| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_PGTABLE_H |
| #define _LINUX_PGTABLE_H |
| |
| #include <linux/pfn.h> |
| #include <asm/pgtable.h> |
| |
| #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) |
| #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) |
| |
| #ifndef __ASSEMBLY__ |
| #ifdef CONFIG_MMU |
| |
| #include <linux/mm_types.h> |
| #include <linux/bug.h> |
| #include <linux/errno.h> |
| #include <asm-generic/pgtable_uffd.h> |
| #include <linux/page_table_check.h> |
| |
| #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ |
| defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS |
| #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED |
| #endif |
| |
| /* |
| * On almost all architectures and configurations, 0 can be used as the |
| * upper ceiling to free_pgtables(): on many architectures it has the same |
| * effect as using TASK_SIZE. However, there is one configuration which |
| * must impose a more careful limit, to avoid freeing kernel pgtables. |
| */ |
| #ifndef USER_PGTABLES_CEILING |
| #define USER_PGTABLES_CEILING 0UL |
| #endif |
| |
| /* |
| * This defines the first usable user address. Platforms |
| * can override its value with custom FIRST_USER_ADDRESS |
| * defined in their respective <asm/pgtable.h>. |
| */ |
| #ifndef FIRST_USER_ADDRESS |
| #define FIRST_USER_ADDRESS 0UL |
| #endif |
| |
| /* |
| * This defines the generic helper for accessing PMD page |
| * table page. Although platforms can still override this |
| * via their respective <asm/pgtable.h>. |
| */ |
| #ifndef pmd_pgtable |
| #define pmd_pgtable(pmd) pmd_page(pmd) |
| #endif |
| |
| /* |
| * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] |
| * |
| * The pXx_index() functions return the index of the entry in the page |
| * table page which would control the given virtual address |
| * |
| * As these functions may be used by the same code for different levels of |
| * the page table folding, they are always available, regardless of |
| * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 |
| * because in such cases PTRS_PER_PxD equals 1. |
| */ |
| |
| static inline unsigned long pte_index(unsigned long address) |
| { |
| return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); |
| } |
| |
| #ifndef pmd_index |
| static inline unsigned long pmd_index(unsigned long address) |
| { |
| return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); |
| } |
| #define pmd_index pmd_index |
| #endif |
| |
| #ifndef pud_index |
| static inline unsigned long pud_index(unsigned long address) |
| { |
| return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); |
| } |
| #define pud_index pud_index |
| #endif |
| |
| #ifndef pgd_index |
| /* Must be a compile-time constant, so implement it as a macro */ |
| #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| #endif |
| |
| #ifndef pte_offset_kernel |
| static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) |
| { |
| return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); |
| } |
| #define pte_offset_kernel pte_offset_kernel |
| #endif |
| |
| #ifdef CONFIG_HIGHPTE |
| #define __pte_map(pmd, address) \ |
| ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) |
| #define pte_unmap(pte) do { \ |
| kunmap_local((pte)); \ |
| rcu_read_unlock(); \ |
| } while (0) |
| #else |
| static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) |
| { |
| return pte_offset_kernel(pmd, address); |
| } |
| static inline void pte_unmap(pte_t *pte) |
| { |
| rcu_read_unlock(); |
| } |
| #endif |
| |
| void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); |
| |
| /* Find an entry in the second-level page table.. */ |
| #ifndef pmd_offset |
| static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) |
| { |
| return pud_pgtable(*pud) + pmd_index(address); |
| } |
| #define pmd_offset pmd_offset |
| #endif |
| |
| #ifndef pud_offset |
| static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) |
| { |
| return p4d_pgtable(*p4d) + pud_index(address); |
| } |
| #define pud_offset pud_offset |
| #endif |
| |
| static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) |
| { |
| return (pgd + pgd_index(address)); |
| }; |
| |
| /* |
| * a shortcut to get a pgd_t in a given mm |
| */ |
| #ifndef pgd_offset |
| #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) |
| #endif |
| |
| /* |
| * a shortcut which implies the use of the kernel's pgd, instead |
| * of a process's |
| */ |
| #ifndef pgd_offset_k |
| #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) |
| #endif |
| |
| /* |
| * In many cases it is known that a virtual address is mapped at PMD or PTE |
