| /* | 
 |  * net/sched/sch_red.c	Random Early Detection queue. | 
 |  * | 
 |  *		This program is free software; you can redistribute it and/or | 
 |  *		modify it under the terms of the GNU General Public License | 
 |  *		as published by the Free Software Foundation; either version | 
 |  *		2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * Authors:	Alexey Kuznetsov, <[email protected]> | 
 |  * | 
 |  * Changes: | 
 |  * J Hadi Salim <[email protected]> 980914:	computation fixes | 
 |  * Alexey Makarenko <[email protected]> 990814: qave on idle link was calculated incorrectly. | 
 |  * J Hadi Salim <[email protected]> 980816:  ECN support	 | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/module.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/system.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/socket.h> | 
 | #include <linux/sockios.h> | 
 | #include <linux/in.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/if_ether.h> | 
 | #include <linux/inet.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/notifier.h> | 
 | #include <net/ip.h> | 
 | #include <net/route.h> | 
 | #include <linux/skbuff.h> | 
 | #include <net/sock.h> | 
 | #include <net/pkt_sched.h> | 
 | #include <net/inet_ecn.h> | 
 | #include <net/dsfield.h> | 
 |  | 
 |  | 
 | /*	Random Early Detection (RED) algorithm. | 
 | 	======================================= | 
 |  | 
 | 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
 | 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
 |  | 
 | 	This file codes a "divisionless" version of RED algorithm | 
 | 	as written down in Fig.17 of the paper. | 
 |  | 
 | Short description. | 
 | ------------------ | 
 |  | 
 | 	When a new packet arrives we calculate the average queue length: | 
 |  | 
 | 	avg = (1-W)*avg + W*current_queue_len, | 
 |  | 
 | 	W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
 | 	the inertia of the algorithm. To allow larger bursts, W should be | 
 | 	decreased. | 
 |  | 
 | 	if (avg > th_max) -> packet marked (dropped). | 
 | 	if (avg < th_min) -> packet passes. | 
 | 	if (th_min < avg < th_max) we calculate probability: | 
 |  | 
 | 	Pb = max_P * (avg - th_min)/(th_max-th_min) | 
 |  | 
 | 	and mark (drop) packet with this probability. | 
 | 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
 | 	max_P should be small (not 1), usually 0.01..0.02 is good value. | 
 |  | 
 | 	max_P is chosen as a number, so that max_P/(th_max-th_min) | 
 | 	is a negative power of two in order arithmetics to contain | 
 | 	only shifts. | 
 |  | 
 |  | 
 | 	Parameters, settable by user: | 
 | 	----------------------------- | 
 |  | 
 | 	limit		- bytes (must be > qth_max + burst) | 
 |  | 
 | 	Hard limit on queue length, should be chosen >qth_max | 
 | 	to allow packet bursts. This parameter does not | 
 | 	affect the algorithms behaviour and can be chosen | 
 | 	arbitrarily high (well, less than ram size) | 
 | 	Really, this limit will never be reached | 
 | 	if RED works correctly. | 
 |  | 
 | 	qth_min		- bytes (should be < qth_max/2) | 
 | 	qth_max		- bytes (should be at least 2*qth_min and less limit) | 
 | 	Wlog	       	- bits (<32) log(1/W). | 
 | 	Plog	       	- bits (<32) | 
 |  | 
 | 	Plog is related to max_P by formula: | 
 |  | 
 | 	max_P = (qth_max-qth_min)/2^Plog; | 
 |  | 
