|  | /* | 
|  | * core.c  --  Voltage/Current Regulator framework. | 
|  | * | 
|  | * Copyright 2007, 2008 Wolfson Microelectronics PLC. | 
|  | * Copyright 2008 SlimLogic Ltd. | 
|  | * | 
|  | * Author: Liam Girdwood <[email protected]> | 
|  | * | 
|  | *  This program is free software; you can redistribute  it and/or modify it | 
|  | *  under  the terms of  the GNU General  Public License as published by the | 
|  | *  Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | *  option) any later version. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "%s: " fmt, __func__ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/regulator/driver.h> | 
|  | #include <linux/regulator/machine.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/regulator.h> | 
|  |  | 
|  | #include "dummy.h" | 
|  |  | 
|  | #define rdev_err(rdev, fmt, ...)					\ | 
|  | pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) | 
|  | #define rdev_warn(rdev, fmt, ...)					\ | 
|  | pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) | 
|  | #define rdev_info(rdev, fmt, ...)					\ | 
|  | pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) | 
|  | #define rdev_dbg(rdev, fmt, ...)					\ | 
|  | pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) | 
|  |  | 
|  | static DEFINE_MUTEX(regulator_list_mutex); | 
|  | static LIST_HEAD(regulator_list); | 
|  | static LIST_HEAD(regulator_map_list); | 
|  | static bool has_full_constraints; | 
|  | static bool board_wants_dummy_regulator; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static struct dentry *debugfs_root; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * struct regulator_map | 
|  | * | 
|  | * Used to provide symbolic supply names to devices. | 
|  | */ | 
|  | struct regulator_map { | 
|  | struct list_head list; | 
|  | const char *dev_name;   /* The dev_name() for the consumer */ | 
|  | const char *supply; | 
|  | struct regulator_dev *regulator; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct regulator | 
|  | * | 
|  | * One for each consumer device. | 
|  | */ | 
|  | struct regulator { | 
|  | struct device *dev; | 
|  | struct list_head list; | 
|  | int uA_load; | 
|  | int min_uV; | 
|  | int max_uV; | 
|  | char *supply_name; | 
|  | struct device_attribute dev_attr; | 
|  | struct regulator_dev *rdev; | 
|  | }; | 
|  |  | 
|  | static int _regulator_is_enabled(struct regulator_dev *rdev); | 
|  | static int _regulator_disable(struct regulator_dev *rdev, | 
|  | struct regulator_dev **supply_rdev_ptr); | 
|  | static int _regulator_get_voltage(struct regulator_dev *rdev); | 
|  | static int _regulator_get_current_limit(struct regulator_dev *rdev); | 
|  | static unsigned int _regulator_get_mode(struct regulator_dev *rdev); | 
|  | static void _notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data); | 
|  | static int _regulator_do_set_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV); | 
|  |  | 
|  | static const char *rdev_get_name(struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev->constraints && rdev->constraints->name) | 
|  | return rdev->constraints->name; | 
|  | else if (rdev->desc->name) | 
|  | return rdev->desc->name; | 
|  | else | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /* gets the regulator for a given consumer device */ | 
|  | static struct regulator *get_device_regulator(struct device *dev) | 
|  | { | 
|  | struct regulator *regulator = NULL; | 
|  | struct regulator_dev *rdev; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_for_each_entry(rdev, ®ulator_list, list) { | 
|  | mutex_lock(&rdev->mutex); | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | if (regulator->dev == dev) { | 
|  | mutex_unlock(&rdev->mutex); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return regulator; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&rdev->mutex); | 
|  | } | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Platform voltage constraint check */ | 
|  | static int regulator_check_voltage(struct regulator_dev *rdev, | 
|  | int *min_uV, int *max_uV) | 
|  | { | 
|  | BUG_ON(*min_uV > *max_uV); | 
|  |  | 
|  | if (!rdev->constraints) { | 
|  | rdev_err(rdev, "no constraints\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { | 
|  | rdev_err(rdev, "operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (*max_uV > rdev->constraints->max_uV) | 
|  | *max_uV = rdev->constraints->max_uV; | 
|  | if (*min_uV < rdev->constraints->min_uV) | 
|  | *min_uV = rdev->constraints->min_uV; | 
|  |  | 
|  | if (*min_uV > *max_uV) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Make sure we select a voltage that suits the needs of all | 
|  | * regulator consumers | 
|  | */ | 
|  | static int regulator_check_consumers(struct regulator_dev *rdev, | 
|  | int *min_uV, int *max_uV) | 
|  | { | 
|  | struct regulator *regulator; | 
|  |  | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | /* | 
|  | * Assume consumers that didn't say anything are OK | 
|  | * with anything in the constraint range. | 
|  | */ | 
|  | if (!regulator->min_uV && !regulator->max_uV) | 
|  | continue; | 
|  |  | 
|  | if (*max_uV > regulator->max_uV) | 
|  | *max_uV = regulator->max_uV; | 
|  | if (*min_uV < regulator->min_uV) | 
|  | *min_uV = regulator->min_uV; | 
|  | } | 
|  |  | 
|  | if (*min_uV > *max_uV) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* current constraint check */ | 
|  | static int regulator_check_current_limit(struct regulator_dev *rdev, | 
|  | int *min_uA, int *max_uA) | 
|  | { | 
|  | BUG_ON(*min_uA > *max_uA); | 
|  |  | 
|  | if (!rdev->constraints) { | 
|  | rdev_err(rdev, "no constraints\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { | 
|  | rdev_err(rdev, "operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (*max_uA > rdev->constraints->max_uA) | 
|  | *max_uA = rdev->constraints->max_uA; | 
|  | if (*min_uA < rdev->constraints->min_uA) | 
|  | *min_uA = rdev->constraints->min_uA; | 
|  |  | 
|  | if (*min_uA > *max_uA) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* operating mode constraint check */ | 
|  | static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) | 
|  | { | 
|  | switch (*mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | case REGULATOR_MODE_IDLE: | 
|  | case REGULATOR_MODE_STANDBY: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!rdev->constraints) { | 
|  | rdev_err(rdev, "no constraints\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { | 
|  | rdev_err(rdev, "operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* The modes are bitmasks, the most power hungry modes having | 
|  | * the lowest values. If the requested mode isn't supported | 
|  | * try higher modes. */ | 
|  | while (*mode) { | 
|  | if (rdev->constraints->valid_modes_mask & *mode) | 
|  | return 0; | 
|  | *mode /= 2; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* dynamic regulator mode switching constraint check */ | 
|  | static int regulator_check_drms(struct regulator_dev *rdev) | 
|  | { | 
|  | if (!rdev->constraints) { | 
|  | rdev_err(rdev, "no constraints\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { | 
|  | rdev_err(rdev, "operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t device_requested_uA_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator *regulator; | 
|  |  | 
|  | regulator = get_device_regulator(dev); | 
|  | if (regulator == NULL) | 
|  | return 0; | 
|  |  | 
|  | return sprintf(buf, "%d\n", regulator->uA_load); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_uA_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); | 
|  | } | 
|  | static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_name_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%s\n", rdev_get_name(rdev)); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_print_opmode(char *buf, int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | return sprintf(buf, "fast\n"); | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | return sprintf(buf, "normal\n"); | 
|  | case REGULATOR_MODE_IDLE: | 
|  | return sprintf(buf, "idle\n"); | 
|  | case REGULATOR_MODE_STANDBY: | 
|  | return sprintf(buf, "standby\n"); | 
|  | } | 
|  | return sprintf(buf, "unknown\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_opmode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, _regulator_get_mode(rdev)); | 
|  | } | 
|  | static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_print_state(char *buf, int state) | 
|  | { | 
|  | if (state > 0) | 
|  | return sprintf(buf, "enabled\n"); | 
|  | else if (state == 0) | 
|  | return sprintf(buf, "disabled\n"); | 
|  | else | 
|  | return sprintf(buf, "unknown\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_status_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | int status; | 
|  | char *label; | 
|  |  | 
|  | status = rdev->desc->ops->get_status(rdev); | 
|  | if (status < 0) | 
|  | return status; | 
|  |  | 
|  | switch (status) { | 
|  | case REGULATOR_STATUS_OFF: | 
|  | label = "off"; | 
|  | break; | 
|  | case REGULATOR_STATUS_ON: | 
|  | label = "on"; | 
|  | break; | 
|  | case REGULATOR_STATUS_ERROR: | 
|  | label = "error"; | 
|  | break; | 
|  | case REGULATOR_STATUS_FAST: | 
|  | label = "fast"; | 
|  | break; | 
|  | case REGULATOR_STATUS_NORMAL: | 
|  | label = "normal"; | 
|  | break; | 
|  | case REGULATOR_STATUS_IDLE: | 
|  | label = "idle"; | 
|  | break; | 
|  | case REGULATOR_STATUS_STANDBY: | 
|  | label = "standby"; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | return sprintf(buf, "%s\n", label); | 
|  | } | 
|  | static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_min_uA_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->min_uA); | 
|  | } | 
|  | static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_max_uA_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->max_uA); | 
|  | } | 
|  | static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_min_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->min_uV); | 
|  | } | 
|  | static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_max_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->max_uV); | 
|  | } | 
|  | static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_total_uA_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | struct regulator *regulator; | 
|  | int uA = 0; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) | 