| * level, so instead of traversing all the page table levels, we can get a |
| * pointer to the PMD entry in user or kernel page table or translate a virtual |
| * address to the pointer in the PTE in the kernel page tables with simple |
| * helpers. |
| */ |
| static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) |
| { |
| return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); |
| } |
| |
| static inline pmd_t *pmd_off_k(unsigned long va) |
| { |
| return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); |
| } |
| |
| static inline pte_t *virt_to_kpte(unsigned long vaddr) |
| { |
| pmd_t *pmd = pmd_off_k(vaddr); |
| |
| return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); |
| } |
| |
| #ifndef pmd_young |
| static inline int pmd_young(pmd_t pmd) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * A facility to provide lazy MMU batching. This allows PTE updates and |
| * page invalidations to be delayed until a call to leave lazy MMU mode |
| * is issued. Some architectures may benefit from doing this, and it is |
| * beneficial for both shadow and direct mode hypervisors, which may batch |
| * the PTE updates which happen during this window. Note that using this |
| * interface requires that read hazards be removed from the code. A read |
| * hazard could result in the direct mode hypervisor case, since the actual |
| * write to the page tables may not yet have taken place, so reads though |
| * a raw PTE pointer after it has been modified are not guaranteed to be |
| * up to date. This mode can only be entered and left under the protection of |
| * the page table locks for all page tables which may be modified. In the UP |
| * case, this is required so that preemption is disabled, and in the SMP case, |
| * it must synchronize the delayed page table writes properly on other CPUs. |
| */ |
| #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE |
| #define arch_enter_lazy_mmu_mode() do {} while (0) |
| #define arch_leave_lazy_mmu_mode() do {} while (0) |
| #define arch_flush_lazy_mmu_mode() do {} while (0) |
| #endif |
| |
| #ifndef pte_batch_hint |
| /** |
| * pte_batch_hint - Number of pages that can be added to batch without scanning. |
| * @ptep: Page table pointer for the entry. |
| * @pte: Page table entry. |
| * |
| * Some architectures know that a set of contiguous ptes all map the same |
| * contiguous memory with the same permissions. In this case, it can provide a |
| * hint to aid pte batching without the core code needing to scan every pte. |
| * |
| * An architecture implementation may ignore the PTE accessed state. Further, |
| * the dirty state must apply atomically to all the PTEs described by the hint. |
| * |
| * May be overridden by the architecture, else pte_batch_hint is always 1. |
| */ |
| static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) |
| { |
| return 1; |
| } |
| #endif |
| |
| #ifndef pte_advance_pfn |
| static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) |
| { |
| return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); |
| } |
| #endif |
| |
| #define pte_next_pfn(pte) pte_advance_pfn(pte, 1) |
| |
| #ifndef set_ptes |
| /** |
| * set_ptes - Map consecutive pages to a contiguous range of addresses. |
| * @mm: Address space to map the pages into. |
| * @addr: Address to map the first page at. |
| * @ptep: Page table pointer for the first entry. |
| * @pte: Page table entry for the first page. |
| * @nr: Number of pages to map. |
| * |
| * When nr==1, initial state of pte may be present or not present, and new state |
| * may be present or not present. When nr>1, initial state of all ptes must be |
| * not present, and new state must be present. |
| * |
| * May be overridden by the architecture, or the architecture can define |
| * set_pte() and PFN_PTE_SHIFT. |
| * |
| * Context: The caller holds the page table lock. The pages all belong |
| * to the same folio. The PTEs are all in the same PMD. |
| */ |
| static inline void set_ptes(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, unsigned int nr) |
| { |
| page_table_check_ptes_set(mm, ptep, pte, nr); |
| |
| arch_enter_lazy_mmu_mode(); |
| for (;;) { |
| set_pte(ptep, pte); |
| if (--nr == 0) |
| break; |
| ptep++; |
| pte = pte_next_pfn(pte); |
| } |
| arch_leave_lazy_mmu_mode(); |
| } |
| #endif |
| #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| extern int ptep_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, |
| pte_t entry, int dirty); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty); |
| extern int pudp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pud_t *pudp, |
| pud_t entry, int dirty); |
| #else |
