
|  | * page_put due to reference from alloc_huge_page() | 
|  | */ | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
|  | i_size_write(inode, offset + len); | 
|  | inode->i_ctime = current_time(inode); | 
|  | out: | 
|  | inode_unlock(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | int error; | 
|  | unsigned int ia_valid = attr->ia_valid; | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  |  | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | error = setattr_prepare(dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (ia_valid & ATTR_SIZE) { | 
|  | loff_t oldsize = inode->i_size; | 
|  | loff_t newsize = attr->ia_size; | 
|  |  | 
|  | if (newsize & ~huge_page_mask(h)) | 
|  | return -EINVAL; | 
|  | /* protected by i_mutex */ | 
|  | if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || | 
|  | (newsize > oldsize && (info->seals & F_SEAL_GROW))) | 
|  | return -EPERM; | 
|  | error = hugetlb_vmtruncate(inode, newsize); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | setattr_copy(inode, attr); | 
|  | mark_inode_dirty(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct inode *hugetlbfs_get_root(struct super_block *sb, | 
|  | struct hugetlbfs_fs_context *ctx) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode->i_mode = S_IFDIR | ctx->mode; | 
|  | inode->i_uid = ctx->uid; | 
|  | inode->i_gid = ctx->gid; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); | 
|  | inode->i_op = &hugetlbfs_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | /* directory inodes start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never | 
|  | * be taken from reclaim -- unlike regular filesystems. This needs an | 
|  | * annotation because huge_pmd_share() does an allocation under hugetlb's | 
|  | * i_mmap_rwsem. | 
|  | */ | 
|  | static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; | 
|  |  | 
|  | static struct inode *hugetlbfs_get_inode(struct super_block *sb, | 
|  | struct inode *dir, | 
|  | umode_t mode, dev_t dev) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct resv_map *resv_map = NULL; | 
|  |  | 
|  | /* | 
|  | * Reserve maps are only needed for inodes that can have associated | 
|  | * page allocations. | 
|  | */ | 
|  | if (S_ISREG(mode) || S_ISLNK(mode)) { | 
|  | resv_map = resv_map_alloc(); | 
|  | if (!resv_map) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  |  | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode_init_owner(inode, dir, mode); | 
|  | lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, | 
|  | &hugetlbfs_i_mmap_rwsem_key); | 
|  | inode->i_mapping->a_ops = &hugetlbfs_aops; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); | 
|  | inode->i_mapping->private_data = resv_map; | 
|  | info->seals = F_SEAL_SEAL; | 
|  | switch (mode & S_IFMT) { | 
|  | default: | 
|  | init_special_inode(inode, mode, dev); | 
|  | break; | 
|  | case S_IFREG: | 
|  | inode->i_op = &hugetlbfs_inode_operations; | 
|  | inode->i_fop = &hugetlbfs_file_operations; | 
|  | break; | 
|  | case S_IFDIR: | 
|  | inode->i_op = &hugetlbfs_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* directory inodes start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | break; | 
|  | case S_IFLNK: | 
|  | inode->i_op = &page_symlink_inode_operations; | 
|  | inode_nohighmem(inode); | 
|  | break; | 
|  | } | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | } else { | 
|  | if (resv_map) | 
|  | kref_put(&resv_map->refs, resv_map_release); | 
|  | } | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * File creation. Allocate an inode, and we're done.. | 
|  | */ | 
|  | static int do_hugetlbfs_mknod(struct inode *dir, | 
|  | struct dentry *dentry, | 
|  | umode_t mode, | 
|  | dev_t dev, | 
|  | bool tmpfile) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); | 
|  | if (inode) { | 
|  | dir->i_ctime = dir->i_mtime = current_time(dir); | 
|  | if (tmpfile) { | 