|  | uA += regulator->uA_load; | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return sprintf(buf, "%d\n", uA); | 
|  | } | 
|  | static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_num_users_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | return sprintf(buf, "%d\n", rdev->use_count); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_type_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | switch (rdev->desc->type) { | 
|  | case REGULATOR_VOLTAGE: | 
|  | return sprintf(buf, "voltage\n"); | 
|  | case REGULATOR_CURRENT: | 
|  | return sprintf(buf, "current\n"); | 
|  | } | 
|  | return sprintf(buf, "unknown\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_suspend_mem_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_mem_microvolts, 0444, | 
|  | regulator_suspend_mem_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_disk_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_disk_microvolts, 0444, | 
|  | regulator_suspend_disk_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_standby_uV_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_standby_microvolts, 0444, | 
|  | regulator_suspend_standby_uV_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_mem_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_mem.mode); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_mem_mode, 0444, | 
|  | regulator_suspend_mem_mode_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_disk_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_disk.mode); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_disk_mode, 0444, | 
|  | regulator_suspend_disk_mode_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_standby_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_standby.mode); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_standby_mode, 0444, | 
|  | regulator_suspend_standby_mode_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_mem_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_mem.enabled); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_mem_state, 0444, | 
|  | regulator_suspend_mem_state_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_disk_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_disk.enabled); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_disk_state, 0444, | 
|  | regulator_suspend_disk_state_show, NULL); | 
|  |  | 
|  | static ssize_t regulator_suspend_standby_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_standby.enabled); | 
|  | } | 
|  | static DEVICE_ATTR(suspend_standby_state, 0444, | 
|  | regulator_suspend_standby_state_show, NULL); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the only attributes are present for all regulators. | 
|  | * Other attributes are a function of regulator functionality. | 
|  | */ | 
|  | static struct device_attribute regulator_dev_attrs[] = { | 
|  | __ATTR(name, 0444, regulator_name_show, NULL), | 
|  | __ATTR(num_users, 0444, regulator_num_users_show, NULL), | 
|  | __ATTR(type, 0444, regulator_type_show, NULL), | 
|  | __ATTR_NULL, | 
|  | }; | 
|  |  | 
|  | static void regulator_dev_release(struct device *dev) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | kfree(rdev); | 
|  | } | 
|  |  | 
|  | static struct class regulator_class = { | 
|  | .name = "regulator", | 
|  | .dev_release = regulator_dev_release, | 
|  | .dev_attrs = regulator_dev_attrs, | 
|  | }; | 
|  |  | 
|  | /* Calculate the new optimum regulator operating mode based on the new total | 
|  | * consumer load. All locks held by caller */ | 
|  | static void drms_uA_update(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator *sibling; | 
|  | int current_uA = 0, output_uV, input_uV, err; | 
|  | unsigned int mode; | 
|  |  | 
|  | err = regulator_check_drms(rdev); | 
|  | if (err < 0 || !rdev->desc->ops->get_optimum_mode || | 
|  | (!rdev->desc->ops->get_voltage && | 
|  | !rdev->desc->ops->get_voltage_sel) || | 
|  | !rdev->desc->ops->set_mode) | 
|  | return; | 
|  |  | 
|  | /* get output voltage */ | 
|  | output_uV = _regulator_get_voltage(rdev); | 
|  | if (output_uV <= 0) | 
|  | return; | 
|  |  | 
|  | /* get input voltage */ | 
|  | input_uV = 0; | 
|  | if (rdev->supply) | 
|  | input_uV = _regulator_get_voltage(rdev); | 
|  | if (input_uV <= 0) | 
|  | input_uV = rdev->constraints->input_uV; | 
|  | if (input_uV <= 0) | 
|  | return; | 
|  |  | 
|  | /* calc total requested load */ | 
|  | list_for_each_entry(sibling, &rdev->consumer_list, list) | 
|  | current_uA += sibling->uA_load; | 
|  |  | 
|  | /* now get the optimum mode for our new total regulator load */ | 
|  | mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, | 
|  | output_uV, current_uA); | 
|  |  | 
|  | /* check the new mode is allowed */ | 
|  | err = regulator_mode_constrain(rdev, &mode); | 
|  | if (err == 0) | 
|  | rdev->desc->ops->set_mode(rdev, mode); | 
|  | } | 
|  |  | 
|  | static int suspend_set_state(struct regulator_dev *rdev, | 
|  | struct regulator_state *rstate) | 
|  | { | 
|  | int ret = 0; | 
|  | bool can_set_state; | 
|  |  | 
|  | can_set_state = rdev->desc->ops->set_suspend_enable && | 
|  | rdev->desc->ops->set_suspend_disable; | 
|  |  | 
|  | /* If we have no suspend mode configration don't set anything; | 
|  | * only warn if the driver actually makes the suspend mode | 
|  | * configurable. | 
|  | */ | 
|  | if (!rstate->enabled && !rstate->disabled) { | 
|  | if (can_set_state) | 
|  | rdev_warn(rdev, "No configuration\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rstate->enabled && rstate->disabled) { | 
|  | rdev_err(rdev, "invalid configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!can_set_state) { | 
|  | rdev_err(rdev, "no way to set suspend state\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (rstate->enabled) | 
|  | ret = rdev->desc->ops->set_suspend_enable(rdev); | 
|  | else | 
|  | ret = rdev->desc->ops->set_suspend_disable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to enabled/disable\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { | 
|  | ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set voltage\n"); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { | 
|  | ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set mode\n"); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* locks held by caller */ | 
|  | static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) | 
|  | { | 
|  | if (!rdev->constraints) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (state) { | 
|  | case PM_SUSPEND_STANDBY: | 
|  | return suspend_set_state(rdev, | 
|  | &rdev->constraints->state_standby); | 
|  | case PM_SUSPEND_MEM: | 
|  | return suspend_set_state(rdev, | 
|  | &rdev->constraints->state_mem); | 
|  | case PM_SUSPEND_MAX: | 
|  | return suspend_set_state(rdev, | 
|  | &rdev->constraints->state_disk); | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_constraints(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulation_constraints *constraints = rdev->constraints; | 
|  | char buf[80] = ""; | 
|  | int count = 0; | 
|  | int ret; | 
|  |  | 
|  | if (constraints->min_uV && constraints->max_uV) { | 
|  | if (constraints->min_uV == constraints->max_uV) | 
|  | count += sprintf(buf + count, "%d mV ", | 
|  | constraints->min_uV / 1000); | 
|  | else | 
|  | count += sprintf(buf + count, "%d <--> %d mV ", | 
|  | constraints->min_uV / 1000, | 
|  | constraints->max_uV / 1000); | 
|  | } | 
|  |  | 
|  | if (!constraints->min_uV || | 
|  | constraints->min_uV != constraints->max_uV) { | 
|  | ret = _regulator_get_voltage(rdev); | 
|  | if (ret > 0) | 
|  | count += sprintf(buf + count, "at %d mV ", ret / 1000); | 
|  | } | 
|  |  | 
|  | if (constraints->uV_offset) | 
|  | count += sprintf(buf, "%dmV offset ", | 
|  | constraints->uV_offset / 1000); | 
|  |  | 
|  | if (constraints->min_uA && constraints->max_uA) { | 
|  | if (constraints->min_uA == constraints->max_uA) | 
|  | count += sprintf(buf + count, "%d mA ", | 
|  | constraints->min_uA / 1000); | 
|  | else | 
|  | count += sprintf(buf + count, "%d <--> %d mA ", | 
|  | constraints->min_uA / 1000, | 
|  | constraints->max_uA / 1000); | 
|  | } | 
|  |  | 
|  | if (!constraints->min_uA || | 
|  | constraints->min_uA != constraints->max_uA) { | 
|  | ret = _regulator_get_current_limit(rdev); | 
|  | if (ret > 0) | 
|  | count += sprintf(buf + count, "at %d mA ", ret / 1000); | 
|  | } | 
|  |  | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) | 
|  | count += sprintf(buf + count, "fast "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) | 
|  | count += sprintf(buf + count, "normal "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) | 
|  | count += sprintf(buf + count, "idle "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) | 
|  | count += sprintf(buf + count, "standby"); | 
|  |  | 
|  | rdev_info(rdev, "%s\n", buf); | 
|  | } | 
|  |  | 
|  | static int machine_constraints_voltage(struct regulator_dev *rdev, | 
|  | struct regulation_constraints *constraints) | 
|  | { | 
|  | struct regulator_ops *ops = rdev->desc->ops; | 
|  | int ret; | 
|  |  | 
|  | /* do we need to apply the constraint voltage */ | 
|  | if (rdev->constraints->apply_uV && | 
|  | rdev->constraints->min_uV == rdev->constraints->max_uV) { | 
|  | ret = _regulator_do_set_voltage(rdev, | 
|  | rdev->constraints->min_uV, | 
|  | rdev->constraints->max_uV); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to apply %duV constraint\n", | 
|  | rdev->constraints->min_uV); | 
|  | rdev->constraints = NULL; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* constrain machine-level voltage specs to fit | 
|  | * the actual range supported by this regulator. | 
|  | */ | 
|  | if (ops->list_voltage && rdev->desc->n_voltages) { | 
|  | int	count = rdev->desc->n_voltages; | 
|  | int	i; | 
|  | int	min_uV = INT_MAX; | 
|  | int	max_uV = INT_MIN; | 
|  | int	cmin = constraints->min_uV; | 
|  | int	cmax = constraints->max_uV; | 
|  |  | 
|  | /* it's safe to autoconfigure fixed-voltage supplies | 
|  | and the constraints are used by list_voltage. */ | 
|  | if (count == 1 && !cmin) { | 
|  | cmin = 1; | 
|  | cmax = INT_MAX; | 
|  | constraints->min_uV = cmin; | 
|  | constraints->max_uV = cmax; | 
|  | } | 
|  |  | 
|  | /* voltage constraints are optional */ | 
|  | if ((cmin == 0) && (cmax == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* else require explicit machine-level constraints */ | 