| static inline int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty) |
| { |
| BUILD_BUG(); |
| return 0; |
| } |
| static inline int pudp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pud_t *pudp, |
| pud_t entry, int dirty) |
| { |
| BUILD_BUG(); |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif |
| |
| #ifndef ptep_get |
| static inline pte_t ptep_get(pte_t *ptep) |
| { |
| return READ_ONCE(*ptep); |
| } |
| #endif |
| |
| #ifndef pmdp_get |
| static inline pmd_t pmdp_get(pmd_t *pmdp) |
| { |
| return READ_ONCE(*pmdp); |
| } |
| #endif |
| |
| #ifndef pudp_get |
| static inline pud_t pudp_get(pud_t *pudp) |
| { |
| return READ_ONCE(*pudp); |
| } |
| #endif |
| |
| #ifndef p4dp_get |
| static inline p4d_t p4dp_get(p4d_t *p4dp) |
| { |
| return READ_ONCE(*p4dp); |
| } |
| #endif |
| |
| #ifndef pgdp_get |
| static inline pgd_t pgdp_get(pgd_t *pgdp) |
| { |
| return READ_ONCE(*pgdp); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| pte_t pte = ptep_get(ptep); |
| int r = 1; |
| if (!pte_young(pte)) |
| r = 0; |
| else |
| set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); |
| return r; |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| pmd_t pmd = *pmdp; |
| int r = 1; |
| if (!pmd_young(pmd)) |
| r = 0; |
| else |
| set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); |
| return r; |
| } |
| #else |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| BUILD_BUG(); |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #else |
| /* |
| * Despite relevant to THP only, this API is called from generic rmap code |
| * under PageTransHuge(), hence needs a dummy implementation for !THP |
| */ |
| static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| BUILD_BUG(); |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif |
| |
| #ifndef arch_has_hw_nonleaf_pmd_young |
| /* |
| * Return whether the accessed bit in non-leaf PMD entries is supported on the |
| * local CPU. |
| */ |
| static inline bool arch_has_hw_nonleaf_pmd_young(void) |
| { |
| return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); |
| } |
| #endif |
| |
| #ifndef arch_has_hw_pte_young |
| /* |
| * Return whether the accessed bit is supported on the local CPU. |
| * |
| * This stub assumes accessing through an old PTE triggers a page fault. |
| * Architectures that automatically set the access bit should overwrite it. |
| */ |
| static inline bool arch_has_hw_pte_young(void) |
| { |
| return false; |
| } |
| #endif |
| |
| #ifndef arch_check_zapped_pte |
| static inline void arch_check_zapped_pte(struct vm_area_struct *vma, |
| pte_t pte) |
| { |
| } |
| #endif |
| |
| #ifndef arch_check_zapped_pmd |
| static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, |
| pmd_t pmd) |
| { |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| pte_t pte = ptep_get(ptep); |
| pte_clear(mm, address, ptep); |
| page_table_check_pte_clear(mm, pte); |
| return pte; |
| } |
| #endif |
| |
| #ifndef clear_young_dirty_ptes |
| /** |
| * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the |
| * same folio as old/clean. |
| * @mm: Address space the pages are mapped into. |
| * @addr: Address the first page is mapped at. |
| * @ptep: Page table pointer for the first entry. |
| * @nr: Number of entries to mark old/clean. |
| * @flags: Flags to modify the PTE batch semantics. |
| * |
| * May be overridden by the architecture; otherwise, implemented by |
| * get_and_clear/modify/set for each pte in the range. |
| * |
| * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| * some PTEs might be write-protected. |
| * |
| * Context: The caller holds the page table lock. The PTEs map consecutive |
| * pages that belong to the same folio. The PTEs are all in the same PMD. |
| */ |
| static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep, |
| unsigned int nr, cydp_t flags) |
| { |
| pte_t pte; |
| |
| for (;;) { |
| if (flags == CYDP_CLEAR_YOUNG) |
| ptep_test_and_clear_young(vma, addr, ptep); |
| else { |
| pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); |
| if (flags & CYDP_CLEAR_YOUNG) |
| pte = pte_mkold(pte); |
| if (flags & CYDP_CLEAR_DIRTY) |
| pte = pte_mkclean(pte); |
| set_pte_at(vma->vm_mm, addr, ptep, pte); |
| } |
| if (--nr == 0) |
| break; |
| ptep++; |
| addr += PAGE_SIZE; |
| } |
| } |
| #endif |
| |
| static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| ptep_get_and_clear(mm, addr, ptep); |
| } |
| |
| #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH |
| /* |
| * For walking the pagetables without holding any locks. Some architectures |
| * (eg x86-32 PAE) cannot load the entries atomically without using expensive |
