blob: 3a8129098acf2c730248fcc57a0cc2314a919f1a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 MediaTek Inc.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/thermal.h>
#include "soc_temp_lvts.h"
static int lvts_raw_to_temp(struct lvts_formula_coeff *co, unsigned int msr_raw)
{
/* This function returns degree mC */
int temp;
temp = (co->a * ((unsigned long long)msr_raw)) >> 14;
temp = temp + co->golden_temp * 500 + co->b;
return temp;
}
static unsigned int lvts_temp_to_raw(struct lvts_formula_coeff *co, int temp)
{
unsigned int msr_raw;
msr_raw = div_s64((s64)((co->golden_temp * 500 + co->b - temp)) << 14,
(-1 * co->a));
return msr_raw;
}
static int soc_temp_lvts_read_temp(struct thermal_zone_device *tz, int *temperature)
{
struct soc_temp_tz *lvts_tz = tz->devdata;
struct lvts_data *lvts_data = lvts_tz->lvts_data;
struct device *dev = lvts_data->dev;
unsigned int msr_raw;
msr_raw = readl(lvts_data->reg[lvts_tz->id]) & MRS_RAW_MASK;
if (msr_raw == 0) {
/* Prevents a false critical temperature trap */
*temperature = 0;
dev_dbg(dev, "LVTS not yet ready\n");
} else
*temperature = lvts_raw_to_temp(&lvts_data->coeff, msr_raw);
return 0;
}
static const struct thermal_zone_device_ops soc_temp_lvts_ops = {
.get_temp = soc_temp_lvts_read_temp,
};
static void lvts_write_device(struct lvts_data *lvts_data, unsigned int data,
int tc_id)
{
void __iomem *base = GET_BASE_ADDR(lvts_data, tc_id);
writel(DEVICE_WRITE | data, LVTS_CONFIG_0 + base);
usleep_range(5, 15);
}
static unsigned int lvts_read_device(struct lvts_data *lvts_data,
unsigned int reg_idx, int tc_id)
{
struct device *dev = lvts_data->dev;
void __iomem *base = GET_BASE_ADDR(lvts_data, tc_id);
unsigned int data;
int ret;
writel(READ_DEVICE_REG(reg_idx), LVTS_CONFIG_0 + base);
usleep_range(5, 15);
ret = readl_poll_timeout(LVTS_CONFIG_0 + base, data,
!(data & DEVICE_ACCESS_STARTUS), 2, 200);
if (ret)
dev_err(dev,
"Error: LVTS %d DEVICE_ACCESS_START is not ready\n", tc_id);
data = readl(LVTSRDATA0_0 + base);
return data;
}
static const char * const lvts_error_table[] = {"IDLE", "Write transaction",
"Waiting for read after Write", "Disable Continue fetching on Device",
"Read transaction", "Set Device special Register for Voltage threshold",
"Set TSMCU number for Fetch"};
static void wait_all_tc_sensing_point_idle(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
unsigned int mask, error_code, is_error;
void __iomem *base;
int i, cnt, ret;
mask = BIT(10) | BIT(7) | BIT(0);
for (cnt = 0; cnt < 2; cnt++) {
is_error = 0;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
ret = readl_poll_timeout(LVTSMSRCTL1_0 + base, error_code,
!(error_code & mask), 2, 200);
error_code = ((error_code & BIT(10)) >> 8) +
((error_code & BIT(7)) >> 6) +
(error_code & BIT(0));
if (ret)
dev_err(dev, "LVTS %d error: %s\n",
i, lvts_error_table[error_code]);
if (error_code != 0)
is_error = 1;
}
if (is_error == 0)
break;
}
}
static void lvts_reset(struct lvts_data *lvts_data)
{
if (lvts_data->reset)
reset_control_assert(lvts_data->reset);
if (lvts_data->reset)
reset_control_deassert(lvts_data->reset);
}
static void device_identification(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
unsigned int i, data;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
writel(ENABLE_LVTS_CTRL_CLK, LVTSCLKEN_0 + base);
lvts_write_device(lvts_data, RESET_ALL_DEVICES, i);
writel(READ_BACK_DEVICE_ID, LVTS_CONFIG_0 + base);
usleep_range(5, 15);
/* Check LVTS device ID */
data = (readl(LVTS_ID_0 + base) & DEVICE_REG_DATA);
if (data != (lvts_data->tc->dev_id + i))
dev_err(dev, "LVTS_TC_%d, Device ID should be 0x%x, but 0x%x\n",
i, (lvts_data->tc->dev_id + i), data);
}
}
static void disable_all_sensing_points(struct lvts_data *lvts_data)
{
unsigned int i;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
writel(DISABLE_SENSING_POINT, LVTSMONCTL0_0 + base);
}
}
static void enable_all_sensing_points(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