|  | if (cmin <= 0 || cmax <= 0 || cmax < cmin) { | 
|  | rdev_err(rdev, "invalid voltage constraints\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ | 
|  | for (i = 0; i < count; i++) { | 
|  | int	value; | 
|  |  | 
|  | value = ops->list_voltage(rdev, i); | 
|  | if (value <= 0) | 
|  | continue; | 
|  |  | 
|  | /* maybe adjust [min_uV..max_uV] */ | 
|  | if (value >= cmin && value < min_uV) | 
|  | min_uV = value; | 
|  | if (value <= cmax && value > max_uV) | 
|  | max_uV = value; | 
|  | } | 
|  |  | 
|  | /* final: [min_uV..max_uV] valid iff constraints valid */ | 
|  | if (max_uV < min_uV) { | 
|  | rdev_err(rdev, "unsupportable voltage constraints\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* use regulator's subset of machine constraints */ | 
|  | if (constraints->min_uV < min_uV) { | 
|  | rdev_dbg(rdev, "override min_uV, %d -> %d\n", | 
|  | constraints->min_uV, min_uV); | 
|  | constraints->min_uV = min_uV; | 
|  | } | 
|  | if (constraints->max_uV > max_uV) { | 
|  | rdev_dbg(rdev, "override max_uV, %d -> %d\n", | 
|  | constraints->max_uV, max_uV); | 
|  | constraints->max_uV = max_uV; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_machine_constraints - sets regulator constraints | 
|  | * @rdev: regulator source | 
|  | * @constraints: constraints to apply | 
|  | * | 
|  | * Allows platform initialisation code to define and constrain | 
|  | * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE: | 
|  | * Constraints *must* be set by platform code in order for some | 
|  | * regulator operations to proceed i.e. set_voltage, set_current_limit, | 
|  | * set_mode. | 
|  | */ | 
|  | static int set_machine_constraints(struct regulator_dev *rdev, | 
|  | const struct regulation_constraints *constraints) | 
|  | { | 
|  | int ret = 0; | 
|  | struct regulator_ops *ops = rdev->desc->ops; | 
|  |  | 
|  | rdev->constraints = kmemdup(constraints, sizeof(*constraints), | 
|  | GFP_KERNEL); | 
|  | if (!rdev->constraints) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = machine_constraints_voltage(rdev, rdev->constraints); | 
|  | if (ret != 0) | 
|  | goto out; | 
|  |  | 
|  | /* do we need to setup our suspend state */ | 
|  | if (constraints->initial_state) { | 
|  | ret = suspend_prepare(rdev, rdev->constraints->initial_state); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set suspend state\n"); | 
|  | rdev->constraints = NULL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (constraints->initial_mode) { | 
|  | if (!ops->set_mode) { | 
|  | rdev_err(rdev, "no set_mode operation\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ops->set_mode(rdev, rdev->constraints->initial_mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set initial mode: %d\n", ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the constraints say the regulator should be on at this point | 
|  | * and we have control then make sure it is enabled. | 
|  | */ | 
|  | if ((rdev->constraints->always_on || rdev->constraints->boot_on) && | 
|  | ops->enable) { | 
|  | ret = ops->enable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to enable\n"); | 
|  | rdev->constraints = NULL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | print_constraints(rdev); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_supply - set regulator supply regulator | 
|  | * @rdev: regulator name | 
|  | * @supply_rdev: supply regulator name | 
|  | * | 
|  | * Called by platform initialisation code to set the supply regulator for this | 
|  | * regulator. This ensures that a regulators supply will also be enabled by the | 
|  | * core if it's child is enabled. | 
|  | */ | 
|  | static int set_supply(struct regulator_dev *rdev, | 
|  | struct regulator_dev *supply_rdev) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, | 
|  | "supply"); | 
|  | if (err) { | 
|  | rdev_err(rdev, "could not add device link %s err %d\n", | 
|  | supply_rdev->dev.kobj.name, err); | 
|  | goto out; | 
|  | } | 
|  | rdev->supply = supply_rdev; | 
|  | list_add(&rdev->slist, &supply_rdev->supply_list); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_consumer_device_supply - Bind a regulator to a symbolic supply | 
|  | * @rdev:         regulator source | 
|  | * @consumer_dev: device the supply applies to | 
|  | * @consumer_dev_name: dev_name() string for device supply applies to | 
|  | * @supply:       symbolic name for supply | 
|  | * | 
|  | * Allows platform initialisation code to map physical regulator | 
|  | * sources to symbolic names for supplies for use by devices.  Devices | 
|  | * should use these symbolic names to request regulators, avoiding the | 
|  | * need to provide board-specific regulator names as platform data. | 
|  | * | 
|  | * Only one of consumer_dev and consumer_dev_name may be specified. | 
|  | */ | 
|  | static int set_consumer_device_supply(struct regulator_dev *rdev, | 
|  | struct device *consumer_dev, const char *consumer_dev_name, | 
|  | const char *supply) | 
|  | { | 
|  | struct regulator_map *node; | 
|  | int has_dev; | 
|  |  | 
|  | if (consumer_dev && consumer_dev_name) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!consumer_dev_name && consumer_dev) | 
|  | consumer_dev_name = dev_name(consumer_dev); | 
|  |  | 
|  | if (supply == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (consumer_dev_name != NULL) | 
|  | has_dev = 1; | 
|  | else | 
|  | has_dev = 0; | 
|  |  | 
|  | list_for_each_entry(node, ®ulator_map_list, list) { | 
|  | if (node->dev_name && consumer_dev_name) { | 
|  | if (strcmp(node->dev_name, consumer_dev_name) != 0) | 
|  | continue; | 
|  | } else if (node->dev_name || consumer_dev_name) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (strcmp(node->supply, supply) != 0) | 
|  | continue; | 
|  |  | 
|  | dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", | 
|  | dev_name(&node->regulator->dev), | 
|  | node->regulator->desc->name, | 
|  | supply, | 
|  | dev_name(&rdev->dev), rdev_get_name(rdev)); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); | 
|  | if (node == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | node->regulator = rdev; | 
|  | node->supply = supply; | 
|  |  | 
|  | if (has_dev) { | 
|  | node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); | 
|  | if (node->dev_name == NULL) { | 
|  | kfree(node); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add(&node->list, ®ulator_map_list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unset_regulator_supplies(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_map *node, *n; | 
|  |  | 
|  | list_for_each_entry_safe(node, n, ®ulator_map_list, list) { | 
|  | if (rdev == node->regulator) { | 
|  | list_del(&node->list); | 
|  | kfree(node->dev_name); | 
|  | kfree(node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define REG_STR_SIZE	32 | 
|  |  | 
|  | static struct regulator *create_regulator(struct regulator_dev *rdev, | 
|  | struct device *dev, | 
|  | const char *supply_name) | 
|  | { | 
|  | struct regulator *regulator; | 
|  | char buf[REG_STR_SIZE]; | 
|  | int err, size; | 
|  |  | 
|  | regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); | 
|  | if (regulator == NULL) | 
|  | return NULL; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | regulator->rdev = rdev; | 
|  | list_add(®ulator->list, &rdev->consumer_list); | 
|  |  | 
|  | if (dev) { | 
|  | /* create a 'requested_microamps_name' sysfs entry */ | 
|  | size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", | 
|  | supply_name); | 
|  | if (size >= REG_STR_SIZE) | 
|  | goto overflow_err; | 
|  |  | 
|  | regulator->dev = dev; | 
|  | sysfs_attr_init(®ulator->dev_attr.attr); | 
|  | regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); | 
|  | if (regulator->dev_attr.attr.name == NULL) | 
|  | goto attr_name_err; | 
|  |  | 
|  | regulator->dev_attr.attr.mode = 0444; | 
|  | regulator->dev_attr.show = device_requested_uA_show; | 
|  | err = device_create_file(dev, ®ulator->dev_attr); | 
|  | if (err < 0) { | 
|  | rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n"); | 
|  | goto attr_name_err; | 
|  | } | 
|  |  | 
|  | /* also add a link to the device sysfs entry */ | 
|  | size = scnprintf(buf, REG_STR_SIZE, "%s-%s", | 
|  | dev->kobj.name, supply_name); | 
|  | if (size >= REG_STR_SIZE) | 
|  | goto attr_err; | 
|  |  | 
|  | regulator->supply_name = kstrdup(buf, GFP_KERNEL); | 
|  | if (regulator->supply_name == NULL) | 
|  | goto attr_err; | 
|  |  | 
|  | err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, | 
|  | buf); | 
|  | if (err) { | 
|  | rdev_warn(rdev, "could not add device link %s err %d\n", | 
|  | dev->kobj.name, err); | 
|  | goto link_name_err; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return regulator; | 
|  | link_name_err: | 
|  | kfree(regulator->supply_name); | 
|  | attr_err: | 
|  | device_remove_file(regulator->dev, ®ulator->dev_attr); | 
|  | attr_name_err: | 
|  | kfree(regulator->dev_attr.attr.name); | 
|  | overflow_err: | 
|  | list_del(®ulator->list); | 
|  | kfree(regulator); | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int _regulator_get_enable_time(struct regulator_dev *rdev) | 
|  | { | 
|  | if (!rdev->desc->ops->enable_time) | 
|  | return 0; | 
|  | return rdev->desc->ops->enable_time(rdev); | 
|  | } | 
|  |  | 
|  | /* Internal regulator request function */ | 
|  | static struct regulator *_regulator_get(struct device *dev, const char *id, | 
|  | int exclusive) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  | struct regulator_map *map; | 
|  | struct regulator *regulator = ERR_PTR(-ENODEV); | 
|  | const char *devname = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (id == NULL) { | 
|  | pr_err("get() with no identifier\n"); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | if (dev) | 
|  | devname = dev_name(dev); | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | list_for_each_entry(map, ®ulator_map_list, list) { | 
|  | /* If the mapping has a device set up it must match */ | 
|  | if (map->dev_name && | 
|  | (!devname || strcmp(map->dev_name, devname))) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(map->supply, id) == 0) { | 
|  | rdev = map->regulator; | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (board_wants_dummy_regulator) { | 
|  | rdev = dummy_regulator_rdev; | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REGULATOR_DUMMY | 
|  | if (!devname) | 