|  | d_tmpfile(dentry, inode); | 
|  | } else { | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);/* Extra count - pin the dentry in core */ | 
|  | } | 
|  | error = 0; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_mknod(struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode, dev_t dev) | 
|  | { | 
|  | return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); | 
|  | if (!retval) | 
|  | inc_nlink(dir); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) | 
|  | { | 
|  | return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_tmpfile(struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_symlink(struct inode *dir, | 
|  | struct dentry *dentry, const char *symname) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); | 
|  | if (inode) { | 
|  | int l = strlen(symname)+1; | 
|  | error = page_symlink(inode, symname, l); | 
|  | if (!error) { | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); | 
|  | } else | 
|  | iput(inode); | 
|  | } | 
|  | dir->i_ctime = dir->i_mtime = current_time(dir); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mark the head page dirty | 
|  | */ | 
|  | static int hugetlbfs_set_page_dirty(struct page *page) | 
|  | { | 
|  | struct page *head = compound_head(page); | 
|  |  | 
|  | SetPageDirty(head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = migrate_huge_page_move_mapping(mapping, newpage, page); | 
|  | if (rc != MIGRATEPAGE_SUCCESS) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * page_private is subpool pointer in hugetlb pages.  Transfer to | 
|  | * new page.  PagePrivate is not associated with page_private for | 
|  | * hugetlb pages and can not be set here as only page_huge_active | 
|  | * pages can be migrated. | 
|  | */ | 
|  | if (page_private(page)) { | 
|  | set_page_private(newpage, page_private(page)); | 
|  | set_page_private(page, 0); | 
|  | } | 
|  |  | 
|  | if (mode != MIGRATE_SYNC_NO_COPY) | 
|  | migrate_page_copy(newpage, page); | 
|  | else | 
|  | migrate_page_states(newpage, page); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_error_remove_page(struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t index = page->index; | 
|  |  | 
|  | remove_huge_page(page); | 
|  | if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) | 
|  | hugetlb_fix_reserve_counts(inode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Display the mount options in /proc/mounts. | 
|  | */ | 
|  | static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); | 
|  | struct hugepage_subpool *spool = sbinfo->spool; | 
|  | unsigned long hpage_size = huge_page_size(sbinfo->hstate); | 
|  | unsigned hpage_shift = huge_page_shift(sbinfo->hstate); | 
|  | char mod; | 
|  |  | 
|  | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
|  | seq_printf(m, ",uid=%u", | 
|  | from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
|  | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
|  | seq_printf(m, ",gid=%u", | 
|  | from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
|  | if (sbinfo->mode != 0755) | 
|  | seq_printf(m, ",mode=%o", sbinfo->mode); | 
|  | if (sbinfo->max_inodes != -1) | 
|  | seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); | 
|  |  | 
|  | hpage_size /= 1024; | 
|  | mod = 'K'; | 
|  | if (hpage_size >= 1024) { | 
|  | hpage_size /= 1024; | 
|  | mod = 'M'; | 
|  | } | 
|  | seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); | 
|  | if (spool) { | 
|  | if (spool->max_hpages != -1) | 
|  | seq_printf(m, ",size=%llu", | 
|  | (unsigned long long)spool->max_hpages << hpage_shift); | 
|  | if (spool->min_hpages != -1) | 
|  | seq_printf(m, ",min_size=%llu", | 
|  | (unsigned long long)spool->min_hpages << hpage_shift); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); | 
|  | struct hstate *h = hstate_inode(d_inode(dentry)); | 
|  |  | 
|  | buf->f_type = HUGETLBFS_MAGIC; | 