unsigned int i, num;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
num = tc[i].num_sensor;
if (num > ALL_SENSING_POINTS) {
dev_err(dev,
"%s, LVTS%d, illegal number of sensors: %d\n",
__func__, i, tc[i].num_sensor);
continue;
}
if ((tc[i].ts_offset == 1) && (num == 1))
writel(LVTS_SINGLE_SENSE | (0x1 << tc[i].ts_offset),
LVTSMONCTL0_0 + base);
else
writel(ENABLE_SENSING_POINT(num), LVTSMONCTL0_0 + base);
}
}
static void set_polling_speed(struct lvts_data *lvts_data, int tc_id)
{
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
unsigned int lvts_mon_ctl_1, lvts_mon_ctl_2;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
lvts_mon_ctl_1 = ((tc[tc_id].tc_speed->group_interval_delay << 20) & GENMASK(29, 20)) |
(tc[tc_id].tc_speed->period_unit & GENMASK(9, 0));
lvts_mon_ctl_2 = ((tc[tc_id].tc_speed->filter_interval_delay << 16) & GENMASK(25, 16)) |
(tc[tc_id].tc_speed->sensor_interval_delay & GENMASK(9, 0));
/*
* Clock source of LVTS thermal controller is 26MHz.
* Period unit is a base for all interval delays
* All interval delays must multiply it to convert a setting to time.
* Filter interval delay is a delay between two samples of the same sensor
* Sensor interval delay is a delay between two samples of differnet sensors
* Group interval delay is a delay between different rounds.
* For example:
* If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
* and two sensors, TS1 and TS2, are in a LVTS thermal controller
* and then
* Period unit = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
* Filter interval delay = 1 * Period unit = 118.149us
* Sensor interval delay = 2 * Period unit = 236.298us
* Group interval delay = 1 * Period unit = 118.149us
*
* TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1...
* <--> Filter interval delay
* <--> Sensor interval delay
* <--> Group interval delay
*/
writel(lvts_mon_ctl_1, LVTSMONCTL1_0 + base);
writel(lvts_mon_ctl_2, LVTSMONCTL2_0 + base);
dev_dbg(dev, "LVTS_TC_%d, LVTSMONCTL1_0= 0x%x, LVTSMONCTL2_0= 0x%x\n",
tc_id, readl(LVTSMONCTL1_0 + base),
readl(LVTSMONCTL2_0 + base));
}
static void set_hw_filter(struct lvts_data *lvts_data, int tc_id)
{
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
unsigned int option;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
option = tc[tc_id].hw_filter & 0x7;
/*
* hw filter
* 000: Get one sample
* 001: Get 2 samples and average them
* 010: Get 4 samples, drop max and min, then average the rest of 2 samples
* 011: Get 6 samples, drop max and min, then average the rest of 4 samples
* 100: Get 10 samples, drop max and min, then average the rest of 8 samples
* 101: Get 18 samples, drop max and min, then average the rest of 16 samples
*/
option = (option << 9) | (option << 6) | (option << 3) | option;
writel(option, LVTSMSRCTL0_0 + base);
dev_dbg(dev, "LVTS_TC_%d, LVTSMSRCTL0_0= 0x%x\n",
tc_id, readl(LVTSMSRCTL0_0 + base));
}
static int get_dominator_index(struct lvts_data *lvts_data, int tc_id)
{
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
int d_index;
if (tc[tc_id].dominator_sensing_point == ALL_SENSING_POINTS) {
d_index = ALL_SENSING_POINTS;
} else if ((tc[tc_id].dominator_sensing_point <
tc[tc_id].num_sensor) || (tc[tc_id].ts_offset != 0)) {
d_index = tc[tc_id].dominator_sensing_point;
} else {
dev_err(dev,
"Error: LVTS%d, dominator_sensing_point= %d should smaller than num_sensor= %d\n",
tc_id, tc[tc_id].dominator_sensing_point,
tc[tc_id].num_sensor);
dev_err(dev, "Use the sensing point 0 as the dominated sensor\n");
d_index = SENSING_POINT0;
}
return d_index;
}
static void disable_hw_reboot_interrupt(struct lvts_data *lvts_data, int tc_id)
{
unsigned int temp;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
/*
* LVTS thermal controller has two interrupts for thermal HW reboot
* One is for AP SW and the other is for RGU
* The interrupt of AP SW can turn off by a bit of a register, but
* the other for RGU cannot.
