| /* | 
 |  * Copyright (C) 2001-2004 by David Brownell | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the | 
 |  * Free Software Foundation; either version 2 of the License, or (at your | 
 |  * option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* this file is part of ehci-hcd.c */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation. | 
 |  * | 
 |  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd" | 
 |  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned | 
 |  * buffers needed for the larger number).  We use one QH per endpoint, queue | 
 |  * multiple urbs (all three types) per endpoint.  URBs may need several qtds. | 
 |  * | 
 |  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with | 
 |  * interrupts) needs careful scheduling.  Performance improvements can be | 
 |  * an ongoing challenge.  That's in "ehci-sched.c". | 
 |  * | 
 |  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, | 
 |  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using | 
 |  * (b) special fields in qh entries or (c) split iso entries.  TTs will | 
 |  * buffer low/full speed data so the host collects it at high speed. | 
 |  */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* fill a qtd, returning how much of the buffer we were able to queue up */ | 
 |  | 
 | static int | 
 | qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, | 
 | 		  size_t len, int token, int maxpacket) | 
 | { | 
 | 	int	i, count; | 
 | 	u64	addr = buf; | 
 |  | 
 | 	/* one buffer entry per 4K ... first might be short or unaligned */ | 
 | 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); | 
 | 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); | 
 | 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */ | 
 | 	if (likely (len < count))		/* ... iff needed */ | 
 | 		count = len; | 
 | 	else { | 
 | 		buf +=  0x1000; | 
 | 		buf &= ~0x0fff; | 
 |  | 
 | 		/* per-qtd limit: from 16K to 20K (best alignment) */ | 
 | 		for (i = 1; count < len && i < 5; i++) { | 
 | 			addr = buf; | 
 | 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); | 
 | 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, | 
 | 					(u32)(addr >> 32)); | 
 | 			buf += 0x1000; | 
 | 			if ((count + 0x1000) < len) | 
 | 				count += 0x1000; | 
 | 			else | 
 | 				count = len; | 
 | 		} | 
 |  | 
 | 		/* short packets may only terminate transfers */ | 
 | 		if (count != len) | 
 | 			count -= (count % maxpacket); | 
 | 	} | 
 | 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); | 
 | 	qtd->length = count; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static inline void | 
 | qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) | 
 | { | 
 | 	struct ehci_qh_hw *hw = qh->hw; | 
 |  | 
 | 	/* writes to an active overlay are unsafe */ | 
 | 	WARN_ON(qh->qh_state != QH_STATE_IDLE); | 
 |  | 
 | 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 	hw->hw_alt_next = EHCI_LIST_END(ehci); | 
 |  | 
 | 	/* Except for control endpoints, we make hardware maintain data | 
 | 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, | 
 | 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will | 
 | 	 * ever clear it. | 
 | 	 */ | 
 | 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { | 
 | 		unsigned	is_out, epnum; | 
 |  | 
 | 		is_out = qh->is_out; | 
 | 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; | 
 | 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) { | 
 | 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); | 
 | 			usb_settoggle(qh->ps.udev, epnum, is_out, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); | 
 | } | 
 |  | 
 | /* if it weren't for a common silicon quirk (writing the dummy into the qh | 
 |  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault | 
 |  * recovery (including urb dequeue) would need software changes to a QH... | 
 |  */ | 
 | static void | 
 | qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	struct ehci_qtd *qtd; | 
 |  | 
 | 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); | 
 |  | 
 | 	/* | 
 | 	 * first qtd may already be partially processed. | 
 | 	 * If we come here during unlink, the QH overlay region | 
 | 	 * might have reference to the just unlinked qtd. The | 
 | 	 * qtd is updated in qh_completions(). Update the QH | 
 | 	 * overlay here. | 
 | 	 */ | 
 | 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) { | 
 | 		qh->hw->hw_qtd_next = qtd->hw_next; | 
 | 		if (qh->should_be_inactive) | 
 | 			ehci_warn(ehci, "qh %p should be inactive!\n", qh); | 
 | 	} else { | 
 | 		qh_update(ehci, qh, qtd); | 
 | 	} | 
 | 	qh->should_be_inactive = 0; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 |  | 
 | static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd); | 
 | 	struct ehci_qh		*qh = ep->hcpriv; | 
 | 	unsigned long		flags; | 
 |  | 
 | 	spin_lock_irqsave(&ehci->lock, flags); | 
 | 	qh->clearing_tt = 0; | 
 | 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) | 
 | 			&& ehci->rh_state == EHCI_RH_RUNNING) | 
 | 		qh_link_async(ehci, qh); | 
 | 	spin_unlock_irqrestore(&ehci->lock, flags); | 
 | } | 
 |  | 
 | static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, | 
 | 		struct urb *urb, u32 token) | 
 | { | 
 |  | 
 | 	/* If an async split transaction gets an error or is unlinked, | 
 | 	 * the TT buffer may be left in an indeterminate state.  We | 
 | 	 * have to clear the TT buffer. | 
 | 	 * | 
 | 	 * Note: this routine is never called for Isochronous transfers. | 
 | 	 */ | 
 | 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { | 
 | #ifdef CONFIG_DYNAMIC_DEBUG | 
 | 		struct usb_device *tt = urb->dev->tt->hub; | 
 | 		dev_dbg(&tt->dev, | 
 | 			"clear tt buffer port %d, a%d ep%d t%08x\n", | 
 | 			urb->dev->ttport, urb->dev->devnum, | 
 | 			usb_pipeendpoint(urb->pipe), token); | 
 | #endif /* CONFIG_DYNAMIC_DEBUG */ | 
 | 		if (!ehci_is_TDI(ehci) | 
 | 				|| urb->dev->tt->hub != | 
 | 				   ehci_to_hcd(ehci)->self.root_hub) { | 
 | 			if (usb_hub_clear_tt_buffer(urb) == 0) | 
 | 				qh->clearing_tt = 1; | 
 | 		} else { | 
 |  | 
 | 			/* REVISIT ARC-derived cores don't clear the root | 
 | 			 * hub TT buffer in this way... | 
 | 			 */ | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int qtd_copy_status ( | 
 | 	struct ehci_hcd *ehci, | 
 | 	struct urb *urb, | 
 | 	size_t length, | 
 | 	u32 token | 
 | ) | 
 | { | 
 | 	int	status = -EINPROGRESS; | 