|  | buf->f_bsize = huge_page_size(h); | 
|  | if (sbinfo) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | /* If no limits set, just report 0 for max/free/used | 
|  | * blocks, like simple_statfs() */ | 
|  | if (sbinfo->spool) { | 
|  | long free_pages; | 
|  |  | 
|  | spin_lock(&sbinfo->spool->lock); | 
|  | buf->f_blocks = sbinfo->spool->max_hpages; | 
|  | free_pages = sbinfo->spool->max_hpages | 
|  | - sbinfo->spool->used_hpages; | 
|  | buf->f_bavail = buf->f_bfree = free_pages; | 
|  | spin_unlock(&sbinfo->spool->lock); | 
|  | buf->f_files = sbinfo->max_inodes; | 
|  | buf->f_ffree = sbinfo->free_inodes; | 
|  | } | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | buf->f_namelen = NAME_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_put_super(struct super_block *sb) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); | 
|  |  | 
|  | if (sbi) { | 
|  | sb->s_fs_info = NULL; | 
|  |  | 
|  | if (sbi->spool) | 
|  | hugepage_put_subpool(sbi->spool); | 
|  |  | 
|  | kfree(sbi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) | 
|  | { | 
|  | if (sbinfo->free_inodes >= 0) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | if (unlikely(!sbinfo->free_inodes)) { | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return 0; | 
|  | } | 
|  | sbinfo->free_inodes--; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) | 
|  | { | 
|  | if (sbinfo->free_inodes >= 0) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | sbinfo->free_inodes++; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct kmem_cache *hugetlbfs_inode_cachep; | 
|  |  | 
|  | static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); | 
|  | struct hugetlbfs_inode_info *p; | 
|  |  | 
|  | if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) | 
|  | return NULL; | 
|  | p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); | 
|  | if (unlikely(!p)) { | 
|  | hugetlbfs_inc_free_inodes(sbinfo); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Any time after allocation, hugetlbfs_destroy_inode can be called | 
|  | * for the inode.  mpol_free_shared_policy is unconditionally called | 
|  | * as part of hugetlbfs_destroy_inode.  So, initialize policy here | 
|  | * in case of a quick call to destroy. | 
|  | * | 
|  | * Note that the policy is initialized even if we are creating a | 
|  | * private inode.  This simplifies hugetlbfs_destroy_inode. | 
|  | */ | 
|  | mpol_shared_policy_init(&p->policy, NULL); | 
|  |  | 
|  | return &p->vfs_inode; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_free_inode(struct inode *inode) | 
|  | { | 
|  | kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_destroy_inode(struct inode *inode) | 
|  | { | 
|  | hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); | 
|  | mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations hugetlbfs_aops = { | 
|  | .write_begin	= hugetlbfs_write_begin, | 
|  | .write_end	= hugetlbfs_write_end, | 
|  | .set_page_dirty	= hugetlbfs_set_page_dirty, | 
|  | .migratepage    = hugetlbfs_migrate_page, | 
|  | .error_remove_page	= hugetlbfs_error_remove_page, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void init_once(void *foo) | 
|  | { | 
|  | struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; | 
|  |  | 
|  | inode_init_once(&ei->vfs_inode); | 
|  | } | 
|  |  | 
|  | const struct file_operations hugetlbfs_file_operations = { | 
|  | .read_iter		= hugetlbfs_read_iter, | 
|  | .mmap			= hugetlbfs_file_mmap, | 
|  | .fsync			= noop_fsync, | 
|  | .get_unmapped_area	= hugetlb_get_unmapped_area, | 
|  | .llseek			= default_llseek, | 
|  | .fallocate		= hugetlbfs_fallocate, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations hugetlbfs_dir_inode_operations = { | 
|  | .create		= hugetlbfs_create, | 
|  | .lookup		= simple_lookup, | 
|  | .link		= simple_link, | 
|  | .unlink		= simple_unlink, | 
|  | .symlink	= hugetlbfs_symlink, | 