* To prevent rebooting device accidentally, we are going to add
* a huge offset to LVTS and make LVTS always report extremely low
* temperature.
*/
/*
* After adding the huge offset 0x3FFF, LVTS alawys adds the
* offset to MSR_RAW.
* When MSR_RAW is larger, SW will convert lower temperature/
*/
temp = readl(LVTSPROTCTL_0 + base);
writel(temp | 0x3FFF, LVTSPROTCTL_0 + base);
/* Disable the interrupt of AP SW */
temp = readl(LVTSMONINT_0 + base);
writel(temp & ~(STAGE3_INT_EN), LVTSMONINT_0 + base);
}
static void enable_hw_reboot_interrupt(struct lvts_data *lvts_data, int tc_id)
{
unsigned int temp;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
/* Enable the interrupt of AP SW */
temp = readl(LVTSMONINT_0 + base);
writel(temp | STAGE3_INT_EN, LVTSMONINT_0 + base);
/* Clear the offset */
temp = readl(LVTSPROTCTL_0 + base);
writel(temp & ~PROTOFFSET, LVTSPROTCTL_0 + base);
}
static void set_tc_hw_reboot_threshold(struct lvts_data *lvts_data,
int trip_point, int tc_id)
{
struct device *dev = lvts_data->dev;
unsigned int msr_raw, temp, config, d_index;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
d_index = get_dominator_index(lvts_data, tc_id);
dev_info(dev, "lvts_tc_%d: dominator sensing point = %d\n", tc_id, d_index);
disable_hw_reboot_interrupt(lvts_data, tc_id);
temp = readl(LVTSPROTCTL_0 + base);
if (d_index == ALL_SENSING_POINTS) {
/* Maximum of 4 sensing points */
config = (0x1 << 16);
writel(config | temp, LVTSPROTCTL_0 + base);
} else {
/* Select protection sensor */
config = ((d_index << 2) + 0x2) << 16;
writel(config | temp, LVTSPROTCTL_0 + base);
}
msr_raw = lvts_temp_to_raw(&lvts_data->coeff, trip_point);
writel(msr_raw, LVTSPROTTC_0 + base);
enable_hw_reboot_interrupt(lvts_data, tc_id);
}
static void set_all_tc_hw_reboot(struct lvts_data *lvts_data)
{
const struct lvts_tc_settings *tc = lvts_data->tc;
int i, trip_point;
for (i = 0; i < lvts_data->num_tc; i++) {
trip_point = tc[i].hw_reboot_trip_point;
if (tc[i].num_sensor == 0)
continue;
if (trip_point == THERMAL_TEMP_INVALID)
continue;
set_tc_hw_reboot_threshold(lvts_data, trip_point, i);
}
}
static int lvts_init(struct lvts_data *lvts_data)
{
struct platform_ops *ops = &lvts_data->ops;
struct device *dev = lvts_data->dev;
int ret;
ret = clk_prepare_enable(lvts_data->clk);
if (ret) {
dev_err(dev,
"Error: Failed to enable lvts controller clock: %d\n",
ret);
return ret;
}
lvts_reset(lvts_data);
device_identification(lvts_data);
if (ops->device_enable_and_init)
ops->device_enable_and_init(lvts_data);
if (HAS_FEATURE(lvts_data, FEATURE_DEVICE_AUTO_RCK)) {
if (ops->device_enable_auto_rck)
ops->device_enable_auto_rck(lvts_data);
} else {
if (ops->device_read_count_rc_n)
ops->device_read_count_rc_n(lvts_data);
}
if (ops->set_cal_data)
ops->set_cal_data(lvts_data);
disable_all_sensing_points(lvts_data);
wait_all_tc_sensing_point_idle(lvts_data);
if (ops->init_controller)
ops->init_controller(lvts_data);
enable_all_sensing_points(lvts_data);
set_all_tc_hw_reboot(lvts_data);
return 0;
}
static int prepare_calibration_data(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
struct lvts_sensor_cal_data *cal_data = &lvts_data->cal_data;