 |  | 
 | 	/* count IN/OUT bytes, not SETUP (even short packets) */ | 
 | 	if (likely (QTD_PID (token) != 2)) | 
 | 		urb->actual_length += length - QTD_LENGTH (token); | 
 |  | 
 | 	/* don't modify error codes */ | 
 | 	if (unlikely(urb->unlinked)) | 
 | 		return status; | 
 |  | 
 | 	/* force cleanup after short read; not always an error */ | 
 | 	if (unlikely (IS_SHORT_READ (token))) | 
 | 		status = -EREMOTEIO; | 
 |  | 
 | 	/* serious "can't proceed" faults reported by the hardware */ | 
 | 	if (token & QTD_STS_HALT) { | 
 | 		if (token & QTD_STS_BABBLE) { | 
 | 			/* FIXME "must" disable babbling device's port too */ | 
 | 			status = -EOVERFLOW; | 
 | 		/* CERR nonzero + halt --> stall */ | 
 | 		} else if (QTD_CERR(token)) { | 
 | 			status = -EPIPE; | 
 |  | 
 | 		/* In theory, more than one of the following bits can be set | 
 | 		 * since they are sticky and the transaction is retried. | 
 | 		 * Which to test first is rather arbitrary. | 
 | 		 */ | 
 | 		} else if (token & QTD_STS_MMF) { | 
 | 			/* fs/ls interrupt xfer missed the complete-split */ | 
 | 			status = -EPROTO; | 
 | 		} else if (token & QTD_STS_DBE) { | 
 | 			status = (QTD_PID (token) == 1) /* IN ? */ | 
 | 				? -ENOSR  /* hc couldn't read data */ | 
 | 				: -ECOMM; /* hc couldn't write data */ | 
 | 		} else if (token & QTD_STS_XACT) { | 
 | 			/* timeout, bad CRC, wrong PID, etc */ | 
 | 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", | 
 | 				urb->dev->devpath, | 
 | 				usb_pipeendpoint(urb->pipe), | 
 | 				usb_pipein(urb->pipe) ? "in" : "out"); | 
 | 			status = -EPROTO; | 
 | 		} else {	/* unknown */ | 
 | 			status = -EPROTO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void | 
 | ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) | 
 | { | 
 | 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | 
 | 		/* ... update hc-wide periodic stats */ | 
 | 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; | 
 | 	} | 
 |  | 
 | 	if (unlikely(urb->unlinked)) { | 
 | 		COUNT(ehci->stats.unlink); | 
 | 	} else { | 
 | 		/* report non-error and short read status as zero */ | 
 | 		if (status == -EINPROGRESS || status == -EREMOTEIO) | 
 | 			status = 0; | 
 | 		COUNT(ehci->stats.complete); | 
 | 	} | 
 |  | 
 | #ifdef EHCI_URB_TRACE | 
 | 	ehci_dbg (ehci, | 
 | 		"%s %s urb %p ep%d%s status %d len %d/%d\n", | 
 | 		__func__, urb->dev->devpath, urb, | 
 | 		usb_pipeendpoint (urb->pipe), | 
 | 		usb_pipein (urb->pipe) ? "in" : "out", | 
 | 		status, | 
 | 		urb->actual_length, urb->transfer_buffer_length); | 
 | #endif | 
 |  | 
 | 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
 | 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); | 
 | } | 
 |  | 
 | static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 |  | 
 | /* | 
 |  * Process and free completed qtds for a qh, returning URBs to drivers. | 
 |  * Chases up to qh->hw_current.  Returns nonzero if the caller should | 
 |  * unlink qh. | 
 |  */ | 
 | static unsigned | 
 | qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	struct ehci_qtd		*last, *end = qh->dummy; | 
 | 	struct list_head	*entry, *tmp; | 
 | 	int			last_status; | 
 | 	int			stopped; | 
 | 	u8			state; | 
 | 	struct ehci_qh_hw	*hw = qh->hw; | 
 |  | 
 | 	/* completions (or tasks on other cpus) must never clobber HALT | 
 | 	 * till we've gone through and cleaned everything up, even when | 
 | 	 * they add urbs to this qh's queue or mark them for unlinking. | 
 | 	 * | 
 | 	 * NOTE:  unlinking expects to be done in queue order. | 
 | 	 * | 
 | 	 * It's a bug for qh->qh_state to be anything other than | 
 | 	 * QH_STATE_IDLE, unless our caller is scan_async() or | 
 | 	 * scan_intr(). | 
 | 	 */ | 
 | 	state = qh->qh_state; | 
 | 	qh->qh_state = QH_STATE_COMPLETING; | 
 | 	stopped = (state == QH_STATE_IDLE); | 
 |  | 
 |  rescan: | 
 | 	last = NULL; | 
 | 	last_status = -EINPROGRESS; | 
 | 	qh->dequeue_during_giveback = 0; | 
 |  | 
 | 	/* remove de-activated QTDs from front of queue. | 
 | 	 * after faults (including short reads), cleanup this urb | 
 | 	 * then let the queue advance. | 
 | 	 * if queue is stopped, handles unlinks. | 
 | 	 */ | 
 | 	list_for_each_safe (entry, tmp, &qh->qtd_list) { | 
 | 		struct ehci_qtd	*qtd; | 
 | 		struct urb	*urb; | 
 | 		u32		token = 0; | 
 |  | 
 | 		qtd = list_entry (entry, struct ehci_qtd, qtd_list); | 
 | 		urb = qtd->urb; | 
 |  | 
 | 		/* clean up any state from previous QTD ...*/ | 
 | 		if (last) { | 
 | 			if (likely (last->urb != urb)) { | 
 | 				ehci_urb_done(ehci, last->urb, last_status); | 
 | 				last_status = -EINPROGRESS; | 
 | 			} | 
 | 			ehci_qtd_free (ehci, last); | 
 | 			last = NULL; | 
 | 		} | 
 |  | 
 | 		/* ignore urbs submitted during completions we reported */ | 
 | 		if (qtd == end) | 
 | 			break; | 
 |  | 
 | 		/* hardware copies qtd out of qh overlay */ | 
 | 		rmb (); | 
 | 		token = hc32_to_cpu(ehci, qtd->hw_token); | 
 |  | 
 | 		/* always clean up qtds the hc de-activated */ | 
 |  retry_xacterr: | 
 | 		if ((token & QTD_STS_ACTIVE) == 0) { | 
 |  | 
 | 			/* Report Data Buffer Error: non-fatal but useful */ | 
 | 			if (token & QTD_STS_DBE) | 
 | 				ehci_dbg(ehci, | 
 | 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", | 
 | 					urb, | 
 | 					usb_endpoint_num(&urb->ep->desc), | 
 | 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", | 
 | 					urb->transfer_buffer_length, | 
 | 					qtd, | 
 | 					qh); | 
 |  | 
 | 			/* on STALL, error, and short reads this urb must | 
 | 			 * complete and all its qtds must be recycled. | 
 | 			 */ | 
 | 			if ((token & QTD_STS_HALT) != 0) { | 
 |  | 
 | 				/* retry transaction errors until we | 
 | 				 * reach the software xacterr limit | 
 | 				 */ | 
 | 				if ((token & QTD_STS_XACT) && | 
 | 						QTD_CERR(token) == 0 && | 
 | 						++qh->xacterrs < QH_XACTERR_MAX && | 
 | 						!urb->unlinked) { | 
 | 					ehci_dbg(ehci, | 
 | 	"detected XactErr len %zu/%zu retry %d\n", | 
 | 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); | 
 |  | 
 | 					/* reset the token in the qtd and the | 
 | 					 * qh overlay (which still contains | 
 | 					 * the qtd) so that we pick up from | 
 | 					 * where we left off | 
 | 					 */ | 
 | 					token &= ~QTD_STS_HALT; | 
 | 					token |= QTD_STS_ACTIVE | | 
 | 							(EHCI_TUNE_CERR << 10); | 
 | 					qtd->hw_token = cpu_to_hc32(ehci, | 
 | 							token); | 
 | 					wmb(); | 