| * instructions. We are guaranteed that a PTE will only either go from not |
| * present to present, or present to not present -- it will not switch to a |
| * completely different present page without a TLB flush inbetween; which we |
| * are blocking by holding interrupts off. |
| * |
| * Setting ptes from not present to present goes: |
| * |
| * ptep->pte_high = h; |
| * smp_wmb(); |
| * ptep->pte_low = l; |
| * |
| * And present to not present goes: |
| * |
| * ptep->pte_low = 0; |
| * smp_wmb(); |
| * ptep->pte_high = 0; |
| * |
| * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. |
| * We load pte_high *after* loading pte_low, which ensures we don't see an older |
| * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't |
| * picked up a changed pte high. We might have gotten rubbish values from |
| * pte_low and pte_high, but we are guaranteed that pte_low will not have the |
| * present bit set *unless* it is 'l'. Because get_user_pages_fast() only |
| * operates on present ptes we're safe. |
| */ |
| static inline pte_t ptep_get_lockless(pte_t *ptep) |
| { |
| pte_t pte; |
| |
| do { |
| pte.pte_low = ptep->pte_low; |
| smp_rmb(); |
| pte.pte_high = ptep->pte_high; |
| smp_rmb(); |
| } while (unlikely(pte.pte_low != ptep->pte_low)); |
| |
| return pte; |
| } |
| #define ptep_get_lockless ptep_get_lockless |
| |
| #if CONFIG_PGTABLE_LEVELS > 2 |
| static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) |
| { |
| pmd_t pmd; |
| |
| do { |
| pmd.pmd_low = pmdp->pmd_low; |
| smp_rmb(); |
| pmd.pmd_high = pmdp->pmd_high; |
| smp_rmb(); |
| } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); |
| |
| return pmd; |
| } |
| #define pmdp_get_lockless pmdp_get_lockless |
| #define pmdp_get_lockless_sync() tlb_remove_table_sync_one() |
| #endif /* CONFIG_PGTABLE_LEVELS > 2 */ |
| #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ |
| |
| /* |
| * We require that the PTE can be read atomically. |
| */ |
| #ifndef ptep_get_lockless |
| static inline pte_t ptep_get_lockless(pte_t *ptep) |
| { |
| return ptep_get(ptep); |
| } |
| #endif |
| |
| #ifndef pmdp_get_lockless |
| static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) |
| { |
| return pmdp_get(pmdp); |
| } |
| static inline void pmdp_get_lockless_sync(void) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| pmd_t pmd = *pmdp; |
| |
| pmd_clear(pmdp); |
| page_table_check_pmd_clear(mm, pmd); |
| |
| return pmd; |
| } |
| #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ |
| #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR |
| static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long address, |
| pud_t *pudp) |
| { |
| pud_t pud = *pudp; |
| |
| pud_clear(pudp); |
| page_table_check_pud_clear(mm, pud); |
| |
| return pud; |
| } |
| #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
| static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| int full) |
| { |
| return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL |
| static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| unsigned long address, pud_t *pudp, |
| int full) |
| { |
| return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); |
| } |
| #endif |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep, |
| int full) |
| { |
| return ptep_get_and_clear(mm, address, ptep); |
| } |
| #endif |
| |
| #ifndef get_and_clear_full_ptes |
| /** |
| * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of |
| * the same folio, collecting dirty/accessed bits. |
| * @mm: Address space the pages are mapped into. |
| * @addr: Address the first page is mapped at. |
| * @ptep: Page table pointer for the first entry. |
| * @nr: Number of entries to clear. |
| * @full: Whether we are clearing a full mm. |
| * |
| * May be overridden by the architecture; otherwise, implemented as a simple |
| * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the |
| * returned PTE. |
| * |
| * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| * some PTEs might be write-protected. |
| * |
| * Context: The caller holds the page table lock. The PTEs map consecutive |
| * pages that belong to the same folio. The PTEs are all in the same PMD. |
| */ |
| static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep, unsigned int nr, int full) |
| { |
| pte_t pte, tmp_pte; |
| |
| pte = ptep_get_and_clear_full(mm, addr, ptep, full); |
| while (--nr) { |
| ptep++; |
| addr += PAGE_SIZE; |
| tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); |
| if (pte_dirty(tmp_pte)) |
| pte = pte_mkdirty(pte); |
| if (pte_young(tmp_pte)) |
| pte = pte_mkyoung(pte); |
| } |
| return pte; |
| } |
| #endif |
| |
| #ifndef clear_full_ptes |