struct platform_ops *ops = &lvts_data->ops;
int i, offset;
char buffer[512];
cal_data->count_r = devm_kcalloc(dev, lvts_data->num_sensor,
sizeof(*cal_data->count_r), GFP_KERNEL);
if (!cal_data->count_r)
return -ENOMEM;
cal_data->count_rc = devm_kcalloc(dev, lvts_data->num_sensor,
sizeof(*cal_data->count_rc), GFP_KERNEL);
if (!cal_data->count_rc)
return -ENOMEM;
if (ops->efuse_to_cal_data && !cal_data->use_fake_efuse)
ops->efuse_to_cal_data(lvts_data);
if (cal_data->golden_temp == 0 || cal_data->golden_temp > GOLDEN_TEMP_MAX)
cal_data->use_fake_efuse = 1;
if (cal_data->use_fake_efuse) {
/* It means all efuse data are equal to 0 */
dev_err(dev,
"%s: This sample is not calibrated, fake !!\n", __func__);
cal_data->golden_temp = cal_data->default_golden_temp;
for (i = 0; i < lvts_data->num_sensor; i++) {
cal_data->count_r[i] = cal_data->default_count_r;
cal_data->count_rc[i] = cal_data->default_count_rc;
}
}
lvts_data->coeff.golden_temp = cal_data->golden_temp;
dev_dbg(dev, "golden_temp = %d\n", cal_data->golden_temp);
offset = snprintf(buffer, sizeof(buffer), "[lvts_cal] num:g_count:g_count_rc ");
for (i = 0; i < lvts_data->num_sensor; i++)
offset += snprintf(buffer + offset, sizeof(buffer) - offset, "%d:%d:%d ",
i, cal_data->count_r[i], cal_data->count_rc[i]);
buffer[offset] = '\0';
return 0;
}
static int get_calibration_data(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
char cell_name[32];
struct nvmem_cell *cell;
u32 *buf;
size_t len;
int i, j, index = 0, ret;
lvts_data->efuse = devm_kcalloc(dev, lvts_data->num_efuse_addr,
sizeof(*lvts_data->efuse), GFP_KERNEL);
if (!lvts_data->efuse)
return -ENOMEM;
for (i = 0; i < lvts_data->num_efuse_block; i++) {
snprintf(cell_name, sizeof(cell_name), "lvts_calib_data%d", i + 1);
cell = nvmem_cell_get(dev, cell_name);
if (IS_ERR(cell)) {
dev_err(dev, "Error: Failed to get nvmem cell %s\n", cell_name);
return PTR_ERR(cell);
}
buf = (u32 *)nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
for (j = 0; j < (len / sizeof(u32)); j++) {
if (index >= lvts_data->num_efuse_addr) {
dev_err(dev, "Array efuse is going to overflow");
kfree(buf);
return -EINVAL;
}
lvts_data->efuse[index] = buf[j];
index++;
}
kfree(buf);
}
ret = prepare_calibration_data(lvts_data);
return ret;
}
static int lvts_init_tc_regs(struct device *dev, struct lvts_data *lvts_data)
{
const struct lvts_tc_settings *tc = lvts_data->tc;
unsigned int i, j, s_index, x;
void __iomem *base;
lvts_data->reg = devm_kcalloc(dev, lvts_data->num_sensor,
sizeof(*lvts_data->reg), GFP_KERNEL);
if (!lvts_data->reg)
return -ENOMEM;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
for (j = 0; j < tc[i].num_sensor; j++) {
s_index = tc[i].sensor_map[j];
x = j + tc[i].ts_offset;
lvts_data->reg[s_index] = LVTSMSR0_0 + base + 0x4 * x;
}
}
return 0;
}
static int of_update_lvts_data(struct lvts_data *lvts_data,
struct platform_device *pdev)
{
struct device *dev = lvts_data->dev;
struct resource *res;
int ret;
lvts_data->clk = devm_clk_get(dev, NULL);
if (IS_ERR(lvts_data->clk))
return PTR_ERR(lvts_data->clk);
/* Get base address */
res = platform_get_mem_or_io(pdev, 0);
if (!res) {