 | 					hw->hw_token = cpu_to_hc32(ehci, | 
 | 							token); | 
 | 					goto retry_xacterr; | 
 | 				} | 
 | 				stopped = 1; | 
 | 				qh->unlink_reason |= QH_UNLINK_HALTED; | 
 |  | 
 | 			/* magic dummy for some short reads; qh won't advance. | 
 | 			 * that silicon quirk can kick in with this dummy too. | 
 | 			 * | 
 | 			 * other short reads won't stop the queue, including | 
 | 			 * control transfers (status stage handles that) or | 
 | 			 * most other single-qtd reads ... the queue stops if | 
 | 			 * URB_SHORT_NOT_OK was set so the driver submitting | 
 | 			 * the urbs could clean it up. | 
 | 			 */ | 
 | 			} else if (IS_SHORT_READ (token) | 
 | 					&& !(qtd->hw_alt_next | 
 | 						& EHCI_LIST_END(ehci))) { | 
 | 				stopped = 1; | 
 | 				qh->unlink_reason |= QH_UNLINK_SHORT_READ; | 
 | 			} | 
 |  | 
 | 		/* stop scanning when we reach qtds the hc is using */ | 
 | 		} else if (likely (!stopped | 
 | 				&& ehci->rh_state >= EHCI_RH_RUNNING)) { | 
 | 			break; | 
 |  | 
 | 		/* scan the whole queue for unlinks whenever it stops */ | 
 | 		} else { | 
 | 			stopped = 1; | 
 |  | 
 | 			/* cancel everything if we halt, suspend, etc */ | 
 | 			if (ehci->rh_state < EHCI_RH_RUNNING) { | 
 | 				last_status = -ESHUTDOWN; | 
 | 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN; | 
 | 			} | 
 |  | 
 | 			/* this qtd is active; skip it unless a previous qtd | 
 | 			 * for its urb faulted, or its urb was canceled. | 
 | 			 */ | 
 | 			else if (last_status == -EINPROGRESS && !urb->unlinked) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * If this was the active qtd when the qh was unlinked | 
 | 			 * and the overlay's token is active, then the overlay | 
 | 			 * hasn't been written back to the qtd yet so use its | 
 | 			 * token instead of the qtd's.  After the qtd is | 
 | 			 * processed and removed, the overlay won't be valid | 
 | 			 * any more. | 
 | 			 */ | 
 | 			if (state == QH_STATE_IDLE && | 
 | 					qh->qtd_list.next == &qtd->qtd_list && | 
 | 					(hw->hw_token & ACTIVE_BIT(ehci))) { | 
 | 				token = hc32_to_cpu(ehci, hw->hw_token); | 
 | 				hw->hw_token &= ~ACTIVE_BIT(ehci); | 
 | 				qh->should_be_inactive = 1; | 
 |  | 
 | 				/* An unlink may leave an incomplete | 
 | 				 * async transaction in the TT buffer. | 
 | 				 * We have to clear it. | 
 | 				 */ | 
 | 				ehci_clear_tt_buffer(ehci, qh, urb, token); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* unless we already know the urb's status, collect qtd status | 
 | 		 * and update count of bytes transferred.  in common short read | 
 | 		 * cases with only one data qtd (including control transfers), | 
 | 		 * queue processing won't halt.  but with two or more qtds (for | 
 | 		 * example, with a 32 KB transfer), when the first qtd gets a | 
 | 		 * short read the second must be removed by hand. | 
 | 		 */ | 
 | 		if (last_status == -EINPROGRESS) { | 
 | 			last_status = qtd_copy_status(ehci, urb, | 
 | 					qtd->length, token); | 
 | 			if (last_status == -EREMOTEIO | 
 | 					&& (qtd->hw_alt_next | 
 | 						& EHCI_LIST_END(ehci))) | 
 | 				last_status = -EINPROGRESS; | 
 |  | 
 | 			/* As part of low/full-speed endpoint-halt processing | 
 | 			 * we must clear the TT buffer (11.17.5). | 
 | 			 */ | 
 | 			if (unlikely(last_status != -EINPROGRESS && | 
 | 					last_status != -EREMOTEIO)) { | 
 | 				/* The TT's in some hubs malfunction when they | 
 | 				 * receive this request following a STALL (they | 
 | 				 * stop sending isochronous packets).  Since a | 
 | 				 * STALL can't leave the TT buffer in a busy | 
 | 				 * state (if you believe Figures 11-48 - 11-51 | 
 | 				 * in the USB 2.0 spec), we won't clear the TT | 
 | 				 * buffer in this case.  Strictly speaking this | 
 | 				 * is a violation of the spec. | 
 | 				 */ | 
 | 				if (last_status != -EPIPE) | 
 | 					ehci_clear_tt_buffer(ehci, qh, urb, | 
 | 							token); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* if we're removing something not at the queue head, | 
 | 		 * patch the hardware queue pointer. | 
 | 		 */ | 
 | 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { | 
 | 			last = list_entry (qtd->qtd_list.prev, | 
 | 					struct ehci_qtd, qtd_list); | 
 | 			last->hw_next = qtd->hw_next; | 
 | 		} | 
 |  | 
 | 		/* remove qtd; it's recycled after possible urb completion */ | 
 | 		list_del (&qtd->qtd_list); | 
 | 		last = qtd; | 
 |  | 
 | 		/* reinit the xacterr counter for the next qtd */ | 
 | 		qh->xacterrs = 0; | 
 | 	} | 
 |  | 
 | 	/* last urb's completion might still need calling */ | 
 | 	if (likely (last != NULL)) { | 
 | 		ehci_urb_done(ehci, last->urb, last_status); | 
 | 		ehci_qtd_free (ehci, last); | 
 | 	} | 
 |  | 
 | 	/* Do we need to rescan for URBs dequeued during a giveback? */ | 
 | 	if (unlikely(qh->dequeue_during_giveback)) { | 
 | 		/* If the QH is already unlinked, do the rescan now. */ | 
 | 		if (state == QH_STATE_IDLE) | 
 | 			goto rescan; | 
 |  | 
 | 		/* Otherwise the caller must unlink the QH. */ | 
 | 	} | 
 |  | 
 | 	/* restore original state; caller must unlink or relink */ | 
 | 	qh->qh_state = state; | 
 |  | 
 | 	/* be sure the hardware's done with the qh before refreshing | 
 | 	 * it after fault cleanup, or recovering from silicon wrongly | 
 | 	 * overlaying the dummy qtd (which reduces DMA chatter). | 
 | 	 * | 
 | 	 * We won't refresh a QH that's linked (after the HC | 
 | 	 * stopped the queue).  That avoids a race: | 
 | 	 *  - HC reads first part of QH; | 
 | 	 *  - CPU updates that first part and the token; | 
 | 	 *  - HC reads rest of that QH, including token | 
 | 	 * Result:  HC gets an inconsistent image, and then | 
 | 	 * DMAs to/from the wrong memory (corrupting it). | 
 | 	 * | 
 | 	 * That should be rare for interrupt transfers, | 
 | 	 * except maybe high bandwidth ... | 
 | 	 */ | 
 | 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) | 
 | 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY; | 
 |  | 
 | 	/* Let the caller know if the QH needs to be unlinked. */ | 
 | 	return qh->unlink_reason; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | // high bandwidth multiplier, as encoded in highspeed endpoint descriptors | 
 | #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) | 
 | // ... and packet size, for any kind of endpoint descriptor | 
 | #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) | 