|  | .mkdir		= hugetlbfs_mkdir, | 
|  | .rmdir		= simple_rmdir, | 
|  | .mknod		= hugetlbfs_mknod, | 
|  | .rename		= simple_rename, | 
|  | .setattr	= hugetlbfs_setattr, | 
|  | .tmpfile	= hugetlbfs_tmpfile, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations hugetlbfs_inode_operations = { | 
|  | .setattr	= hugetlbfs_setattr, | 
|  | }; | 
|  |  | 
|  | static const struct super_operations hugetlbfs_ops = { | 
|  | .alloc_inode    = hugetlbfs_alloc_inode, | 
|  | .free_inode     = hugetlbfs_free_inode, | 
|  | .destroy_inode  = hugetlbfs_destroy_inode, | 
|  | .evict_inode	= hugetlbfs_evict_inode, | 
|  | .statfs		= hugetlbfs_statfs, | 
|  | .put_super	= hugetlbfs_put_super, | 
|  | .show_options	= hugetlbfs_show_options, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert size option passed from command line to number of huge pages | 
|  | * in the pool specified by hstate.  Size option could be in bytes | 
|  | * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). | 
|  | */ | 
|  | static long | 
|  | hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, | 
|  | enum hugetlbfs_size_type val_type) | 
|  | { | 
|  | if (val_type == NO_SIZE) | 
|  | return -1; | 
|  |  | 
|  | if (val_type == SIZE_PERCENT) { | 
|  | size_opt <<= huge_page_shift(h); | 
|  | size_opt *= h->max_huge_pages; | 
|  | do_div(size_opt, 100); | 
|  | } | 
|  |  | 
|  | size_opt >>= huge_page_shift(h); | 
|  | return size_opt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse one mount parameter. | 
|  | */ | 
|  | static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | struct fs_parse_result result; | 
|  | char *rest; | 
|  | unsigned long ps; | 
|  | int opt; | 
|  |  | 
|  | opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); | 
|  | if (opt < 0) | 
|  | return opt; | 
|  |  | 
|  | switch (opt) { | 
|  | case Opt_uid: | 
|  | ctx->uid = make_kuid(current_user_ns(), result.uint_32); | 
|  | if (!uid_valid(ctx->uid)) | 
|  | goto bad_val; | 
|  | return 0; | 
|  |  | 
|  | case Opt_gid: | 
|  | ctx->gid = make_kgid(current_user_ns(), result.uint_32); | 
|  | if (!gid_valid(ctx->gid)) | 
|  | goto bad_val; | 
|  | return 0; | 
|  |  | 
|  | case Opt_mode: | 
|  | ctx->mode = result.uint_32 & 01777U; | 
|  | return 0; | 
|  |  | 
|  | case Opt_size: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->max_size_opt = memparse(param->string, &rest); | 
|  | ctx->max_val_type = SIZE_STD; | 
|  | if (*rest == '%') | 
|  | ctx->max_val_type = SIZE_PERCENT; | 
|  | return 0; | 
|  |  | 
|  | case Opt_nr_inodes: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->nr_inodes = memparse(param->string, &rest); | 
|  | return 0; | 
|  |  | 
|  | case Opt_pagesize: | 
|  | ps = memparse(param->string, &rest); | 
|  | ctx->hstate = size_to_hstate(ps); | 
|  | if (!ctx->hstate) { | 
|  | pr_err("Unsupported page size %lu MB\n", ps >> 20); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case Opt_min_size: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->min_size_opt = memparse(param->string, &rest); | 
|  | ctx->min_val_type = SIZE_STD; | 
|  | if (*rest == '%') | 
|  | ctx->min_val_type = SIZE_PERCENT; | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bad_val: | 
|  | return invalfc(fc, "Bad value '%s' for mount option '%s'\n", | 
|  | param->string, param->key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the parsed options. | 
|  | */ | 
|  | static int hugetlbfs_validate(struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  |  | 
|  | /* | 
|  | * Use huge page pool size (in hstate) to convert the size | 
|  | * options to number of huge pages.  If NO_SIZE, -1 is returned. | 
|  | */ | 
|  | ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, | 
|  | ctx->max_size_opt, | 
|  | ctx->max_val_type); | 
|  | ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, | 
|  | ctx->min_size_opt, | 
|  | ctx->min_val_type); | 
|  |  | 