dev_err(dev, "No IO resource\n");
return -ENXIO;
}
lvts_data->base = devm_ioremap_resource(dev, res);
if (IS_ERR(lvts_data->base)) {
dev_err(dev, "Failed to remap io\n");
return PTR_ERR(lvts_data->base);
}
/* Get interrupt number */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "No irq resource\n");
return -EINVAL;
}
lvts_data->irq_num = ret;
/* Get reset control */
lvts_data->reset = devm_reset_control_get_by_index(dev, 0);
if (IS_ERR(lvts_data->reset)) {
dev_err(dev, "Failed to get reset control\n");
return PTR_ERR(lvts_data->reset);
}
ret = lvts_init_tc_regs(dev, lvts_data);
if (ret)
return ret;
ret = get_calibration_data(lvts_data);
if (ret)
return ret;
return 0;
}
static void lvts_device_close(struct lvts_data *lvts_data)
{
unsigned int i;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
lvts_write_device(lvts_data, RESET_ALL_DEVICES, i);
writel(DISABLE_LVTS_CTRL_CLK, LVTSCLKEN_0 + base);
}
}
static void lvts_close(struct lvts_data *lvts_data)
{
disable_all_sensing_points(lvts_data);
wait_all_tc_sensing_point_idle(lvts_data);
lvts_device_close(lvts_data);
clk_disable_unprepare(lvts_data->clk);
}
static void tc_irq_handler(struct lvts_data *lvts_data, int tc_id)
{
const struct device *dev = lvts_data->dev;
unsigned int ret = 0;
void __iomem *base;
base = GET_BASE_ADDR(lvts_data, tc_id);
ret = readl(LVTSMONINTSTS_0 + base);
/* Write back to clear interrupt status */
writel(ret, LVTSMONINTSTS_0 + base);
dev_dbg(dev, "LVTS thermal controller %d, LVTSMONINTSTS=0x%08x\n", tc_id, ret);
if (ret & THERMAL_PROTECTION_STAGE_3)
dev_dbg(dev, "Thermal protection stage 3 interrupt triggered\n");
}
static irqreturn_t irq_handler(int irq, void *dev_id)
{
struct lvts_data *lvts_data = (struct lvts_data *)dev_id;
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
unsigned int i, *irq_bitmap;
void __iomem *base;
irq_bitmap = kcalloc(1, sizeof(*irq_bitmap), GFP_ATOMIC);
if (!irq_bitmap)
return IRQ_NONE;
base = lvts_data->base;
*irq_bitmap = readl(THERMINTST + base);
dev_dbg(dev, "THERMINTST = 0x%x\n", *irq_bitmap);
for (i = 0; i < lvts_data->num_tc; i++) {
if (tc[i].irq_bit == 0)
tc_irq_handler(lvts_data, i);
}
kfree(irq_bitmap);
return IRQ_HANDLED;
}
static int lvts_register_irq_handler(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
int ret;
ret = devm_request_irq(dev, lvts_data->irq_num, irq_handler,
IRQF_TRIGGER_HIGH, "mtk_lvts", lvts_data);
if (ret) {
dev_err(dev, "Failed to register LVTS IRQ, ret %d, irq_num %d\n",
ret, lvts_data->irq_num);
lvts_close(lvts_data);
return ret;
}
return 0;
}
static int lvts_register_thermal_zones(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
struct thermal_zone_device *tzdev;
struct soc_temp_tz *lvts_tz;
int i, ret;
for (i = 0; i < lvts_data->num_sensor; i++) {
lvts_tz = devm_kzalloc(dev, sizeof(*lvts_tz), GFP_KERNEL);
if (!lvts_tz) {
lvts_close(lvts_data);
return -ENOMEM;
}
lvts_tz->id = i;
lvts_tz->lvts_data = lvts_data;
tzdev = devm_thermal_of_zone_register(dev, lvts_tz->id,
lvts_tz, &soc_temp_lvts_ops);
if (IS_ERR(tzdev)) {
if (lvts_tz->id != 0)
return 0;
ret = PTR_ERR(tzdev);
dev_err(dev, "Error: Failed to register lvts tz %d, ret = %d\n",