 |  | 
 | /* | 
 |  * reverse of qh_urb_transaction:  free a list of TDs. | 
 |  * used for cleanup after errors, before HC sees an URB's TDs. | 
 |  */ | 
 | static void qtd_list_free ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list | 
 | ) { | 
 | 	struct list_head	*entry, *temp; | 
 |  | 
 | 	list_for_each_safe (entry, temp, qtd_list) { | 
 | 		struct ehci_qtd	*qtd; | 
 |  | 
 | 		qtd = list_entry (entry, struct ehci_qtd, qtd_list); | 
 | 		list_del (&qtd->qtd_list); | 
 | 		ehci_qtd_free (ehci, qtd); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * create a list of filled qtds for this URB; won't link into qh. | 
 |  */ | 
 | static struct list_head * | 
 | qh_urb_transaction ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*head, | 
 | 	gfp_t			flags | 
 | ) { | 
 | 	struct ehci_qtd		*qtd, *qtd_prev; | 
 | 	dma_addr_t		buf; | 
 | 	int			len, this_sg_len, maxpacket; | 
 | 	int			is_input; | 
 | 	u32			token; | 
 | 	int			i; | 
 | 	struct scatterlist	*sg; | 
 |  | 
 | 	/* | 
 | 	 * URBs map to sequences of QTDs:  one logical transaction | 
 | 	 */ | 
 | 	qtd = ehci_qtd_alloc (ehci, flags); | 
 | 	if (unlikely (!qtd)) | 
 | 		return NULL; | 
 | 	list_add_tail (&qtd->qtd_list, head); | 
 | 	qtd->urb = urb; | 
 |  | 
 | 	token = QTD_STS_ACTIVE; | 
 | 	token |= (EHCI_TUNE_CERR << 10); | 
 | 	/* for split transactions, SplitXState initialized to zero */ | 
 |  | 
 | 	len = urb->transfer_buffer_length; | 
 | 	is_input = usb_pipein (urb->pipe); | 
 | 	if (usb_pipecontrol (urb->pipe)) { | 
 | 		/* SETUP pid */ | 
 | 		qtd_fill(ehci, qtd, urb->setup_dma, | 
 | 				sizeof (struct usb_ctrlrequest), | 
 | 				token | (2 /* "setup" */ << 8), 8); | 
 |  | 
 | 		/* ... and always at least one more pid */ | 
 | 		token ^= QTD_TOGGLE; | 
 | 		qtd_prev = qtd; | 
 | 		qtd = ehci_qtd_alloc (ehci, flags); | 
 | 		if (unlikely (!qtd)) | 
 | 			goto cleanup; | 
 | 		qtd->urb = urb; | 
 | 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 		list_add_tail (&qtd->qtd_list, head); | 
 |  | 
 | 		/* for zero length DATA stages, STATUS is always IN */ | 
 | 		if (len == 0) | 
 | 			token |= (1 /* "in" */ << 8); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * data transfer stage:  buffer setup | 
 | 	 */ | 
 | 	i = urb->num_mapped_sgs; | 
 | 	if (len > 0 && i > 0) { | 
 | 		sg = urb->sg; | 
 | 		buf = sg_dma_address(sg); | 
 |  | 
 | 		/* urb->transfer_buffer_length may be smaller than the | 
 | 		 * size of the scatterlist (or vice versa) | 
 | 		 */ | 
 | 		this_sg_len = min_t(int, sg_dma_len(sg), len); | 
 | 	} else { | 
 | 		sg = NULL; | 
 | 		buf = urb->transfer_dma; | 
 | 		this_sg_len = len; | 
 | 	} | 
 |  | 
 | 	if (is_input) | 
 | 		token |= (1 /* "in" */ << 8); | 
 | 	/* else it's already initted to "out" pid (0 << 8) */ | 
 |  | 
 | 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); | 
 |  | 
 | 	/* | 
 | 	 * buffer gets wrapped in one or more qtds; | 
 | 	 * last one may be "short" (including zero len) | 
 | 	 * and may serve as a control status ack | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		int this_qtd_len; | 
 |  | 
 | 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, | 
 | 				maxpacket); | 
 | 		this_sg_len -= this_qtd_len; | 
 | 		len -= this_qtd_len; | 
 | 		buf += this_qtd_len; | 
 |  | 
 | 		/* | 
 | 		 * short reads advance to a "magic" dummy instead of the next | 
 | 		 * qtd ... that forces the queue to stop, for manual cleanup. | 
 | 		 * (this will usually be overridden later.) | 
 | 		 */ | 
 | 		if (is_input) | 
 | 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next; | 
 |  | 
 | 		/* qh makes control packets use qtd toggle; maybe switch it */ | 
 | 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) | 
 | 			token ^= QTD_TOGGLE; | 
 |  | 
 | 		if (likely(this_sg_len <= 0)) { | 
 | 			if (--i <= 0 || len <= 0) | 
 | 				break; | 
 | 			sg = sg_next(sg); | 
 | 			buf = sg_dma_address(sg); | 
 | 			this_sg_len = min_t(int, sg_dma_len(sg), len); | 
 | 		} | 
 |  | 
 | 		qtd_prev = qtd; | 
 | 		qtd = ehci_qtd_alloc (ehci, flags); | 
 | 		if (unlikely (!qtd)) | 
 | 			goto cleanup; | 
 | 		qtd->urb = urb; | 
 | 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 		list_add_tail (&qtd->qtd_list, head); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * unless the caller requires manual cleanup after short reads, | 
 | 	 * have the alt_next mechanism keep the queue running after the | 
 | 	 * last data qtd (the only one, for control and most other cases). | 
 | 	 */ | 
 | 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 | 
 | 				|| usb_pipecontrol (urb->pipe))) | 
 | 		qtd->hw_alt_next = EHCI_LIST_END(ehci); | 
 |  | 
 | 	/* | 
 | 	 * control requests may need a terminating data "status" ack; | 
 | 	 * other OUT ones may need a terminating short packet | 
 | 	 * (zero length). | 
 | 	 */ | 
 | 	if (likely (urb->transfer_buffer_length != 0)) { | 
 | 		int	one_more = 0; | 
 |  | 
 | 		if (usb_pipecontrol (urb->pipe)) { | 
 | 			one_more = 1; | 
 | 			token ^= 0x0100;	/* "in" <--> "out"  */ | 
 | 			token |= QTD_TOGGLE;	/* force DATA1 */ | 
 | 		} else if (usb_pipeout(urb->pipe) | 
 | 				&& (urb->transfer_flags & URB_ZERO_PACKET) | 
 | 				&& !(urb->transfer_buffer_length % maxpacket)) { | 
 | 			one_more = 1; | 
 | 		} | 
 | 		if (one_more) { | 
 | 			qtd_prev = qtd; | 
 | 			qtd = ehci_qtd_alloc (ehci, flags); | 
 | 			if (unlikely (!qtd)) | 
 | 				goto cleanup; | 
 | 			qtd->urb = urb; | 
 | 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 			list_add_tail (&qtd->qtd_list, head); | 
 |  | 
 | 			/* never any data in such packets */ | 
 | 			qtd_fill(ehci, qtd, 0, 0, token, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* by default, enable interrupt on urb completion */ | 
 | 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) | 
 | 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); | 
 | 	return head; | 
 |  | 
 | cleanup: | 
 | 	qtd_list_free (ehci, urb, head); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | // Would be best to create all qh's from config descriptors, | 
 | // when each interface/altsetting is established.  Unlink | 
 | // any previous qh and cancel its urbs first; endpoints are | 
 | // implicitly reset then (data toggle too). | 
 | // That'd mean updating how usbcore talks to HCDs. (2.7?) | 
 |  | 
 |  | 
 | /* | 