|  | devname = "deviceless"; | 
|  |  | 
|  | /* If the board didn't flag that it was fully constrained then | 
|  | * substitute in a dummy regulator so consumers can continue. | 
|  | */ | 
|  | if (!has_full_constraints) { | 
|  | pr_warn("%s supply %s not found, using dummy regulator\n", | 
|  | devname, id); | 
|  | rdev = dummy_regulator_rdev; | 
|  | goto found; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return regulator; | 
|  |  | 
|  | found: | 
|  | if (rdev->exclusive) { | 
|  | regulator = ERR_PTR(-EPERM); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (exclusive && rdev->open_count) { | 
|  | regulator = ERR_PTR(-EBUSY); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!try_module_get(rdev->owner)) | 
|  | goto out; | 
|  |  | 
|  | regulator = create_regulator(rdev, dev, id); | 
|  | if (regulator == NULL) { | 
|  | regulator = ERR_PTR(-ENOMEM); | 
|  | module_put(rdev->owner); | 
|  | } | 
|  |  | 
|  | rdev->open_count++; | 
|  | if (exclusive) { | 
|  | rdev->exclusive = 1; | 
|  |  | 
|  | ret = _regulator_is_enabled(rdev); | 
|  | if (ret > 0) | 
|  | rdev->use_count = 1; | 
|  | else | 
|  | rdev->use_count = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get - lookup and obtain a reference to a regulator. | 
|  | * @dev: device for regulator "consumer" | 
|  | * @id: Supply name or regulator ID. | 
|  | * | 
|  | * Returns a struct regulator corresponding to the regulator producer, | 
|  | * or IS_ERR() condition containing errno. | 
|  | * | 
|  | * Use of supply names configured via regulator_set_device_supply() is | 
|  | * strongly encouraged.  It is recommended that the supply name used | 
|  | * should match the name used for the supply and/or the relevant | 
|  | * device pins in the datasheet. | 
|  | */ | 
|  | struct regulator *regulator_get(struct device *dev, const char *id) | 
|  | { | 
|  | return _regulator_get(dev, id, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get); | 
|  |  | 
|  | /** | 
|  | * regulator_get_exclusive - obtain exclusive access to a regulator. | 
|  | * @dev: device for regulator "consumer" | 
|  | * @id: Supply name or regulator ID. | 
|  | * | 
|  | * Returns a struct regulator corresponding to the regulator producer, | 
|  | * or IS_ERR() condition containing errno.  Other consumers will be | 
|  | * unable to obtain this reference is held and the use count for the | 
|  | * regulator will be initialised to reflect the current state of the | 
|  | * regulator. | 
|  | * | 
|  | * This is intended for use by consumers which cannot tolerate shared | 
|  | * use of the regulator such as those which need to force the | 
|  | * regulator off for correct operation of the hardware they are | 
|  | * controlling. | 
|  | * | 
|  | * Use of supply names configured via regulator_set_device_supply() is | 
|  | * strongly encouraged.  It is recommended that the supply name used | 
|  | * should match the name used for the supply and/or the relevant | 
|  | * device pins in the datasheet. | 
|  | */ | 
|  | struct regulator *regulator_get_exclusive(struct device *dev, const char *id) | 
|  | { | 
|  | return _regulator_get(dev, id, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_exclusive); | 
|  |  | 
|  | /** | 
|  | * regulator_put - "free" the regulator source | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Note: drivers must ensure that all regulator_enable calls made on this | 
|  | * regulator source are balanced by regulator_disable calls prior to calling | 
|  | * this function. | 
|  | */ | 
|  | void regulator_put(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  |  | 
|  | if (regulator == NULL || IS_ERR(regulator)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | rdev = regulator->rdev; | 
|  |  | 
|  | /* remove any sysfs entries */ | 
|  | if (regulator->dev) { | 
|  | sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); | 
|  | kfree(regulator->supply_name); | 
|  | device_remove_file(regulator->dev, ®ulator->dev_attr); | 
|  | kfree(regulator->dev_attr.attr.name); | 
|  | } | 
|  | list_del(®ulator->list); | 
|  | kfree(regulator); | 
|  |  | 
|  | rdev->open_count--; | 
|  | rdev->exclusive = 0; | 
|  |  | 
|  | module_put(rdev->owner); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_put); | 
|  |  | 
|  | static int _regulator_can_change_status(struct regulator_dev *rdev) | 
|  | { | 
|  | if (!rdev->constraints) | 
|  | return 0; | 
|  |  | 
|  | if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* locks held by regulator_enable() */ | 
|  | static int _regulator_enable(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret, delay; | 
|  |  | 
|  | if (rdev->use_count == 0) { | 
|  | /* do we need to enable the supply regulator first */ | 
|  | if (rdev->supply) { | 
|  | mutex_lock(&rdev->supply->mutex); | 
|  | ret = _regulator_enable(rdev->supply); | 
|  | mutex_unlock(&rdev->supply->mutex); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to enable: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check voltage and requested load before enabling */ | 
|  | if (rdev->constraints && | 
|  | (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) | 
|  | drms_uA_update(rdev); | 
|  |  | 
|  | if (rdev->use_count == 0) { | 
|  | /* The regulator may on if it's not switchable or left on */ | 
|  | ret = _regulator_is_enabled(rdev); | 
|  | if (ret == -EINVAL || ret == 0) { | 
|  | if (!_regulator_can_change_status(rdev)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!rdev->desc->ops->enable) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Query before enabling in case configuration | 
|  | * dependent.  */ | 
|  | ret = _regulator_get_enable_time(rdev); | 
|  | if (ret >= 0) { | 
|  | delay = ret; | 
|  | } else { | 
|  | rdev_warn(rdev, "enable_time() failed: %d\n", | 
|  | ret); | 
|  | delay = 0; | 
|  | } | 
|  |  | 
|  | trace_regulator_enable(rdev_get_name(rdev)); | 
|  |  | 
|  | /* Allow the regulator to ramp; it would be useful | 
|  | * to extend this for bulk operations so that the | 
|  | * regulators can ramp together.  */ | 
|  | ret = rdev->desc->ops->enable(rdev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | trace_regulator_enable_delay(rdev_get_name(rdev)); | 
|  |  | 
|  | if (delay >= 1000) { | 
|  | mdelay(delay / 1000); | 
|  | udelay(delay % 1000); | 
|  | } else if (delay) { | 
|  | udelay(delay); | 
|  | } | 
|  |  | 
|  | trace_regulator_enable_complete(rdev_get_name(rdev)); | 
|  |  | 
|  | } else if (ret < 0) { | 
|  | rdev_err(rdev, "is_enabled() failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | /* Fallthrough on positive return values - already enabled */ | 
|  | } | 
|  |  | 
|  | rdev->use_count++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_enable - enable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Request that the regulator be enabled with the regulator output at | 
|  | * the predefined voltage or current value.  Calls to regulator_enable() | 
|  | * must be balanced with calls to regulator_disable(). | 
|  | * | 
|  | * NOTE: the output value can be set by other drivers, boot loader or may be | 
|  | * hardwired in the regulator. | 
|  | */ | 
|  | int regulator_enable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = _regulator_enable(rdev); | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_enable); | 
|  |  | 
|  | /* locks held by regulator_disable() */ | 
|  | static int _regulator_disable(struct regulator_dev *rdev, | 
|  | struct regulator_dev **supply_rdev_ptr) | 
|  | { | 
|  | int ret = 0; | 
|  | *supply_rdev_ptr = NULL; | 
|  |  | 
|  | if (WARN(rdev->use_count <= 0, | 
|  | "unbalanced disables for %s\n", rdev_get_name(rdev))) | 
|  | return -EIO; | 
|  |  | 
|  | /* are we the last user and permitted to disable ? */ | 
|  | if (rdev->use_count == 1 && | 
|  | (rdev->constraints && !rdev->constraints->always_on)) { | 
|  |  | 
|  | /* we are last user */ | 
|  | if (_regulator_can_change_status(rdev) && | 
|  | rdev->desc->ops->disable) { | 
|  | trace_regulator_disable(rdev_get_name(rdev)); | 
|  |  | 
|  | ret = rdev->desc->ops->disable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to disable\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | trace_regulator_disable_complete(rdev_get_name(rdev)); | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | /* decrease our supplies ref count and disable if required */ | 
|  | *supply_rdev_ptr = rdev->supply; | 
|  |  | 
|  | rdev->use_count = 0; | 
|  | } else if (rdev->use_count > 1) { | 
|  |  | 
|  | if (rdev->constraints && | 
|  | (rdev->constraints->valid_ops_mask & | 
|  | REGULATOR_CHANGE_DRMS)) | 
|  | drms_uA_update(rdev); | 
|  |  | 
|  | rdev->use_count--; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_disable - disable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Disable the regulator output voltage or current.  Calls to | 
|  | * regulator_enable() must be balanced with calls to | 
|  | * regulator_disable(). | 
|  | * | 
|  | * NOTE: this will only disable the regulator output if no other consumer | 
|  | * devices have it enabled, the regulator device supports disabling and | 
|  | * machine constraints permit this operation. | 
|  | */ | 
|  | int regulator_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator_dev *supply_rdev = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = _regulator_disable(rdev, &supply_rdev); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | /* decrease our supplies ref count and disable if required */ | 
|  | while (supply_rdev != NULL) { | 
|  | rdev = supply_rdev; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | _regulator_disable(rdev, &supply_rdev); | 
|  | mutex_unlock(&rdev->mutex); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_disable); | 
|  |  | 
|  | /* locks held by regulator_force_disable() */ | 
|  | static int _regulator_force_disable(struct regulator_dev *rdev, | 
|  | struct regulator_dev **supply_rdev_ptr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* force disable */ | 
|  | if (rdev->desc->ops->disable) { | 
|  | /* ah well, who wants to live forever... */ | 
|  | ret = rdev->desc->ops->disable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to force disable\n"); | 
|  | return ret; | 
|  | } | 
|  | /* notify other consumers that power has been forced off */ | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | | 