lvts_tz->id, ret);
lvts_close(lvts_data);
return ret;
}
}
return 0;
}
void lvts_device_enable_and_init_v5(struct lvts_data *lvts_data)
{
unsigned int i;
for (i = 0; i < lvts_data->num_tc; i++) {
lvts_write_device(lvts_data, STOP_COUNTING_V4, i);
lvts_write_device(lvts_data, SET_RG_TSFM_LPDLY_V4, i);
lvts_write_device(lvts_data, SET_COUNTING_WINDOW_20US1_V4, i);
lvts_write_device(lvts_data, SET_COUNTING_WINDOW_20US2_V4, i);
lvts_write_device(lvts_data, TSV2F_CHOP_CKSEL_AND_TSV2F_EN_V5, i);
lvts_write_device(lvts_data, TSBG_DEM_CKSEL_X_TSBG_CHOP_EN_V5, i);
lvts_write_device(lvts_data, SET_TS_RSV_V4, i);
lvts_write_device(lvts_data, SET_TS_CHOP_V5, i);
}
lvts_data->counting_window_us = 20;
}
EXPORT_SYMBOL_GPL(lvts_device_enable_and_init_v5);
void lvts_device_enable_and_init_v4(struct lvts_data *lvts_data)
{
unsigned int i;
for (i = 0; i < lvts_data->num_tc; i++) {
lvts_write_device(lvts_data, STOP_COUNTING_V4, i);
lvts_write_device(lvts_data, SET_RG_TSFM_LPDLY_V4, i);
lvts_write_device(lvts_data, SET_COUNTING_WINDOW_20US1_V4, i);
lvts_write_device(lvts_data, SET_COUNTING_WINDOW_20US2_V4, i);
lvts_write_device(lvts_data, TSV2F_CHOP_CKSEL_AND_TSV2F_EN_V4, i);
lvts_write_device(lvts_data, TSBG_DEM_CKSEL_X_TSBG_CHOP_EN_V4, i);
lvts_write_device(lvts_data, SET_TS_RSV_V4, i);
lvts_write_device(lvts_data, SET_TS_EN_V4, i);
lvts_write_device(lvts_data, TOGGLE_RG_TSV2F_VCO_RST1_V4, i);
lvts_write_device(lvts_data, TOGGLE_RG_TSV2F_VCO_RST2_V4, i);
}
lvts_data->counting_window_us = 20;
}
EXPORT_SYMBOL_GPL(lvts_device_enable_and_init_v4);
void lvts_device_enable_auto_rck_v4(struct lvts_data *lvts_data)
{
unsigned int i;
for (i = 0; i < lvts_data->num_tc; i++)
lvts_write_device(lvts_data, SET_LVTS_AUTO_RCK_V4, i);
}
EXPORT_SYMBOL_GPL(lvts_device_enable_auto_rck_v4);
int lvts_device_read_count_rc_n_v4(struct lvts_data *lvts_data)
{
/* Resistor-Capacitor Calibration */
/* count_RC_N: count RC now */
struct device *dev = lvts_data->dev;
const struct lvts_tc_settings *tc = lvts_data->tc;
struct lvts_sensor_cal_data *cal_data = &lvts_data->cal_data;
unsigned int offset, size, s_index, data;
void __iomem *base;
int ret, i, j;
char buffer[512];
cal_data->count_rc_now = devm_kcalloc(dev, lvts_data->num_sensor,
sizeof(*cal_data->count_rc_now), GFP_KERNEL);
if (!cal_data->count_rc_now)
return -ENOMEM;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
for (j = 0; j < tc[i].num_sensor; j++) {
s_index = tc[i].sensor_map[j];
lvts_write_device(lvts_data, SELECT_SENSOR_RCK_V4(j), i);
lvts_write_device(lvts_data, SET_DEVICE_SINGLE_MODE_V4, i);
usleep_range(10, 20);
lvts_write_device(lvts_data, KICK_OFF_RCK_COUNTING_V4, i);
usleep_range(30, 40);
ret = readl_poll_timeout(LVTS_CONFIG_0 + base, data,
!(data & DEVICE_SENSING_STATUS), 2, 200);
if (ret)
dev_err(dev,
"Error: LVTS %d DEVICE_SENSING_STATUS didn't ready\n", i);
data = lvts_read_device(lvts_data, 0x00, i);
cal_data->count_rc_now[s_index] = (data & GENMASK(23, 0));
}
/* Recover Setting for Normal Access on
* temperature fetch
*/
lvts_write_device(lvts_data, SET_SENSOR_NO_RCK_V4, i);
lvts_write_device(lvts_data, SET_DEVICE_LOW_POWER_SINGLE_MODE_V4, i);
}