 |  * Each QH holds a qtd list; a QH is used for everything except iso. | 
 |  * | 
 |  * For interrupt urbs, the scheduler must set the microframe scheduling | 
 |  * mask(s) each time the QH gets scheduled.  For highspeed, that's | 
 |  * just one microframe in the s-mask.  For split interrupt transactions | 
 |  * there are additional complications: c-mask, maybe FSTNs. | 
 |  */ | 
 | static struct ehci_qh * | 
 | qh_make ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	gfp_t			flags | 
 | ) { | 
 | 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags); | 
 | 	u32			info1 = 0, info2 = 0; | 
 | 	int			is_input, type; | 
 | 	int			maxp = 0; | 
 | 	struct usb_tt		*tt = urb->dev->tt; | 
 | 	struct ehci_qh_hw	*hw; | 
 |  | 
 | 	if (!qh) | 
 | 		return qh; | 
 |  | 
 | 	/* | 
 | 	 * init endpoint/device data for this QH | 
 | 	 */ | 
 | 	info1 |= usb_pipeendpoint (urb->pipe) << 8; | 
 | 	info1 |= usb_pipedevice (urb->pipe) << 0; | 
 |  | 
 | 	is_input = usb_pipein (urb->pipe); | 
 | 	type = usb_pipetype (urb->pipe); | 
 | 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); | 
 |  | 
 | 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth | 
 | 	 * acts like up to 3KB, but is built from smaller packets. | 
 | 	 */ | 
 | 	if (max_packet(maxp) > 1024) { | 
 | 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Compute interrupt scheduling parameters just once, and save. | 
 | 	 * - allowing for high bandwidth, how many nsec/uframe are used? | 
 | 	 * - split transactions need a second CSPLIT uframe; same question | 
 | 	 * - splits also need a schedule gap (for full/low speed I/O) | 
 | 	 * - qh has a polling interval | 
 | 	 * | 
 | 	 * For control/bulk requests, the HC or TT handles these. | 
 | 	 */ | 
 | 	if (type == PIPE_INTERRUPT) { | 
 | 		unsigned	tmp; | 
 |  | 
 | 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, | 
 | 				is_input, 0, | 
 | 				hb_mult(maxp) * max_packet(maxp))); | 
 | 		qh->ps.phase = NO_FRAME; | 
 |  | 
 | 		if (urb->dev->speed == USB_SPEED_HIGH) { | 
 | 			qh->ps.c_usecs = 0; | 
 | 			qh->gap_uf = 0; | 
 |  | 
 | 			if (urb->interval > 1 && urb->interval < 8) { | 
 | 				/* NOTE interval 2 or 4 uframes could work. | 
 | 				 * But interval 1 scheduling is simpler, and | 
 | 				 * includes high bandwidth. | 
 | 				 */ | 
 | 				urb->interval = 1; | 
 | 			} else if (urb->interval > ehci->periodic_size << 3) { | 
 | 				urb->interval = ehci->periodic_size << 3; | 
 | 			} | 
 | 			qh->ps.period = urb->interval >> 3; | 
 |  | 
 | 			/* period for bandwidth allocation */ | 
 | 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, | 
 | 					1 << (urb->ep->desc.bInterval - 1)); | 
 |  | 
 | 			/* Allow urb->interval to override */ | 
 | 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); | 
 | 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3; | 
 | 		} else { | 
 | 			int		think_time; | 
 |  | 
 | 			/* gap is f(FS/LS transfer times) */ | 
 | 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, | 
 | 					is_input, 0, maxp) / (125 * 1000); | 
 |  | 
 | 			/* FIXME this just approximates SPLIT/CSPLIT times */ | 
 | 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA | 
 | 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0); | 
 | 				qh->ps.usecs = HS_USECS(1); | 
 | 			} else {		// SPLIT+DATA, gap, CSPLIT | 
 | 				qh->ps.usecs += HS_USECS(1); | 
 | 				qh->ps.c_usecs = HS_USECS(0); | 
 | 			} | 
 |  | 
 | 			think_time = tt ? tt->think_time : 0; | 
 | 			qh->ps.tt_usecs = NS_TO_US(think_time + | 
 | 					usb_calc_bus_time (urb->dev->speed, | 
 | 					is_input, 0, max_packet (maxp))); | 
 | 			if (urb->interval > ehci->periodic_size) | 
 | 				urb->interval = ehci->periodic_size; | 
 | 			qh->ps.period = urb->interval; | 
 |  | 
 | 			/* period for bandwidth allocation */ | 
 | 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, | 
 | 					urb->ep->desc.bInterval); | 
 | 			tmp = rounddown_pow_of_two(tmp); | 
 |  | 
 | 			/* Allow urb->interval to override */ | 
 | 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval); | 
 | 			qh->ps.bw_uperiod = qh->ps.bw_period << 3; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* support for tt scheduling, and access to toggles */ | 
 | 	qh->ps.udev = urb->dev; | 
 | 	qh->ps.ep = urb->ep; | 
 |  | 
 | 	/* using TT? */ | 
 | 	switch (urb->dev->speed) { | 
 | 	case USB_SPEED_LOW: | 
 | 		info1 |= QH_LOW_SPEED; | 
 | 		/* FALL THROUGH */ | 
 |  | 
 | 	case USB_SPEED_FULL: | 
 | 		/* EPS 0 means "full" */ | 
 | 		if (type != PIPE_INTERRUPT) | 
 | 			info1 |= (EHCI_TUNE_RL_TT << 28); | 
 | 		if (type == PIPE_CONTROL) { | 
 | 			info1 |= QH_CONTROL_EP;		/* for TT */ | 
 | 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */ | 
 | 		} | 
 | 		info1 |= maxp << 16; | 
 |  | 
 | 		info2 |= (EHCI_TUNE_MULT_TT << 30); | 
 |  | 
 | 		/* Some Freescale processors have an erratum in which the | 
 | 		 * port number in the queue head was 0..N-1 instead of 1..N. | 
 | 		 */ | 
 | 		if (ehci_has_fsl_portno_bug(ehci)) | 
 | 			info2 |= (urb->dev->ttport-1) << 23; | 
 | 		else | 
 | 			info2 |= urb->dev->ttport << 23; | 
 |  | 
 | 		/* set the address of the TT; for TDI's integrated | 
 | 		 * root hub tt, leave it zeroed. | 
 | 		 */ | 
 | 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) | 
 | 			info2 |= tt->hub->devnum << 16; | 
 |  | 
 | 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */ | 
 |  | 
 | 		break; | 
 |  | 
 | 	case USB_SPEED_HIGH:		/* no TT involved */ | 
 | 		info1 |= QH_HIGH_SPEED; | 
 | 		if (type == PIPE_CONTROL) { | 
 | 			info1 |= (EHCI_TUNE_RL_HS << 28); | 
 | 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */ | 
 | 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */ | 
 | 			info2 |= (EHCI_TUNE_MULT_HS << 30); | 
 | 		} else if (type == PIPE_BULK) { | 
 | 			info1 |= (EHCI_TUNE_RL_HS << 28); | 
 | 			/* The USB spec says that high speed bulk endpoints | 
 | 			 * always use 512 byte maxpacket.  But some device | 
 | 			 * vendors decided to ignore that, and MSFT is happy | 
 | 			 * to help them do so.  So now people expect to use | 
 | 			 * such nonconformant devices with Linux too; sigh. | 
 | 			 */ | 
 | 			info1 |= max_packet(maxp) << 16; | 
 | 			info2 |= (EHCI_TUNE_MULT_HS << 30); | 
 | 		} else {		/* PIPE_INTERRUPT */ | 
 | 			info1 |= max_packet (maxp) << 16; | 
 | 			info2 |= hb_mult (maxp) << 30; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev, | 