|  | REGULATOR_EVENT_DISABLE, NULL); | 
|  | } | 
|  |  | 
|  | /* decrease our supplies ref count and disable if required */ | 
|  | *supply_rdev_ptr = rdev->supply; | 
|  |  | 
|  | rdev->use_count = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_force_disable - force disable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Forcibly disable the regulator output voltage or current. | 
|  | * NOTE: this *will* disable the regulator output even if other consumer | 
|  | * devices have it enabled. This should be used for situations when device | 
|  | * damage will likely occur if the regulator is not disabled (e.g. over temp). | 
|  | */ | 
|  | int regulator_force_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator_dev *supply_rdev = NULL; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | regulator->uA_load = 0; | 
|  | ret = _regulator_force_disable(rdev, &supply_rdev); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | if (supply_rdev) | 
|  | regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev))); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_force_disable); | 
|  |  | 
|  | static int _regulator_is_enabled(struct regulator_dev *rdev) | 
|  | { | 
|  | /* If we don't know then assume that the regulator is always on */ | 
|  | if (!rdev->desc->ops->is_enabled) | 
|  | return 1; | 
|  |  | 
|  | return rdev->desc->ops->is_enabled(rdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_is_enabled - is the regulator output enabled | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Returns positive if the regulator driver backing the source/client | 
|  | * has requested that the device be enabled, zero if it hasn't, else a | 
|  | * negative errno code. | 
|  | * | 
|  | * Note that the device backing this regulator handle can have multiple | 
|  | * users, so it might be enabled even if regulator_enable() was never | 
|  | * called for this particular source. | 
|  | */ | 
|  | int regulator_is_enabled(struct regulator *regulator) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(®ulator->rdev->mutex); | 
|  | ret = _regulator_is_enabled(regulator->rdev); | 
|  | mutex_unlock(®ulator->rdev->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_is_enabled); | 
|  |  | 
|  | /** | 
|  | * regulator_count_voltages - count regulator_list_voltage() selectors | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Returns number of selectors, or negative errno.  Selectors are | 
|  | * numbered starting at zero, and typically correspond to bitfields | 
|  | * in hardware registers. | 
|  | */ | 
|  | int regulator_count_voltages(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev	*rdev = regulator->rdev; | 
|  |  | 
|  | return rdev->desc->n_voltages ? : -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_count_voltages); | 
|  |  | 
|  | /** | 
|  | * regulator_list_voltage - enumerate supported voltages | 
|  | * @regulator: regulator source | 
|  | * @selector: identify voltage to list | 
|  | * Context: can sleep | 
|  | * | 
|  | * Returns a voltage that can be passed to @regulator_set_voltage(), | 
|  | * zero if this selector code can't be used on this system, or a | 
|  | * negative errno. | 
|  | */ | 
|  | int regulator_list_voltage(struct regulator *regulator, unsigned selector) | 
|  | { | 
|  | struct regulator_dev	*rdev = regulator->rdev; | 
|  | struct regulator_ops	*ops = rdev->desc->ops; | 
|  | int			ret; | 
|  |  | 
|  | if (!ops->list_voltage || selector >= rdev->desc->n_voltages) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = ops->list_voltage(rdev, selector); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | if (ret > 0) { | 
|  | if (ret < rdev->constraints->min_uV) | 
|  | ret = 0; | 
|  | else if (ret > rdev->constraints->max_uV) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_list_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_is_supported_voltage - check if a voltage range can be supported | 
|  | * | 
|  | * @regulator: Regulator to check. | 
|  | * @min_uV: Minimum required voltage in uV. | 
|  | * @max_uV: Maximum required voltage in uV. | 
|  | * | 
|  | * Returns a boolean or a negative error code. | 
|  | */ | 
|  | int regulator_is_supported_voltage(struct regulator *regulator, | 
|  | int min_uV, int max_uV) | 
|  | { | 
|  | int i, voltages, ret; | 
|  |  | 
|  | ret = regulator_count_voltages(regulator); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | voltages = ret; | 
|  |  | 
|  | for (i = 0; i < voltages; i++) { | 
|  | ret = regulator_list_voltage(regulator, i); | 
|  |  | 
|  | if (ret >= min_uV && ret <= max_uV) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _regulator_do_set_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV) | 
|  | { | 
|  | int ret; | 
|  | int delay = 0; | 
|  | unsigned int selector; | 
|  |  | 
|  | trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); | 
|  |  | 
|  | min_uV += rdev->constraints->uV_offset; | 
|  | max_uV += rdev->constraints->uV_offset; | 
|  |  | 
|  | if (rdev->desc->ops->set_voltage) { | 
|  | ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, | 
|  | &selector); | 
|  |  | 
|  | if (rdev->desc->ops->list_voltage) | 
|  | selector = rdev->desc->ops->list_voltage(rdev, | 
|  | selector); | 
|  | else | 
|  | selector = -1; | 
|  | } else if (rdev->desc->ops->set_voltage_sel) { | 
|  | int best_val = INT_MAX; | 
|  | int i; | 
|  |  | 
|  | selector = 0; | 
|  |  | 
|  | /* Find the smallest voltage that falls within the specified | 
|  | * range. | 
|  | */ | 
|  | for (i = 0; i < rdev->desc->n_voltages; i++) { | 
|  | ret = rdev->desc->ops->list_voltage(rdev, i); | 
|  | if (ret < 0) | 
|  | continue; | 
|  |  | 
|  | if (ret < best_val && ret >= min_uV && ret <= max_uV) { | 
|  | best_val = ret; | 
|  | selector = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we can't obtain the old selector there is not enough | 
|  | * info to call set_voltage_time_sel(). | 
|  | */ | 
|  | if (rdev->desc->ops->set_voltage_time_sel && | 
|  | rdev->desc->ops->get_voltage_sel) { | 
|  | unsigned int old_selector = 0; | 
|  |  | 
|  | ret = rdev->desc->ops->get_voltage_sel(rdev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | old_selector = ret; | 
|  | delay = rdev->desc->ops->set_voltage_time_sel(rdev, | 
|  | old_selector, selector); | 
|  | } | 
|  |  | 
|  | if (best_val != INT_MAX) { | 
|  | ret = rdev->desc->ops->set_voltage_sel(rdev, selector); | 
|  | selector = best_val; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Insert any necessary delays */ | 
|  | if (delay >= 1000) { | 
|  | mdelay(delay / 1000); | 
|  | udelay(delay % 1000); | 
|  | } else if (delay) { | 
|  | udelay(delay); | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, | 
|  | NULL); | 
|  |  | 
|  | trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_set_voltage - set regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * @min_uV: Minimum required voltage in uV | 
|  | * @max_uV: Maximum acceptable voltage in uV | 
|  | * | 
|  | * Sets a voltage regulator to the desired output voltage. This can be set | 
|  | * during any regulator state. IOW, regulator can be disabled or enabled. | 
|  | * | 
|  | * If the regulator is enabled then the voltage will change to the new value | 
|  | * immediately otherwise if the regulator is disabled the regulator will | 
|  | * output at the new voltage when enabled. | 
|  | * | 
|  | * NOTE: If the regulator is shared between several devices then the lowest | 
|  | * request voltage that meets the system constraints will be used. | 
|  | * Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | */ | 
|  | int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* If we're setting the same range as last time the change | 
|  | * should be a noop (some cpufreq implementations use the same | 
|  | * voltage for multiple frequencies, for example). | 
|  | */ | 
|  | if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) | 
|  | goto out; | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_voltage && | 
|  | !rdev->desc->ops->set_voltage_sel) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | regulator->min_uV = min_uV; | 
|  | regulator->max_uV = max_uV; | 
|  |  | 
|  | ret = regulator_check_consumers(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_set_voltage_time - get raise/fall time | 
|  | * @regulator: regulator source | 
|  | * @old_uV: starting voltage in microvolts | 
|  | * @new_uV: target voltage in microvolts | 
|  | * | 
|  | * Provided with the starting and ending voltage, this function attempts to | 
|  | * calculate the time in microseconds required to rise or fall to this new | 
|  | * voltage. | 
|  | */ | 
|  | int regulator_set_voltage_time(struct regulator *regulator, | 
|  | int old_uV, int new_uV) | 
|  | { | 
|  | struct regulator_dev	*rdev = regulator->rdev; | 
|  | struct regulator_ops	*ops = rdev->desc->ops; | 
|  | int old_sel = -1; | 
|  | int new_sel = -1; | 
|  | int voltage; | 
|  | int i; | 
|  |  | 
|  | /* Currently requires operations to do this */ | 
|  | if (!ops->list_voltage || !ops->set_voltage_time_sel | 
|  | || !rdev->desc->n_voltages) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < rdev->desc->n_voltages; i++) { | 
|  | /* We only look for exact voltage matches here */ | 
|  | voltage = regulator_list_voltage(regulator, i); | 
|  | if (voltage < 0) | 
|  | return -EINVAL; | 
|  | if (voltage == 0) | 
|  | continue; | 
|  | if (voltage == old_uV) | 
|  | old_sel = i; | 
|  | if (voltage == new_uV) | 
|  | new_sel = i; | 
|  | } | 
|  |  | 
|  | if (old_sel < 0 || new_sel < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return ops->set_voltage_time_sel(rdev, old_sel, new_sel); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage_time); | 
|  |  | 
|  | /** | 
|  | * regulator_sync_voltage - re-apply last regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Re-apply the last configured voltage.  This is intended to be used | 
|  | * where some external control source the consumer is cooperating with | 
|  | * has caused the configured voltage to change. | 
|  | */ | 
|  | int regulator_sync_voltage(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret, min_uV, max_uV; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | if (!rdev->desc->ops->set_voltage && | 
|  | !rdev->desc->ops->set_voltage_sel) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* This is only going to work if we've had a voltage configured. */ | 