size = sizeof(buffer);
offset = snprintf(buffer, size, "[COUNT_RC_NOW] ");
for (i = 0; i < lvts_data->num_sensor; i++)
offset += snprintf(buffer + offset, size - offset, "%d:%d ",
i, cal_data->count_rc_now[i]);
buffer[offset] = '\0';
dev_dbg(dev, "%s\n", buffer);
return 0;
}
EXPORT_SYMBOL_GPL(lvts_device_read_count_rc_n_v4);
void lvts_set_calibration_data_v4(struct lvts_data *lvts_data)
{
const struct lvts_tc_settings *tc = lvts_data->tc;
struct lvts_sensor_cal_data *cal_data = &lvts_data->cal_data;
unsigned int i, j, s_index, lvts_calib_data, x;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
for (j = 0; j < tc[i].num_sensor; j++) {
s_index = tc[i].sensor_map[j];
x = j + tc[i].ts_offset;
if (HAS_FEATURE(lvts_data, FEATURE_DEVICE_AUTO_RCK))
lvts_calib_data = cal_data->count_r[s_index];
else
lvts_calib_data = (((unsigned long long)
cal_data->count_rc_now[s_index]) *
cal_data->count_r[s_index]) >> 14;
writel(lvts_calib_data, LVTSEDATA00_0 + base + 0x4 * x);
}
}
}
EXPORT_SYMBOL_GPL(lvts_set_calibration_data_v4);
void lvts_init_controller_v4(struct lvts_data *lvts_data)
{
struct device *dev = lvts_data->dev;
unsigned int i;
void __iomem *base;
for (i = 0; i < lvts_data->num_tc; i++) {
base = GET_BASE_ADDR(lvts_data, i);
lvts_write_device(lvts_data, SET_DEVICE_LOW_POWER_SINGLE_MODE_V4, i);
writel(SET_SENSOR_INDEX, LVTSTSSEL_0 + base);
writel(SET_CALC_SCALE_RULES, LVTSCALSCALE_0 + base);
set_polling_speed(lvts_data, i);
set_hw_filter(lvts_data, i);
dev_info(dev, "lvts_tc_%d: read all %d sensors in %d us, one in %d us\n",
i, GET_TC_SENSOR_NUM(lvts_data, i), GROUP_LATENCY_US(i), SENSOR_LATENCY_US(i));
}
}
EXPORT_SYMBOL_GPL(lvts_init_controller_v4);
int lvts_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct lvts_data *lvts_data;
int ret;
lvts_data = (struct lvts_data *)of_device_get_match_data(dev);
if (!lvts_data) {
dev_err(dev, "Error: Failed to get lvts platform data\n");
return -ENODATA;
}
lvts_data->dev = &pdev->dev;
ret = of_update_lvts_data(lvts_data, pdev);
if (ret)
return ret;
platform_set_drvdata(pdev, lvts_data);
ret = lvts_init(lvts_data);
if (ret)
return ret;
ret = lvts_register_irq_handler(lvts_data);
if (ret)
return ret;
ret = lvts_register_thermal_zones(lvts_data);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(lvts_probe);
int lvts_remove(struct platform_device *pdev)
{
struct lvts_data *lvts_data;
lvts_data = (struct lvts_data *)platform_get_drvdata(pdev);
lvts_close(lvts_data);
return 0;
}
EXPORT_SYMBOL_GPL(lvts_remove);
int lvts_suspend(struct platform_device *pdev, pm_message_t state)
{
struct lvts_data *lvts_data;
lvts_data = (struct lvts_data *)platform_get_drvdata(pdev);
lvts_close(lvts_data);
return 0;
}
EXPORT_SYMBOL_GPL(lvts_suspend);
int lvts_resume(struct platform_device *pdev)
{
int ret;
struct lvts_data *lvts_data;
lvts_data = (struct lvts_data *)platform_get_drvdata(pdev);
ret = lvts_init(lvts_data);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(lvts_resume);
MODULE_AUTHOR("Yu-Chia Chang <[email protected]>");
MODULE_AUTHOR("Michael Kao <[email protected]>");
MODULE_DESCRIPTION("MediaTek soc temperature driver");
MODULE_LICENSE("GPL v2");