 | 			urb->dev->speed); | 
 | done: | 
 | 		qh_destroy(ehci, qh); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */ | 
 |  | 
 | 	/* init as live, toggle clear */ | 
 | 	qh->qh_state = QH_STATE_IDLE; | 
 | 	hw = qh->hw; | 
 | 	hw->hw_info1 = cpu_to_hc32(ehci, info1); | 
 | 	hw->hw_info2 = cpu_to_hc32(ehci, info2); | 
 | 	qh->is_out = !is_input; | 
 | 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); | 
 | 	return qh; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void enable_async(struct ehci_hcd *ehci) | 
 | { | 
 | 	if (ehci->async_count++) | 
 | 		return; | 
 |  | 
 | 	/* Stop waiting to turn off the async schedule */ | 
 | 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); | 
 |  | 
 | 	/* Don't start the schedule until ASS is 0 */ | 
 | 	ehci_poll_ASS(ehci); | 
 | 	turn_on_io_watchdog(ehci); | 
 | } | 
 |  | 
 | static void disable_async(struct ehci_hcd *ehci) | 
 | { | 
 | 	if (--ehci->async_count) | 
 | 		return; | 
 |  | 
 | 	/* The async schedule and unlink lists are supposed to be empty */ | 
 | 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) || | 
 | 			!list_empty(&ehci->async_idle)); | 
 |  | 
 | 	/* Don't turn off the schedule until ASS is 1 */ | 
 | 	ehci_poll_ASS(ehci); | 
 | } | 
 |  | 
 | /* move qh (and its qtds) onto async queue; maybe enable queue.  */ | 
 |  | 
 | static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma); | 
 | 	struct ehci_qh	*head; | 
 |  | 
 | 	/* Don't link a QH if there's a Clear-TT-Buffer pending */ | 
 | 	if (unlikely(qh->clearing_tt)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(qh->qh_state != QH_STATE_IDLE); | 
 |  | 
 | 	/* clear halt and/or toggle; and maybe recover from silicon quirk */ | 
 | 	qh_refresh(ehci, qh); | 
 |  | 
 | 	/* splice right after start */ | 
 | 	head = ehci->async; | 
 | 	qh->qh_next = head->qh_next; | 
 | 	qh->hw->hw_next = head->hw->hw_next; | 
 | 	wmb (); | 
 |  | 
 | 	head->qh_next.qh = qh; | 
 | 	head->hw->hw_next = dma; | 
 |  | 
 | 	qh->qh_state = QH_STATE_LINKED; | 
 | 	qh->xacterrs = 0; | 
 | 	qh->unlink_reason = 0; | 
 | 	/* qtd completions reported later by interrupt */ | 
 |  | 
 | 	enable_async(ehci); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * For control/bulk/interrupt, return QH with these TDs appended. | 
 |  * Allocates and initializes the QH if necessary. | 
 |  * Returns null if it can't allocate a QH it needs to. | 
 |  * If the QH has TDs (urbs) already, that's great. | 
 |  */ | 
 | static struct ehci_qh *qh_append_tds ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list, | 
 | 	int			epnum, | 
 | 	void			**ptr | 
 | ) | 
 | { | 
 | 	struct ehci_qh		*qh = NULL; | 
 | 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f); | 
 |  | 
 | 	qh = (struct ehci_qh *) *ptr; | 
 | 	if (unlikely (qh == NULL)) { | 
 | 		/* can't sleep here, we have ehci->lock... */ | 
 | 		qh = qh_make (ehci, urb, GFP_ATOMIC); | 
 | 		*ptr = qh; | 
 | 	} | 
 | 	if (likely (qh != NULL)) { | 
 | 		struct ehci_qtd	*qtd; | 
 |  | 
 | 		if (unlikely (list_empty (qtd_list))) | 
 | 			qtd = NULL; | 
 | 		else | 
 | 			qtd = list_entry (qtd_list->next, struct ehci_qtd, | 
 | 					qtd_list); | 
 |  | 
 | 		/* control qh may need patching ... */ | 
 | 		if (unlikely (epnum == 0)) { | 
 |  | 
 |                         /* usb_reset_device() briefly reverts to address 0 */ | 
 |                         if (usb_pipedevice (urb->pipe) == 0) | 
 | 				qh->hw->hw_info1 &= ~qh_addr_mask; | 
 | 		} | 
 |  | 
 | 		/* just one way to queue requests: swap with the dummy qtd. | 
 | 		 * only hc or qh_refresh() ever modify the overlay. | 
 | 		 */ | 
 | 		if (likely (qtd != NULL)) { | 
 | 			struct ehci_qtd		*dummy; | 
 | 			dma_addr_t		dma; | 
 | 			__hc32			token; | 
 |  | 
 | 			/* to avoid racing the HC, use the dummy td instead of | 
 | 			 * the first td of our list (becomes new dummy).  both | 
 | 			 * tds stay deactivated until we're done, when the | 
 | 			 * HC is allowed to fetch the old dummy (4.10.2). | 
 | 			 */ | 
 | 			token = qtd->hw_token; | 
 | 			qtd->hw_token = HALT_BIT(ehci); | 
 |  | 
 | 			dummy = qh->dummy; | 
 |  | 
 | 			dma = dummy->qtd_dma; | 
 | 			*dummy = *qtd; | 
 | 			dummy->qtd_dma = dma; | 
 |  | 
 | 			list_del (&qtd->qtd_list); | 
 | 			list_add (&dummy->qtd_list, qtd_list); | 
 | 			list_splice_tail(qtd_list, &qh->qtd_list); | 
 |  | 
 | 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma); | 
 | 			qh->dummy = qtd; | 
 |  | 
 | 			/* hc must see the new dummy at list end */ | 
 | 			dma = qtd->qtd_dma; | 
 | 			qtd = list_entry (qh->qtd_list.prev, | 
 | 					struct ehci_qtd, qtd_list); | 
 | 			qtd->hw_next = QTD_NEXT(ehci, dma); | 
 |  | 
 | 			/* let the hc process these next qtds */ | 
 | 			wmb (); | 
 | 			dummy->hw_token = token; | 
 |  | 
 | 			urb->hcpriv = qh; | 
 | 		} | 
 | 	} | 
 | 	return qh; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static int | 
 | submit_async ( | 
 | 	struct ehci_hcd		*ehci, | 
 | 	struct urb		*urb, | 
 | 	struct list_head	*qtd_list, | 
 | 	gfp_t			mem_flags | 
 | ) { | 
 | 	int			epnum; | 
 | 	unsigned long		flags; | 
 | 	struct ehci_qh		*qh = NULL; | 
 | 	int			rc; | 
 |  | 
 | 	epnum = urb->ep->desc.bEndpointAddress; | 
 |  | 
 | #ifdef EHCI_URB_TRACE | 
 | 	{ | 
 | 		struct ehci_qtd *qtd; | 
 | 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); | 
 | 		ehci_dbg(ehci, | 
 | 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", | 
 | 			 __func__, urb->dev->devpath, urb, | 
 | 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", | 
 | 			 urb->transfer_buffer_length, | 
 | 			 qtd, urb->ep->hcpriv); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	spin_lock_irqsave (&ehci->lock, flags); | 
 | 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { | 
 | 		rc = -ESHUTDOWN; | 
 | 		goto done; | 
 | 	} | 
 | 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); | 
 | 	if (unlikely(rc)) | 
 | 		goto done; | 
 |  | 
 | 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); | 
 | 	if (unlikely(qh == NULL)) { | 
 | 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
 | 		rc = -ENOMEM; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Control/bulk operations through TTs don't need scheduling, | 
 | 	 * the HC and TT handle it when the TT has a buffer ready. | 
 | 	 */ | 
 | 	if (likely (qh->qh_state == QH_STATE_IDLE)) | 
 | 		qh_link_async(ehci, qh); | 
 |  done: | 