|  | if (!regulator->min_uV && !regulator->max_uV) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | min_uV = regulator->min_uV; | 
|  | max_uV = regulator->max_uV; | 
|  |  | 
|  | /* This should be a paranoia check... */ | 
|  | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = regulator_check_consumers(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_sync_voltage); | 
|  |  | 
|  | static int _regulator_get_voltage(struct regulator_dev *rdev) | 
|  | { | 
|  | int sel, ret; | 
|  |  | 
|  | if (rdev->desc->ops->get_voltage_sel) { | 
|  | sel = rdev->desc->ops->get_voltage_sel(rdev); | 
|  | if (sel < 0) | 
|  | return sel; | 
|  | ret = rdev->desc->ops->list_voltage(rdev, sel); | 
|  | } else if (rdev->desc->ops->get_voltage) { | 
|  | ret = rdev->desc->ops->get_voltage(rdev); | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return ret - rdev->constraints->uV_offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_voltage - get regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * This returns the current regulator voltage in uV. | 
|  | * | 
|  | * NOTE: If the regulator is disabled it will return the voltage value. This | 
|  | * function should not be used to determine regulator state. | 
|  | */ | 
|  | int regulator_get_voltage(struct regulator *regulator) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(®ulator->rdev->mutex); | 
|  |  | 
|  | ret = _regulator_get_voltage(regulator->rdev); | 
|  |  | 
|  | mutex_unlock(®ulator->rdev->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_set_current_limit - set regulator output current limit | 
|  | * @regulator: regulator source | 
|  | * @min_uA: Minimuum supported current in uA | 
|  | * @max_uA: Maximum supported current in uA | 
|  | * | 
|  | * Sets current sink to the desired output current. This can be set during | 
|  | * any regulator state. IOW, regulator can be disabled or enabled. | 
|  | * | 
|  | * If the regulator is enabled then the current will change to the new value | 
|  | * immediately otherwise if the regulator is disabled the regulator will | 
|  | * output at the new current when enabled. | 
|  | * | 
|  | * NOTE: Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | */ | 
|  | int regulator_set_current_limit(struct regulator *regulator, | 
|  | int min_uA, int max_uA) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_current_limit) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_current_limit); | 
|  |  | 
|  | static int _regulator_get_current_limit(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->get_current_limit) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = rdev->desc->ops->get_current_limit(rdev); | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_current_limit - get regulator output current | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * This returns the current supplied by the specified current sink in uA. | 
|  | * | 
|  | * NOTE: If the regulator is disabled it will return the current value. This | 
|  | * function should not be used to determine regulator state. | 
|  | */ | 
|  | int regulator_get_current_limit(struct regulator *regulator) | 
|  | { | 
|  | return _regulator_get_current_limit(regulator->rdev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_current_limit); | 
|  |  | 
|  | /** | 
|  | * regulator_set_mode - set regulator operating mode | 
|  | * @regulator: regulator source | 
|  | * @mode: operating mode - one of the REGULATOR_MODE constants | 
|  | * | 
|  | * Set regulator operating mode to increase regulator efficiency or improve | 
|  | * regulation performance. | 
|  | * | 
|  | * NOTE: Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | */ | 
|  | int regulator_set_mode(struct regulator *regulator, unsigned int mode) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret; | 
|  | int regulator_curr_mode; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_mode) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* return if the same mode is requested */ | 
|  | if (rdev->desc->ops->get_mode) { | 
|  | regulator_curr_mode = rdev->desc->ops->get_mode(rdev); | 
|  | if (regulator_curr_mode == mode) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_mode_constrain(rdev, &mode); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = rdev->desc->ops->set_mode(rdev, mode); | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_mode); | 
|  |  | 
|  | static unsigned int _regulator_get_mode(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->get_mode) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = rdev->desc->ops->get_mode(rdev); | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_mode - get regulator operating mode | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Get the current regulator operating mode. | 
|  | */ | 
|  | unsigned int regulator_get_mode(struct regulator *regulator) | 
|  | { | 
|  | return _regulator_get_mode(regulator->rdev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_mode); | 
|  |  | 
|  | /** | 
|  | * regulator_set_optimum_mode - set regulator optimum operating mode | 
|  | * @regulator: regulator source | 
|  | * @uA_load: load current | 
|  | * | 
|  | * Notifies the regulator core of a new device load. This is then used by | 
|  | * DRMS (if enabled by constraints) to set the most efficient regulator | 
|  | * operating mode for the new regulator loading. | 
|  | * | 
|  | * Consumer devices notify their supply regulator of the maximum power | 
|  | * they will require (can be taken from device datasheet in the power | 
|  | * consumption tables) when they change operational status and hence power | 
|  | * state. Examples of operational state changes that can affect power | 
|  | * consumption are :- | 
|  | * | 
|  | *    o Device is opened / closed. | 
|  | *    o Device I/O is about to begin or has just finished. | 
|  | *    o Device is idling in between work. | 
|  | * | 
|  | * This information is also exported via sysfs to userspace. | 
|  | * | 
|  | * DRMS will sum the total requested load on the regulator and change | 
|  | * to the most efficient operating mode if platform constraints allow. | 
|  | * | 
|  | * Returns the new regulator mode or error. | 
|  | */ | 
|  | int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator *consumer; | 
|  | int ret, output_uV, input_uV, total_uA_load = 0; | 
|  | unsigned int mode; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | /* | 
|  | * first check to see if we can set modes at all, otherwise just | 
|  | * tell the consumer everything is OK. | 
|  | */ | 
|  | regulator->uA_load = uA_load; | 
|  | ret = regulator_check_drms(rdev); | 
|  | if (ret < 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!rdev->desc->ops->get_optimum_mode) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * we can actually do this so any errors are indicators of | 
|  | * potential real failure. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  |  | 
|  | /* get output voltage */ | 
|  | output_uV = _regulator_get_voltage(rdev); | 
|  | if (output_uV <= 0) { | 
|  | rdev_err(rdev, "invalid output voltage found\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* get input voltage */ | 
|  | input_uV = 0; | 
|  | if (rdev->supply) | 
|  | input_uV = _regulator_get_voltage(rdev->supply); | 
|  | if (input_uV <= 0) | 
|  | input_uV = rdev->constraints->input_uV; | 
|  | if (input_uV <= 0) { | 
|  | rdev_err(rdev, "invalid input voltage found\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* calc total requested load for this regulator */ | 
|  | list_for_each_entry(consumer, &rdev->consumer_list, list) | 
|  | total_uA_load += consumer->uA_load; | 
|  |  | 
|  | mode = rdev->desc->ops->get_optimum_mode(rdev, | 
|  | input_uV, output_uV, | 
|  | total_uA_load); | 
|  | ret = regulator_mode_constrain(rdev, &mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", | 
|  | total_uA_load, input_uV, output_uV); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = rdev->desc->ops->set_mode(rdev, mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set optimum mode %x\n", mode); | 
|  | goto out; | 
|  | } | 
|  | ret = mode; | 
|  | out: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); | 
|  |  | 
|  | /** | 
|  | * regulator_register_notifier - register regulator event notifier | 
|  | * @regulator: regulator source | 
|  | * @nb: notifier block | 
|  | * | 
|  | * Register notifier block to receive regulator events. | 
|  | */ | 
|  | int regulator_register_notifier(struct regulator *regulator, | 
|  | struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(®ulator->rdev->notifier, | 
|  | nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_register_notifier); | 
|  |  | 
|  | /** | 
|  | * regulator_unregister_notifier - unregister regulator event notifier | 
|  | * @regulator: regulator source | 
|  | * @nb: notifier block | 
|  | * | 
|  | * Unregister regulator event notifier block. | 
|  | */ | 
|  | int regulator_unregister_notifier(struct regulator *regulator, | 
|  | struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(®ulator->rdev->notifier, | 
|  | nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_unregister_notifier); | 
|  |  | 
|  | /* notify regulator consumers and downstream regulator consumers. | 
|  | * Note mutex must be held by caller. | 
|  | */ | 
|  | static void _notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data) | 
|  | { | 
|  | struct regulator_dev *_rdev; | 
|  |  | 
|  | /* call rdev chain first */ | 
|  | blocking_notifier_call_chain(&rdev->notifier, event, NULL); | 
|  |  | 
|  | /* now notify regulator we supply */ | 
|  | list_for_each_entry(_rdev, &rdev->supply_list, slist) { | 
|  | mutex_lock(&_rdev->mutex); | 
|  | _notifier_call_chain(_rdev, event, data); | 
|  | mutex_unlock(&_rdev->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_get - get multiple regulator consumers | 
|  | * | 
|  | * @dev:           Device to supply | 
|  | * @num_consumers: Number of consumers to register | 
|  | * @consumers:     Configuration of consumers; clients are stored here. | 
|  | * | 
|  | * @return 0 on success, an errno on failure. | 
|  | * | 
|  | * This helper function allows drivers to get several regulator | 
|  | * consumers in one operation.  If any of the regulators cannot be | 
|  | * acquired then any regulators that were allocated will be freed | 