 | 	F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
 | 	corresponds to max_P=0.02 | 
 |  | 
 | 	Scell_log | 
 | 	Stab | 
 |  | 
 | 	Lookup table for log((1-W)^(t/t_ave). | 
 |  | 
 |  | 
 | NOTES: | 
 |  | 
 | Upper bound on W. | 
 | ----------------- | 
 |  | 
 | 	If you want to allow bursts of L packets of size S, | 
 | 	you should choose W: | 
 |  | 
 | 	L + 1 - th_min/S < (1-(1-W)^L)/W | 
 |  | 
 | 	th_min/S = 32         th_min/S = 4 | 
 | 			                        | 
 | 	log(W)	L | 
 | 	-1	33 | 
 | 	-2	35 | 
 | 	-3	39 | 
 | 	-4	46 | 
 | 	-5	57 | 
 | 	-6	75 | 
 | 	-7	101 | 
 | 	-8	135 | 
 | 	-9	190 | 
 | 	etc. | 
 |  */ | 
 |  | 
 | struct red_sched_data | 
 | { | 
 | /* Parameters */ | 
 | 	u32		limit;		/* HARD maximal queue length	*/ | 
 | 	u32		qth_min;	/* Min average length threshold: A scaled */ | 
 | 	u32		qth_max;	/* Max average length threshold: A scaled */ | 
 | 	u32		Rmask; | 
 | 	u32		Scell_max; | 
 | 	unsigned char	flags; | 
 | 	char		Wlog;		/* log(W)		*/ | 
 | 	char		Plog;		/* random number bits	*/ | 
 | 	char		Scell_log; | 
 | 	u8		Stab[256]; | 
 |  | 
 | /* Variables */ | 
 | 	unsigned long	qave;		/* Average queue length: A scaled */ | 
 | 	int		qcount;		/* Packets since last random number generation */ | 
 | 	u32		qR;		/* Cached random number */ | 
 |  | 
 | 	psched_time_t	qidlestart;	/* Start of idle period		*/ | 
 | 	struct tc_red_xstats st; | 
 | }; | 
 |  | 
 | static int red_ecn_mark(struct sk_buff *skb) | 
 | { | 
 | 	if (skb->nh.raw + 20 > skb->tail) | 
 | 		return 0; | 
 |  | 
 | 	switch (skb->protocol) { | 
 | 	case __constant_htons(ETH_P_IP): | 
 | 		if (INET_ECN_is_not_ect(skb->nh.iph->tos)) | 
 | 			return 0; | 
 | 		IP_ECN_set_ce(skb->nh.iph); | 
 | 		return 1; | 
 | 	case __constant_htons(ETH_P_IPV6): | 
 | 		if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) | 
 | 			return 0; | 
 | 		IP6_ECN_set_ce(skb->nh.ipv6h); | 
 | 		return 1; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | red_enqueue(struct sk_buff *skb, struct Qdisc* sch) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	psched_time_t now; | 
 |  | 
 | 	if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { | 
 | 		long us_idle; | 
 | 		int  shift; | 
 |  | 
 | 		PSCHED_GET_TIME(now); | 
 | 		us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); | 
 | 		PSCHED_SET_PASTPERFECT(q->qidlestart); | 
 |  | 
 | /* | 
 |    The problem: ideally, average length queue recalcultion should | 
 |    be done over constant clock intervals. This is too expensive, so that | 
 |    the calculation is driven by outgoing packets. | 
 |    When the queue is idle we have to model this clock by hand. | 
 |  | 
 |    SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) | 
 |    dummy packets as a burst after idle time, i.e. | 
 |  | 
 |           q->qave *= (1-W)^m | 
 |  | 
 |    This is an apparently overcomplicated solution (f.e. we have to precompute | 
 |    a table to make this calculation in reasonable time) | 
 |    I believe that a simpler model may be used here, | 
 |    but it is field for experiments. | 
 | */ | 
 | 		shift = q->Stab[us_idle>>q->Scell_log]; | 
 |  | 
 | 		if (shift) { | 
 | 			q->qave >>= shift; | 
 | 		} else { | 
 | 			/* Approximate initial part of exponent | 
 | 			   with linear function: | 
 | 			   (1-W)^m ~= 1-mW + ... | 
 |  | 
 | 			   Seems, it is the best solution to | 