 | 	spin_unlock_irqrestore (&ehci->lock, flags); | 
 | 	if (unlikely (qh == NULL)) | 
 | 		qtd_list_free (ehci, urb, qtd_list); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 | #ifdef CONFIG_USB_HCD_TEST_MODE | 
 | /* | 
 |  * This function creates the qtds and submits them for the | 
 |  * SINGLE_STEP_SET_FEATURE Test. | 
 |  * This is done in two parts: first SETUP req for GetDesc is sent then | 
 |  * 15 seconds later, the IN stage for GetDesc starts to req data from dev | 
 |  * | 
 |  * is_setup : i/p arguement decides which of the two stage needs to be | 
 |  * performed; TRUE - SETUP and FALSE - IN+STATUS | 
 |  * Returns 0 if success | 
 |  */ | 
 | static int submit_single_step_set_feature( | 
 | 	struct usb_hcd  *hcd, | 
 | 	struct urb      *urb, | 
 | 	int             is_setup | 
 | ) { | 
 | 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd); | 
 | 	struct list_head	qtd_list; | 
 | 	struct list_head	*head; | 
 |  | 
 | 	struct ehci_qtd		*qtd, *qtd_prev; | 
 | 	dma_addr_t		buf; | 
 | 	int			len, maxpacket; | 
 | 	u32			token; | 
 |  | 
 | 	INIT_LIST_HEAD(&qtd_list); | 
 | 	head = &qtd_list; | 
 |  | 
 | 	/* URBs map to sequences of QTDs:  one logical transaction */ | 
 | 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL); | 
 | 	if (unlikely(!qtd)) | 
 | 		return -1; | 
 | 	list_add_tail(&qtd->qtd_list, head); | 
 | 	qtd->urb = urb; | 
 |  | 
 | 	token = QTD_STS_ACTIVE; | 
 | 	token |= (EHCI_TUNE_CERR << 10); | 
 |  | 
 | 	len = urb->transfer_buffer_length; | 
 | 	/* | 
 | 	 * Check if the request is to perform just the SETUP stage (getDesc) | 
 | 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens | 
 | 	 * 15 secs after the setup | 
 | 	 */ | 
 | 	if (is_setup) { | 
 | 		/* SETUP pid */ | 
 | 		qtd_fill(ehci, qtd, urb->setup_dma, | 
 | 				sizeof(struct usb_ctrlrequest), | 
 | 				token | (2 /* "setup" */ << 8), 8); | 
 |  | 
 | 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC); | 
 | 		return 0; /*Return now; we shall come back after 15 seconds*/ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for | 
 | 	 * the get_Desc SETUP which was sent 15seconds back | 
 | 	 */ | 
 | 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/ | 
 | 	buf = urb->transfer_dma; | 
 |  | 
 | 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/ | 
 |  | 
 | 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0)); | 
 |  | 
 | 	qtd_fill(ehci, qtd, buf, len, token, maxpacket); | 
 |  | 
 | 	/* | 
 | 	 * Our IN phase shall always be a short read; so keep the queue running | 
 | 	 * and let it advance to the next qtd which zero length OUT status | 
 | 	 */ | 
 | 	qtd->hw_alt_next = EHCI_LIST_END(ehci); | 
 |  | 
 | 	/* STATUS stage for GetDesc control request */ | 
 | 	token ^= 0x0100;        /* "in" <--> "out"  */ | 
 | 	token |= QTD_TOGGLE;    /* force DATA1 */ | 
 |  | 
 | 	qtd_prev = qtd; | 
 | 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC); | 
 | 	if (unlikely(!qtd)) | 
 | 		goto cleanup; | 
 | 	qtd->urb = urb; | 
 | 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); | 
 | 	list_add_tail(&qtd->qtd_list, head); | 
 |  | 
 | 	/* dont fill any data in such packets */ | 
 | 	qtd_fill(ehci, qtd, 0, 0, token, 0); | 
 |  | 
 | 	/* by default, enable interrupt on urb completion */ | 
 | 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) | 
 | 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); | 
 |  | 
 | 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL); | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	qtd_list_free(ehci, urb, head); | 
 | 	return -1; | 
 | } | 
 | #endif /* CONFIG_USB_HCD_TEST_MODE */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	struct ehci_qh		*prev; | 
 |  | 
 | 	/* Add to the end of the list of QHs waiting for the next IAAD */ | 
 | 	qh->qh_state = QH_STATE_UNLINK_WAIT; | 
 | 	list_add_tail(&qh->unlink_node, &ehci->async_unlink); | 
 |  | 
 | 	/* Unlink it from the schedule */ | 
 | 	prev = ehci->async; | 
 | 	while (prev->qh_next.qh != qh) | 
 | 		prev = prev->qh_next.qh; | 
 |  | 
 | 	prev->hw->hw_next = qh->hw->hw_next; | 
 | 	prev->qh_next = qh->qh_next; | 
 | 	if (ehci->qh_scan_next == qh) | 
 | 		ehci->qh_scan_next = qh->qh_next.qh; | 
 | } | 
 |  | 
 | static void start_iaa_cycle(struct ehci_hcd *ehci) | 
 | { | 
 | 	/* If the controller isn't running, we don't have to wait for it */ | 
 | 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { | 
 | 		end_unlink_async(ehci); | 
 |  | 
 | 	/* Otherwise start a new IAA cycle if one isn't already running */ | 
 | 	} else if (ehci->rh_state == EHCI_RH_RUNNING && | 
 | 			!ehci->iaa_in_progress) { | 
 |  | 
 | 		/* Make sure the unlinks are all visible to the hardware */ | 
 | 		wmb(); | 
 |  | 
 | 		ehci_writel(ehci, ehci->command | CMD_IAAD, | 
 | 				&ehci->regs->command); | 
 | 		ehci_readl(ehci, &ehci->regs->command); | 
 | 		ehci->iaa_in_progress = true; | 
 | 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void end_iaa_cycle(struct ehci_hcd *ehci) | 
 | { | 
 | 	if (ehci->has_synopsys_hc_bug) | 
 | 		ehci_writel(ehci, (u32) ehci->async->qh_dma, | 
 | 			    &ehci->regs->async_next); | 
 |  | 
 | 	/* The current IAA cycle has ended */ | 
 | 	ehci->iaa_in_progress = false; | 
 |  | 
 | 	end_unlink_async(ehci); | 
 | } | 
 |  | 
 | /* See if the async qh for the qtds being unlinked are now gone from the HC */ | 
 |  | 
 | static void end_unlink_async(struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh; | 
 | 	bool			early_exit; | 
 |  | 
 | 	if (list_empty(&ehci->async_unlink)) | 
 | 		return; | 
 | 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh, | 
 | 			unlink_node);	/* QH whose IAA cycle just ended */ | 
 |  | 
 | 	/* | 
 | 	 * If async_unlinking is set then this routine is already running, | 
 | 	 * either on the stack or on another CPU. | 
 | 	 */ | 
 | 	early_exit = ehci->async_unlinking; | 
 |  | 
 | 	/* If the controller isn't running, process all the waiting QHs */ | 
 | 	if (ehci->rh_state < EHCI_RH_RUNNING) | 
 | 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle); | 
 |  | 
 | 	/* | 
 | 	 * Intel (?) bug: The HC can write back the overlay region even | 
 | 	 * after the IAA interrupt occurs.  In self-defense, always go | 
 | 	 * through two IAA cycles for each QH. | 
 | 	 */ | 
 | 	else if (qh->qh_state == QH_STATE_UNLINK) { | 
 | 		/* | 
 | 		 * Second IAA cycle has finished.  Process only the first | 