|  | * before returning to the caller. | 
|  | */ | 
|  | int regulator_bulk_get(struct device *dev, int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) | 
|  | consumers[i].consumer = NULL; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | consumers[i].consumer = regulator_get(dev, | 
|  | consumers[i].supply); | 
|  | if (IS_ERR(consumers[i].consumer)) { | 
|  | ret = PTR_ERR(consumers[i].consumer); | 
|  | dev_err(dev, "Failed to get supply '%s': %d\n", | 
|  | consumers[i].supply, ret); | 
|  | consumers[i].consumer = NULL; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | for (i = 0; i < num_consumers && consumers[i].consumer; i++) | 
|  | regulator_put(consumers[i].consumer); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_get); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_enable - enable multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * @return         0 on success, an errno on failure | 
|  | * | 
|  | * This convenience API allows consumers to enable multiple regulator | 
|  | * clients in a single API call.  If any consumers cannot be enabled | 
|  | * then any others that were enabled will be disabled again prior to | 
|  | * return. | 
|  | */ | 
|  | int regulator_bulk_enable(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | ret = regulator_enable(consumers[i].consumer); | 
|  | if (ret != 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); | 
|  | for (--i; i >= 0; --i) | 
|  | regulator_disable(consumers[i].consumer); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_enable); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_disable - disable multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * @return         0 on success, an errno on failure | 
|  | * | 
|  | * This convenience API allows consumers to disable multiple regulator | 
|  | * clients in a single API call.  If any consumers cannot be enabled | 
|  | * then any others that were disabled will be disabled again prior to | 
|  | * return. | 
|  | */ | 
|  | int regulator_bulk_disable(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | ret = regulator_disable(consumers[i].consumer); | 
|  | if (ret != 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); | 
|  | for (--i; i >= 0; --i) | 
|  | regulator_enable(consumers[i].consumer); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_disable); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_free - free multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * | 
|  | * This convenience API allows consumers to free multiple regulator | 
|  | * clients in a single API call. | 
|  | */ | 
|  | void regulator_bulk_free(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | regulator_put(consumers[i].consumer); | 
|  | consumers[i].consumer = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_free); | 
|  |  | 
|  | /** | 
|  | * regulator_notifier_call_chain - call regulator event notifier | 
|  | * @rdev: regulator source | 
|  | * @event: notifier block | 
|  | * @data: callback-specific data. | 
|  | * | 
|  | * Called by regulator drivers to notify clients a regulator event has | 
|  | * occurred. We also notify regulator clients downstream. | 
|  | * Note lock must be held by caller. | 
|  | */ | 
|  | int regulator_notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data) | 
|  | { | 
|  | _notifier_call_chain(rdev, event, data); | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); | 
|  |  | 
|  | /** | 
|  | * regulator_mode_to_status - convert a regulator mode into a status | 
|  | * | 
|  | * @mode: Mode to convert | 
|  | * | 
|  | * Convert a regulator mode into a status. | 
|  | */ | 
|  | int regulator_mode_to_status(unsigned int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | return REGULATOR_STATUS_FAST; | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | return REGULATOR_STATUS_NORMAL; | 
|  | case REGULATOR_MODE_IDLE: | 
|  | return REGULATOR_STATUS_IDLE; | 
|  | case REGULATOR_STATUS_STANDBY: | 
|  | return REGULATOR_STATUS_STANDBY; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_mode_to_status); | 
|  |  | 
|  | /* | 
|  | * To avoid cluttering sysfs (and memory) with useless state, only | 
|  | * create attributes that can be meaningfully displayed. | 
|  | */ | 
|  | static int add_regulator_attributes(struct regulator_dev *rdev) | 
|  | { | 
|  | struct device		*dev = &rdev->dev; | 
|  | struct regulator_ops	*ops = rdev->desc->ops; | 
|  | int			status = 0; | 
|  |  | 
|  | /* some attributes need specific methods to be displayed */ | 
|  | if (ops->get_voltage || ops->get_voltage_sel) { | 
|  | status = device_create_file(dev, &dev_attr_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  | if (ops->get_current_limit) { | 
|  | status = device_create_file(dev, &dev_attr_microamps); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  | if (ops->get_mode) { | 
|  | status = device_create_file(dev, &dev_attr_opmode); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  | if (ops->is_enabled) { | 
|  | status = device_create_file(dev, &dev_attr_state); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  | if (ops->get_status) { | 
|  | status = device_create_file(dev, &dev_attr_status); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* some attributes are type-specific */ | 
|  | if (rdev->desc->type == REGULATOR_CURRENT) { | 
|  | status = device_create_file(dev, &dev_attr_requested_microamps); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* all the other attributes exist to support constraints; | 
|  | * don't show them if there are no constraints, or if the | 
|  | * relevant supporting methods are missing. | 
|  | */ | 
|  | if (!rdev->constraints) | 
|  | return status; | 
|  |  | 
|  | /* constraints need specific supporting methods */ | 
|  | if (ops->set_voltage || ops->set_voltage_sel) { | 
|  | status = device_create_file(dev, &dev_attr_min_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, &dev_attr_max_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  | if (ops->set_current_limit) { | 
|  | status = device_create_file(dev, &dev_attr_min_microamps); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, &dev_attr_max_microamps); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* suspend mode constraints need multiple supporting methods */ | 
|  | if (!(ops->set_suspend_enable && ops->set_suspend_disable)) | 
|  | return status; | 
|  |  | 
|  | status = device_create_file(dev, &dev_attr_suspend_standby_state); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, &dev_attr_suspend_mem_state); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, &dev_attr_suspend_disk_state); | 
|  | if (status < 0) | 
|  | return status; | 
|  |  | 
|  | if (ops->set_suspend_voltage) { | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_standby_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_mem_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_disk_microvolts); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (ops->set_suspend_mode) { | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_standby_mode); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_mem_mode); | 
|  | if (status < 0) | 
|  | return status; | 
|  | status = device_create_file(dev, | 
|  | &dev_attr_suspend_disk_mode); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void rdev_init_debugfs(struct regulator_dev *rdev) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); | 
|  | if (IS_ERR(rdev->debugfs) || !rdev->debugfs) { | 
|  | rdev_warn(rdev, "Failed to create debugfs directory\n"); | 
|  | rdev->debugfs = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | debugfs_create_u32("use_count", 0444, rdev->debugfs, | 
|  | &rdev->use_count); | 
|  | debugfs_create_u32("open_count", 0444, rdev->debugfs, | 
|  | &rdev->open_count); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_register - register regulator | 
|  | * @regulator_desc: regulator to register | 
|  | * @dev: struct device for the regulator | 
|  | * @init_data: platform provided init data, passed through by driver | 
|  | * @driver_data: private regulator data | 
|  | * | 
|  | * Called by regulator drivers to register a regulator. | 
|  | * Returns 0 on success. | 
|  | */ | 
|  | struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, | 
|  | struct device *dev, const struct regulator_init_data *init_data, | 
|  | void *driver_data) | 
|  | { | 
|  | static atomic_t regulator_no = ATOMIC_INIT(0); | 
|  | struct regulator_dev *rdev; | 
|  | int ret, i; | 
|  |  | 
|  | if (regulator_desc == NULL) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (regulator_desc->name == NULL || regulator_desc->ops == NULL) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (regulator_desc->type != REGULATOR_VOLTAGE && | 
|  | regulator_desc->type != REGULATOR_CURRENT) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (!init_data) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* Only one of each should be implemented */ | 
|  | WARN_ON(regulator_desc->ops->get_voltage && | 
|  | regulator_desc->ops->get_voltage_sel); | 
|  | WARN_ON(regulator_desc->ops->set_voltage && | 
|  | regulator_desc->ops->set_voltage_sel); | 
|  |  | 
|  | /* If we're using selectors we must implement list_voltage. */ | 
|  | if (regulator_desc->ops->get_voltage_sel && | 
|  | !regulator_desc->ops->list_voltage) { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | if (regulator_desc->ops->set_voltage_sel && | 
|  | !regulator_desc->ops->list_voltage) { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); | 
|  | if (rdev == NULL) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | mutex_init(&rdev->mutex); | 
|  | rdev->reg_data = driver_data; | 
|  | rdev->owner = regulator_desc->owner; | 
|  | rdev->desc = regulator_desc; | 
|  | INIT_LIST_HEAD(&rdev->consumer_list); | 
|  | INIT_LIST_HEAD(&rdev->supply_list); | 
|  | INIT_LIST_HEAD(&rdev->list); | 
|  | INIT_LIST_HEAD(&rdev->slist); | 
|  | BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); | 
|  |  | 
|  | /* preform any regulator specific init */ | 
|  | if (init_data->regulator_init) { | 
|  | ret = init_data->regulator_init(rdev->reg_data); | 
|  | if (ret < 0) | 
|  | goto clean; | 
|  | } | 
|  |  | 
|  | /* register with sysfs */ | 
|  | rdev->dev.class = ®ulator_class; | 
|  | rdev->dev.parent = dev; | 
|  | dev_set_name(&rdev->dev, "regulator.%d", | 