|  | /* | 
|  | * If max_size was specified, then min_size must be smaller | 
|  | */ | 
|  | if (ctx->max_val_type > NO_SIZE && | 
|  | ctx->min_hpages > ctx->max_hpages) { | 
|  | pr_err("Minimum size can not be greater than maximum size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | struct hugetlbfs_sb_info *sbinfo; | 
|  |  | 
|  | sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); | 
|  | if (!sbinfo) | 
|  | return -ENOMEM; | 
|  | sb->s_fs_info = sbinfo; | 
|  | spin_lock_init(&sbinfo->stat_lock); | 
|  | sbinfo->hstate		= ctx->hstate; | 
|  | sbinfo->max_inodes	= ctx->nr_inodes; | 
|  | sbinfo->free_inodes	= ctx->nr_inodes; | 
|  | sbinfo->spool		= NULL; | 
|  | sbinfo->uid		= ctx->uid; | 
|  | sbinfo->gid		= ctx->gid; | 
|  | sbinfo->mode		= ctx->mode; | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize subpool if maximum or minimum size is | 
|  | * specified.  Any needed reservations (for minimim size) are taken | 
|  | * taken when the subpool is created. | 
|  | */ | 
|  | if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { | 
|  | sbinfo->spool = hugepage_new_subpool(ctx->hstate, | 
|  | ctx->max_hpages, | 
|  | ctx->min_hpages); | 
|  | if (!sbinfo->spool) | 
|  | goto out_free; | 
|  | } | 
|  | sb->s_maxbytes = MAX_LFS_FILESIZE; | 
|  | sb->s_blocksize = huge_page_size(ctx->hstate); | 
|  | sb->s_blocksize_bits = huge_page_shift(ctx->hstate); | 
|  | sb->s_magic = HUGETLBFS_MAGIC; | 
|  | sb->s_op = &hugetlbfs_ops; | 
|  | sb->s_time_gran = 1; | 
|  |  | 
|  | /* | 
|  | * Due to the special and limited functionality of hugetlbfs, it does | 
|  | * not work well as a stacking filesystem. | 
|  | */ | 
|  | sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; | 
|  | sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); | 
|  | if (!sb->s_root) | 
|  | goto out_free; | 
|  | return 0; | 
|  | out_free: | 
|  | kfree(sbinfo->spool); | 
|  | kfree(sbinfo); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_get_tree(struct fs_context *fc) | 
|  | { | 
|  | int err = hugetlbfs_validate(fc); | 
|  | if (err) | 
|  | return err; | 
|  | return get_tree_nodev(fc, hugetlbfs_fill_super); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_fs_context_free(struct fs_context *fc) | 
|  | { | 
|  | kfree(fc->fs_private); | 
|  | } | 
|  |  | 
|  | static const struct fs_context_operations hugetlbfs_fs_context_ops = { | 
|  | .free		= hugetlbfs_fs_context_free, | 
|  | .parse_param	= hugetlbfs_parse_param, | 
|  | .get_tree	= hugetlbfs_get_tree, | 
|  | }; | 
|  |  | 
|  | static int hugetlbfs_init_fs_context(struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->max_hpages	= -1; /* No limit on size by default */ | 
|  | ctx->nr_inodes	= -1; /* No limit on number of inodes by default */ | 
|  | ctx->uid	= current_fsuid(); | 
|  | ctx->gid	= current_fsgid(); | 
|  | ctx->mode	= 0755; | 
|  | ctx->hstate	= &default_hstate; | 
|  | ctx->min_hpages	= -1; /* No default minimum size */ | 
|  | ctx->max_val_type = NO_SIZE; | 
|  | ctx->min_val_type = NO_SIZE; | 
|  | fc->fs_private = ctx; | 
|  | fc->ops	= &hugetlbfs_fs_context_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_system_type hugetlbfs_fs_type = { | 
|  | .name			= "hugetlbfs", | 
|  | .init_fs_context	= hugetlbfs_init_fs_context, | 
|  | .parameters		= hugetlb_fs_parameters, | 
|  | .kill_sb		= kill_litter_super, | 
|  | }; | 
|  |  | 
|  | static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | static int can_do_hugetlb_shm(void) | 
|  | { | 
|  | kgid_t shm_group; | 
|  | shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); | 
|  | return capable(CAP_IPC_LOCK) || in_group_p(shm_group); | 
|  | } | 
|  |  | 
|  | static int get_hstate_idx(int page_size_log) | 
|  | { | 
|  | struct hstate *h = hstate_sizelog(page_size_log); | 
|  |  | 
|  | if (!h) | 
|  | return -1; | 