 | 		 * waiting QH (NVIDIA (?) bug). | 
 | 		 */ | 
 | 		list_move_tail(&qh->unlink_node, &ehci->async_idle); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long | 
 | 	 * after the IAA interrupt occurs.  To prevent problems, QHs that | 
 | 	 * may still be active will wait until 2 ms have passed with no | 
 | 	 * change to the hw_current and hw_token fields (this delay occurs | 
 | 	 * between the two IAA cycles). | 
 | 	 * | 
 | 	 * The EHCI spec (4.8.2) says that active QHs must not be removed | 
 | 	 * from the async schedule and recommends waiting until the QH | 
 | 	 * goes inactive.  This is ridiculous because the QH will _never_ | 
 | 	 * become inactive if the endpoint NAKs indefinitely. | 
 | 	 */ | 
 |  | 
 | 	/* Some reasons for unlinking guarantee the QH can't be active */ | 
 | 	else if (qh->unlink_reason & (QH_UNLINK_HALTED | | 
 | 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY)) | 
 | 		goto DelayDone; | 
 |  | 
 | 	/* The QH can't be active if the queue was and still is empty... */ | 
 | 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) && | 
 | 			list_empty(&qh->qtd_list)) | 
 | 		goto DelayDone; | 
 |  | 
 | 	/* ... or if the QH has halted */ | 
 | 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT)) | 
 | 		goto DelayDone; | 
 |  | 
 | 	/* Otherwise we have to wait until the QH stops changing */ | 
 | 	else { | 
 | 		__hc32		qh_current, qh_token; | 
 |  | 
 | 		qh_current = qh->hw->hw_current; | 
 | 		qh_token = qh->hw->hw_token; | 
 | 		if (qh_current != ehci->old_current || | 
 | 				qh_token != ehci->old_token) { | 
 | 			ehci->old_current = qh_current; | 
 | 			ehci->old_token = qh_token; | 
 | 			ehci_enable_event(ehci, | 
 | 					EHCI_HRTIMER_ACTIVE_UNLINK, true); | 
 | 			return; | 
 | 		} | 
 |  DelayDone: | 
 | 		qh->qh_state = QH_STATE_UNLINK; | 
 | 		early_exit = true; | 
 | 	} | 
 | 	ehci->old_current = ~0;		/* Prepare for next QH */ | 
 |  | 
 | 	/* Start a new IAA cycle if any QHs are waiting for it */ | 
 | 	if (!list_empty(&ehci->async_unlink)) | 
 | 		start_iaa_cycle(ehci); | 
 |  | 
 | 	/* | 
 | 	 * Don't allow nesting or concurrent calls, | 
 | 	 * or wait for the second IAA cycle for the next QH. | 
 | 	 */ | 
 | 	if (early_exit) | 
 | 		return; | 
 |  | 
 | 	/* Process the idle QHs */ | 
 | 	ehci->async_unlinking = true; | 
 | 	while (!list_empty(&ehci->async_idle)) { | 
 | 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh, | 
 | 				unlink_node); | 
 | 		list_del(&qh->unlink_node); | 
 |  | 
 | 		qh->qh_state = QH_STATE_IDLE; | 
 | 		qh->qh_next.qh = NULL; | 
 |  | 
 | 		if (!list_empty(&qh->qtd_list)) | 
 | 			qh_completions(ehci, qh); | 
 | 		if (!list_empty(&qh->qtd_list) && | 
 | 				ehci->rh_state == EHCI_RH_RUNNING) | 
 | 			qh_link_async(ehci, qh); | 
 | 		disable_async(ehci); | 
 | 	} | 
 | 	ehci->async_unlinking = false; | 
 | } | 
 |  | 
 | static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh); | 
 |  | 
 | static void unlink_empty_async(struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh; | 
 | 	struct ehci_qh		*qh_to_unlink = NULL; | 
 | 	int			count = 0; | 
 |  | 
 | 	/* Find the last async QH which has been empty for a timer cycle */ | 
 | 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) { | 
 | 		if (list_empty(&qh->qtd_list) && | 
 | 				qh->qh_state == QH_STATE_LINKED) { | 
 | 			++count; | 
 | 			if (qh->unlink_cycle != ehci->async_unlink_cycle) | 
 | 				qh_to_unlink = qh; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If nothing else is being unlinked, unlink the last empty QH */ | 
 | 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) { | 
 | 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY; | 
 | 		start_unlink_async(ehci, qh_to_unlink); | 
 | 		--count; | 
 | 	} | 
 |  | 
 | 	/* Other QHs will be handled later */ | 
 | 	if (count > 0) { | 
 | 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); | 
 | 		++ehci->async_unlink_cycle; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef	CONFIG_PM | 
 |  | 
 | /* The root hub is suspended; unlink all the async QHs */ | 
 | static void unlink_empty_async_suspended(struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh; | 
 |  | 
 | 	while (ehci->async->qh_next.qh) { | 
 | 		qh = ehci->async->qh_next.qh; | 
 | 		WARN_ON(!list_empty(&qh->qtd_list)); | 
 | 		single_unlink_async(ehci, qh); | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* makes sure the async qh will become idle */ | 
 | /* caller must own ehci->lock */ | 
 |  | 
 | static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
 | { | 
 | 	/* If the QH isn't linked then there's nothing we can do. */ | 
 | 	if (qh->qh_state != QH_STATE_LINKED) | 
 | 		return; | 
 |  | 
 | 	single_unlink_async(ehci, qh); | 
 | 	start_iaa_cycle(ehci); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void scan_async (struct ehci_hcd *ehci) | 
 | { | 
 | 	struct ehci_qh		*qh; | 
 | 	bool			check_unlinks_later = false; | 
 |  | 
 | 	ehci->qh_scan_next = ehci->async->qh_next.qh; | 
 | 	while (ehci->qh_scan_next) { | 
 | 		qh = ehci->qh_scan_next; | 
 | 		ehci->qh_scan_next = qh->qh_next.qh; | 
 |  | 
 | 		/* clean any finished work for this qh */ | 
 | 		if (!list_empty(&qh->qtd_list)) { | 
 | 			int temp; | 
 |  | 
 | 			/* | 
 | 			 * Unlinks could happen here; completion reporting | 
 | 			 * drops the lock.  That's why ehci->qh_scan_next | 
 | 			 * always holds the next qh to scan; if the next qh | 
 | 			 * gets unlinked then ehci->qh_scan_next is adjusted | 
 | 			 * in single_unlink_async(). | 
 | 			 */ | 
 | 			temp = qh_completions(ehci, qh); | 
 | 			if (unlikely(temp)) { | 
 | 				start_unlink_async(ehci, qh); | 
 | 			} else if (list_empty(&qh->qtd_list) | 
 | 					&& qh->qh_state == QH_STATE_LINKED) { | 
 | 				qh->unlink_cycle = ehci->async_unlink_cycle; | 
 | 				check_unlinks_later = true; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unlink empty entries, reducing DMA usage as well | 
 | 	 * as HCD schedule-scanning costs.  Delay for any qh | 
 | 	 * we just scanned, there's a not-unusual case that it | 
 | 	 * doesn't stay idle for long. | 
 | 	 */ | 
 | 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && | 
 | 			!(ehci->enabled_hrtimer_events & | 
 | 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { | 
 | 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); | 
 | 		++ehci->async_unlink_cycle; | 
 | 	} | 
 | } |