|  | atomic_inc_return(®ulator_no) - 1); | 
|  | ret = device_register(&rdev->dev); | 
|  | if (ret != 0) { | 
|  | put_device(&rdev->dev); | 
|  | goto clean; | 
|  | } | 
|  |  | 
|  | dev_set_drvdata(&rdev->dev, rdev); | 
|  |  | 
|  | /* set regulator constraints */ | 
|  | ret = set_machine_constraints(rdev, &init_data->constraints); | 
|  | if (ret < 0) | 
|  | goto scrub; | 
|  |  | 
|  | /* add attributes supported by this regulator */ | 
|  | ret = add_regulator_attributes(rdev); | 
|  | if (ret < 0) | 
|  | goto scrub; | 
|  |  | 
|  | if (init_data->supply_regulator) { | 
|  | struct regulator_dev *r; | 
|  | int found = 0; | 
|  |  | 
|  | list_for_each_entry(r, ®ulator_list, list) { | 
|  | if (strcmp(rdev_get_name(r), | 
|  | init_data->supply_regulator) == 0) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | dev_err(dev, "Failed to find supply %s\n", | 
|  | init_data->supply_regulator); | 
|  | ret = -ENODEV; | 
|  | goto scrub; | 
|  | } | 
|  |  | 
|  | ret = set_supply(rdev, r); | 
|  | if (ret < 0) | 
|  | goto scrub; | 
|  | } | 
|  |  | 
|  | /* add consumers devices */ | 
|  | for (i = 0; i < init_data->num_consumer_supplies; i++) { | 
|  | ret = set_consumer_device_supply(rdev, | 
|  | init_data->consumer_supplies[i].dev, | 
|  | init_data->consumer_supplies[i].dev_name, | 
|  | init_data->consumer_supplies[i].supply); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "Failed to set supply %s\n", | 
|  | init_data->consumer_supplies[i].supply); | 
|  | goto unset_supplies; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add(&rdev->list, ®ulator_list); | 
|  |  | 
|  | rdev_init_debugfs(rdev); | 
|  | out: | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return rdev; | 
|  |  | 
|  | unset_supplies: | 
|  | unset_regulator_supplies(rdev); | 
|  |  | 
|  | scrub: | 
|  | device_unregister(&rdev->dev); | 
|  | /* device core frees rdev */ | 
|  | rdev = ERR_PTR(ret); | 
|  | goto out; | 
|  |  | 
|  | clean: | 
|  | kfree(rdev); | 
|  | rdev = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_register); | 
|  |  | 
|  | /** | 
|  | * regulator_unregister - unregister regulator | 
|  | * @rdev: regulator to unregister | 
|  | * | 
|  | * Called by regulator drivers to unregister a regulator. | 
|  | */ | 
|  | void regulator_unregister(struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev == NULL) | 
|  | return; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | debugfs_remove_recursive(rdev->debugfs); | 
|  | #endif | 
|  | WARN_ON(rdev->open_count); | 
|  | unset_regulator_supplies(rdev); | 
|  | list_del(&rdev->list); | 
|  | if (rdev->supply) | 
|  | sysfs_remove_link(&rdev->dev.kobj, "supply"); | 
|  | device_unregister(&rdev->dev); | 
|  | kfree(rdev->constraints); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_unregister); | 
|  |  | 
|  | /** | 
|  | * regulator_suspend_prepare - prepare regulators for system wide suspend | 
|  | * @state: system suspend state | 
|  | * | 
|  | * Configure each regulator with it's suspend operating parameters for state. | 
|  | * This will usually be called by machine suspend code prior to supending. | 
|  | */ | 
|  | int regulator_suspend_prepare(suspend_state_t state) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  | int ret = 0; | 
|  |  | 
|  | /* ON is handled by regulator active state */ | 
|  | if (state == PM_SUSPEND_ON) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_for_each_entry(rdev, ®ulator_list, list) { | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | ret = suspend_prepare(rdev, state); | 
|  | mutex_unlock(&rdev->mutex); | 
|  |  | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to prepare\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_suspend_prepare); | 
|  |  | 
|  | /** | 
|  | * regulator_suspend_finish - resume regulators from system wide suspend | 
|  | * | 
|  | * Turn on regulators that might be turned off by regulator_suspend_prepare | 
|  | * and that should be turned on according to the regulators properties. | 
|  | */ | 
|  | int regulator_suspend_finish(void) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  | int ret = 0, error; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_for_each_entry(rdev, ®ulator_list, list) { | 
|  | struct regulator_ops *ops = rdev->desc->ops; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  | if ((rdev->use_count > 0  || rdev->constraints->always_on) && | 
|  | ops->enable) { | 
|  | error = ops->enable(rdev); | 
|  | if (error) | 
|  | ret = error; | 
|  | } else { | 
|  | if (!has_full_constraints) | 
|  | goto unlock; | 
|  | if (!ops->disable) | 
|  | goto unlock; | 
|  | if (ops->is_enabled && !ops->is_enabled(rdev)) | 
|  | goto unlock; | 
|  |  | 
|  | error = ops->disable(rdev); | 
|  | if (error) | 
|  | ret = error; | 
|  | } | 
|  | unlock: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | } | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_suspend_finish); | 
|  |  | 
|  | /** | 
|  | * regulator_has_full_constraints - the system has fully specified constraints | 
|  | * | 
|  | * Calling this function will cause the regulator API to disable all | 
|  | * regulators which have a zero use count and don't have an always_on | 
|  | * constraint in a late_initcall. | 
|  | * | 
|  | * The intention is that this will become the default behaviour in a | 
|  | * future kernel release so users are encouraged to use this facility | 
|  | * now. | 
|  | */ | 
|  | void regulator_has_full_constraints(void) | 
|  | { | 
|  | has_full_constraints = 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_has_full_constraints); | 
|  |  | 
|  | /** | 
|  | * regulator_use_dummy_regulator - Provide a dummy regulator when none is found | 
|  | * | 
|  | * Calling this function will cause the regulator API to provide a | 
|  | * dummy regulator to consumers if no physical regulator is found, | 
|  | * allowing most consumers to proceed as though a regulator were | 
|  | * configured.  This allows systems such as those with software | 
|  | * controllable regulators for the CPU core only to be brought up more | 
|  | * readily. | 
|  | */ | 
|  | void regulator_use_dummy_regulator(void) | 
|  | { | 
|  | board_wants_dummy_regulator = true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); | 
|  |  | 
|  | /** | 
|  | * rdev_get_drvdata - get rdev regulator driver data | 
|  | * @rdev: regulator | 
|  | * | 
|  | * Get rdev regulator driver private data. This call can be used in the | 
|  | * regulator driver context. | 
|  | */ | 
|  | void *rdev_get_drvdata(struct regulator_dev *rdev) | 
|  | { | 
|  | return rdev->reg_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_drvdata); | 
|  |  | 
|  | /** | 
|  | * regulator_get_drvdata - get regulator driver data | 
|  | * @regulator: regulator | 
|  | * | 
|  | * Get regulator driver private data. This call can be used in the consumer | 
|  | * driver context when non API regulator specific functions need to be called. | 
|  | */ | 
|  | void *regulator_get_drvdata(struct regulator *regulator) | 
|  | { | 
|  | return regulator->rdev->reg_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_drvdata); | 
|  |  | 
|  | /** | 
|  | * regulator_set_drvdata - set regulator driver data | 
|  | * @regulator: regulator | 
|  | * @data: data | 
|  | */ | 
|  | void regulator_set_drvdata(struct regulator *regulator, void *data) | 
|  | { | 
|  | regulator->rdev->reg_data = data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_drvdata); | 
|  |  | 
|  | /** | 
|  | * regulator_get_id - get regulator ID | 
|  | * @rdev: regulator | 
|  | */ | 
|  | int rdev_get_id(struct regulator_dev *rdev) | 
|  | { | 
|  | return rdev->desc->id; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_id); | 
|  |  | 
|  | struct device *rdev_get_dev(struct regulator_dev *rdev) | 
|  | { | 
|  | return &rdev->dev; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_dev); | 
|  |  | 
|  | void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) | 
|  | { | 
|  | return reg_init_data->driver_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); | 
|  |  | 
|  | static int __init regulator_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = class_register(®ulator_class); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | debugfs_root = debugfs_create_dir("regulator", NULL); | 
|  | if (IS_ERR(debugfs_root) || !debugfs_root) { | 
|  | pr_warn("regulator: Failed to create debugfs directory\n"); | 
|  | debugfs_root = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | regulator_dummy_init(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* init early to allow our consumers to complete system booting */ | 
|  | core_initcall(regulator_init); | 
|  |  | 
|  | static int __init regulator_init_complete(void) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  | struct regulator_ops *ops; | 
|  | struct regulation_constraints *c; | 
|  | int enabled, ret; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | /* If we have a full configuration then disable any regulators | 
|  | * which are not in use or always_on.  This will become the | 
|  | * default behaviour in the future. | 
|  | */ | 
|  | list_for_each_entry(rdev, ®ulator_list, list) { | 
|  | ops = rdev->desc->ops; | 
|  | c = rdev->constraints; | 
|  |  | 
|  | if (!ops->disable || (c && c->always_on)) | 
|  | continue; | 
|  |  | 
|  | mutex_lock(&rdev->mutex); | 
|  |  | 
|  | if (rdev->use_count) | 
|  | goto unlock; | 
|  |  | 
|  | /* If we can't read the status assume it's on. */ | 
|  | if (ops->is_enabled) | 
|  | enabled = ops->is_enabled(rdev); | 
|  | else | 
|  | enabled = 1; | 
|  |  | 
|  | if (!enabled) | 
|  | goto unlock; | 
|  |  | 
|  | if (has_full_constraints) { | 
|  | /* We log since this may kill the system if it | 
|  | * goes wrong. */ | 
|  | rdev_info(rdev, "disabling\n"); | 
|  | ret = ops->disable(rdev); | 
|  | if (ret != 0) { | 
|  | rdev_err(rdev, "couldn't disable: %d\n", ret); | 
|  | } | 
|  | } else { | 
|  | /* The intention is that in future we will | 
|  | * assume that full constraints are provided | 
|  | * so warn even if we aren't going to do | 
|  | * anything here. | 
|  | */ | 
|  | rdev_warn(rdev, "incomplete constraints, leaving on\n"); | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&rdev->mutex); | 
|  | } | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | late_initcall(regulator_init_complete); |