|  | return h - hstates; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that size should be aligned to proper hugepage size in caller side, | 
|  | * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. | 
|  | */ | 
|  | struct file *hugetlb_file_setup(const char *name, size_t size, | 
|  | vm_flags_t acctflag, struct user_struct **user, | 
|  | int creat_flags, int page_size_log) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct vfsmount *mnt; | 
|  | int hstate_idx; | 
|  | struct file *file; | 
|  |  | 
|  | hstate_idx = get_hstate_idx(page_size_log); | 
|  | if (hstate_idx < 0) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | *user = NULL; | 
|  | mnt = hugetlbfs_vfsmount[hstate_idx]; | 
|  | if (!mnt) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { | 
|  | *user = current_user(); | 
|  | if (user_shm_lock(size, *user)) { | 
|  | task_lock(current); | 
|  | pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", | 
|  | current->comm, current->pid); | 
|  | task_unlock(current); | 
|  | } else { | 
|  | *user = NULL; | 
|  | return ERR_PTR(-EPERM); | 
|  | } | 
|  | } | 
|  |  | 
|  | file = ERR_PTR(-ENOSPC); | 
|  | inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); | 
|  | if (!inode) | 
|  | goto out; | 
|  | if (creat_flags == HUGETLB_SHMFS_INODE) | 
|  | inode->i_flags |= S_PRIVATE; | 
|  |  | 
|  | inode->i_size = size; | 
|  | clear_nlink(inode); | 
|  |  | 
|  | if (hugetlb_reserve_pages(inode, 0, | 
|  | size >> huge_page_shift(hstate_inode(inode)), NULL, | 
|  | acctflag)) | 
|  | file = ERR_PTR(-ENOMEM); | 
|  | else | 
|  | file = alloc_file_pseudo(inode, mnt, name, O_RDWR, | 
|  | &hugetlbfs_file_operations); | 
|  | if (!IS_ERR(file)) | 
|  | return file; | 
|  |  | 
|  | iput(inode); | 
|  | out: | 
|  | if (*user) { | 
|  | user_shm_unlock(size, *user); | 
|  | *user = NULL; | 
|  | } | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) | 
|  | { | 
|  | struct fs_context *fc; | 
|  | struct vfsmount *mnt; | 
|  |  | 
|  | fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); | 
|  | if (IS_ERR(fc)) { | 
|  | mnt = ERR_CAST(fc); | 
|  | } else { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | ctx->hstate = h; | 
|  | mnt = fc_mount(fc); | 
|  | put_fs_context(fc); | 
|  | } | 
|  | if (IS_ERR(mnt)) | 
|  | pr_err("Cannot mount internal hugetlbfs for page size %uK", | 
|  | 1U << (h->order + PAGE_SHIFT - 10)); | 
|  | return mnt; | 
|  | } | 
|  |  | 
|  | static int __init init_hugetlbfs_fs(void) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct hstate *h; | 
|  | int error; | 
|  | int i; | 
|  |  | 
|  | if (!hugepages_supported()) { | 
|  | pr_info("disabling because there are no supported hugepage sizes\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | error = -ENOMEM; | 
|  | hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", | 
|  | sizeof(struct hugetlbfs_inode_info), | 
|  | 0, SLAB_ACCOUNT, init_once); | 
|  | if (hugetlbfs_inode_cachep == NULL) | 
|  | goto out; | 
|  |  | 
|  | error = register_filesystem(&hugetlbfs_fs_type); | 
|  | if (error) | 
|  | goto out_free; | 
|  |  | 
|  | /* default hstate mount is required */ | 
|  | mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); | 
|  | if (IS_ERR(mnt)) { | 
|  | error = PTR_ERR(mnt); | 
|  | goto out_unreg; | 
|  | } | 
|  | hugetlbfs_vfsmount[default_hstate_idx] = mnt; | 
|  |  | 
|  | /* other hstates are optional */ | 
|  | i = 0; | 
|  | for_each_hstate(h) { | 
|  | if (i == default_hstate_idx) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mnt = mount_one_hugetlbfs(h); | 
|  | if (IS_ERR(mnt)) | 
|  | hugetlbfs_vfsmount[i] = NULL; | 
|  | else | 
|  | hugetlbfs_vfsmount[i] = mnt; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unreg: | 
|  | (void)unregister_filesystem(&hugetlbfs_fs_type); | 
|  | out_free: | 
|  | kmem_cache_destroy(hugetlbfs_inode_cachep); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | fs_initcall(init_hugetlbfs_fs) |