 | 			   problem of too coarce exponent tabulation. | 
 | 			 */ | 
 |  | 
 | 			us_idle = (q->qave * us_idle)>>q->Scell_log; | 
 | 			if (us_idle < q->qave/2) | 
 | 				q->qave -= us_idle; | 
 | 			else | 
 | 				q->qave >>= 1; | 
 | 		} | 
 | 	} else { | 
 | 		q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); | 
 | 		/* NOTE: | 
 | 		   q->qave is fixed point number with point at Wlog. | 
 | 		   The formulae above is equvalent to floating point | 
 | 		   version: | 
 |  | 
 | 		   qave = qave*(1-W) + sch->qstats.backlog*W; | 
 | 		                                           --ANK (980924) | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	if (q->qave < q->qth_min) { | 
 | 		q->qcount = -1; | 
 | enqueue: | 
 | 		if (sch->qstats.backlog + skb->len <= q->limit) { | 
 | 			__skb_queue_tail(&sch->q, skb); | 
 | 			sch->qstats.backlog += skb->len; | 
 | 			sch->bstats.bytes += skb->len; | 
 | 			sch->bstats.packets++; | 
 | 			return NET_XMIT_SUCCESS; | 
 | 		} else { | 
 | 			q->st.pdrop++; | 
 | 		} | 
 | 		kfree_skb(skb); | 
 | 		sch->qstats.drops++; | 
 | 		return NET_XMIT_DROP; | 
 | 	} | 
 | 	if (q->qave >= q->qth_max) { | 
 | 		q->qcount = -1; | 
 | 		sch->qstats.overlimits++; | 
 | mark: | 
 | 		if  (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { | 
 | 			q->st.early++; | 
 | 			goto drop; | 
 | 		} | 
 | 		q->st.marked++; | 
 | 		goto enqueue; | 
 | 	} | 
 |  | 
 | 	if (++q->qcount) { | 
 | 		/* The formula used below causes questions. | 
 |  | 
 | 		   OK. qR is random number in the interval 0..Rmask | 
 | 		   i.e. 0..(2^Plog). If we used floating point | 
 | 		   arithmetics, it would be: (2^Plog)*rnd_num, | 
 | 		   where rnd_num is less 1. | 
 |  | 
 | 		   Taking into account, that qave have fixed | 
 | 		   point at Wlog, and Plog is related to max_P by | 
 | 		   max_P = (qth_max-qth_min)/2^Plog; two lines | 
 | 		   below have the following floating point equivalent: | 
 | 		    | 
 | 		   max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount | 
 |  | 
 | 		   Any questions? --ANK (980924) | 
 | 		 */ | 
 | 		if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) | 
 | 			goto enqueue; | 
 | 		q->qcount = 0; | 
 | 		q->qR = net_random()&q->Rmask; | 
 | 		sch->qstats.overlimits++; | 
 | 		goto mark; | 
 | 	} | 
 | 	q->qR = net_random()&q->Rmask; | 
 | 	goto enqueue; | 
 |  | 
 | drop: | 
 | 	kfree_skb(skb); | 
 | 	sch->qstats.drops++; | 
 | 	return NET_XMIT_CN; | 
 | } | 
 |  | 
 | static int | 
 | red_requeue(struct sk_buff *skb, struct Qdisc* sch) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	PSCHED_SET_PASTPERFECT(q->qidlestart); | 
 |  | 
 | 	__skb_queue_head(&sch->q, skb); | 
 | 	sch->qstats.backlog += skb->len; | 
 | 	sch->qstats.requeues++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct sk_buff * | 
 | red_dequeue(struct Qdisc* sch) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	skb = __skb_dequeue(&sch->q); | 
 | 	if (skb) { | 
 | 		sch->qstats.backlog -= skb->len; | 
 | 		return skb; | 
 | 	} | 
 | 	PSCHED_GET_TIME(q->qidlestart); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned int red_drop(struct Qdisc* sch) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	skb = __skb_dequeue_tail(&sch->q); | 
 | 	if (skb) { | 
 | 		unsigned int len = skb->len; | 
 | 		sch->qstats.backlog -= len; | 
 | 		sch->qstats.drops++; | 
 | 		q->st.other++; | 
 | 		kfree_skb(skb); | 
 | 		return len; | 
 | 	} | 
 | 	PSCHED_GET_TIME(q->qidlestart); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void red_reset(struct Qdisc* sch) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	__skb_queue_purge(&sch->q); | 
 | 	sch->qstats.backlog = 0; | 
 | 	PSCHED_SET_PASTPERFECT(q->qidlestart); | 
 | 	q->qave = 0; | 
 | 	q->qcount = -1; | 
 | } | 
 |  | 
 | static int red_change(struct Qdisc *sch, struct rtattr *opt) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 | 	struct rtattr *tb[TCA_RED_STAB]; | 
 | 	struct tc_red_qopt *ctl; | 
 |  | 
 | 	if (opt == NULL || | 
 | 	    rtattr_parse_nested(tb, TCA_RED_STAB, opt) || | 
 | 	    tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || | 
 | 	    RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || | 
 | 	    RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); | 
 |  | 
 | 	sch_tree_lock(sch); | 
 | 	q->flags = ctl->flags; | 
 | 	q->Wlog = ctl->Wlog; | 
 | 	q->Plog = ctl->Plog; | 
 | 	q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; | 
 | 	q->Scell_log = ctl->Scell_log; | 
 | 	q->Scell_max = (255<<q->Scell_log); | 
 | 	q->qth_min = ctl->qth_min<<ctl->Wlog; | 
 | 	q->qth_max = ctl->qth_max<<ctl->Wlog; | 
 | 	q->limit = ctl->limit; | 
 | 	memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); | 
 |  | 
 | 	q->qcount = -1; | 
 | 	if (skb_queue_empty(&sch->q)) | 
 | 		PSCHED_SET_PASTPERFECT(q->qidlestart); | 
 | 	sch_tree_unlock(sch); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int red_init(struct Qdisc* sch, struct rtattr *opt) | 
 | { | 
 | 	return red_change(sch, opt); | 
 | } | 
 |  | 
 | static int red_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 | 	unsigned char	 *b = skb->tail; | 
 | 	struct rtattr *rta; | 
 | 	struct tc_red_qopt opt; | 
 |  | 
 | 	rta = (struct rtattr*)b; | 
 | 	RTA_PUT(skb, TCA_OPTIONS, 0, NULL); | 
 | 	opt.limit = q->limit; | 
 | 	opt.qth_min = q->qth_min>>q->Wlog; | 
 | 	opt.qth_max = q->qth_max>>q->Wlog; | 
 | 	opt.Wlog = q->Wlog; | 
 | 	opt.Plog = q->Plog; | 
 | 	opt.Scell_log = q->Scell_log; | 
 | 	opt.flags = q->flags; | 
 | 	RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); | 
 | 	rta->rta_len = skb->tail - b; | 
 |  | 
 | 	return skb->len; | 
 |  | 
 | rtattr_failure: | 
 | 	skb_trim(skb, b - skb->data); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
 | { | 
 | 	struct red_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); | 
 | } | 
 |  | 
 | static struct Qdisc_ops red_qdisc_ops = { | 
 | 	.next		=	NULL, | 
 | 	.cl_ops		=	NULL, | 
 | 	.id		=	"red", | 
 | 	.priv_size	=	sizeof(struct red_sched_data), | 
 | 	.enqueue	=	red_enqueue, | 
 | 	.dequeue	=	red_dequeue, | 
 | 	.requeue	=	red_requeue, | 
 | 	.drop		=	red_drop, | 
 | 	.init		=	red_init, | 
 | 	.reset		=	red_reset, | 
 | 	.change		=	red_change, | 
 | 	.dump		=	red_dump, | 
 | 	.dump_stats	=	red_dump_stats, | 
 | 	.owner		=	THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init red_module_init(void) | 
 | { | 
 | 	return register_qdisc(&red_qdisc_ops); | 
 | } | 
 | static void __exit red_module_exit(void)  | 
 | { | 
 | 	unregister_qdisc(&red_qdisc_ops); | 
 | } | 
 | module_init(red_module_init) | 
 | module_exit(red_module_exit) | 
 | MODULE_LICENSE("GPL"); |