| /** |
| * clear_full_ptes - Clear present PTEs that map consecutive pages of the same |
| * folio. |
| * @mm: Address space the pages are mapped into. |
| * @addr: Address the first page is mapped at. |
| * @ptep: Page table pointer for the first entry. |
| * @nr: Number of entries to clear. |
| * @full: Whether we are clearing a full mm. |
| * |
| * May be overridden by the architecture; otherwise, implemented as a simple |
| * loop over ptep_get_and_clear_full(). |
| * |
| * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| * some PTEs might be write-protected. |
| * |
| * Context: The caller holds the page table lock. The PTEs map consecutive |
| * pages that belong to the same folio. The PTEs are all in the same PMD. |
| */ |
| static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, unsigned int nr, int full) |
| { |
| for (;;) { |
| ptep_get_and_clear_full(mm, addr, ptep, full); |
| if (--nr == 0) |
| break; |
| ptep++; |
| addr += PAGE_SIZE; |
| } |
| } |
| #endif |
| |
| /* |
| * If two threads concurrently fault at the same page, the thread that |
| * won the race updates the PTE and its local TLB/Cache. The other thread |
| * gives up, simply does nothing, and continues; on architectures where |
| * software can update TLB, local TLB can be updated here to avoid next page |
| * fault. This function updates TLB only, do nothing with cache or others. |
| * It is the difference with function update_mmu_cache. |
| */ |
| #ifndef __HAVE_ARCH_UPDATE_MMU_TLB |
| static inline void update_mmu_tlb(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| } |
| #define __HAVE_ARCH_UPDATE_MMU_TLB |
| #endif |
| |
| /* |
| * Some architectures may be able to avoid expensive synchronization |
| * primitives when modifications are made to PTE's which are already |
| * not present, or in the process of an address space destruction. |
| */ |
| #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL |
| static inline void pte_clear_not_present_full(struct mm_struct *mm, |
| unsigned long address, |
| pte_t *ptep, |
| int full) |
| { |
| pte_clear(mm, address, ptep); |
| } |
| #endif |
| |
| #ifndef clear_not_present_full_ptes |
| /** |
| * clear_not_present_full_ptes - Clear multiple not present PTEs which are |
| * consecutive in the pgtable. |
| * @mm: Address space the ptes represent. |
| * @addr: Address of the first pte. |
| * @ptep: Page table pointer for the first entry. |
| * @nr: Number of entries to clear. |
| * @full: Whether we are clearing a full mm. |
| * |
| * May be overridden by the architecture; otherwise, implemented as a simple |
| * loop over pte_clear_not_present_full(). |
| * |
| * Context: The caller holds the page table lock. The PTEs are all not present. |
| * The PTEs are all in the same PMD. |
| */ |
| static inline void clear_not_present_full_ptes(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep, unsigned int nr, int full) |
| { |
| for (;;) { |
| pte_clear_not_present_full(mm, addr, ptep, full); |
| if (--nr == 0) |
| break; |
| ptep++; |
| addr += PAGE_SIZE; |
| } |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| extern pte_t ptep_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, |
| pte_t *ptep); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH |
| extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp); |
| extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, |
| pud_t *pudp); |
| #endif |
| |
| #ifndef pte_mkwrite |
| static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| { |
| return pte_mkwrite_novma(pte); |
| } |
| #endif |
| |
| #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) |
| static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| { |
| return pmd_mkwrite_novma(pmd); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT |
| struct mm_struct; |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| { |
| pte_t old_pte = ptep_get(ptep); |
| set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); |
| } |
| #endif |
| |
| #ifndef wrprotect_ptes |
| /** |
| * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same |
| * folio. |
| * @mm: Address space the pages are mapped into. |
| * @addr: Address the first page is mapped at. |
| * @ptep: Page table pointer for the first entry. |
| * @nr: Number of entries to write-protect. |
| * |
| * May be overridden by the architecture; otherwise, implemented as a simple |
| * loop over ptep_set_wrprotect(). |
| * |
| * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| * some PTEs might be write-protected. |
| * |
| * Context: The caller holds the page table lock. The PTEs map consecutive |
| * pages that belong to the same folio. The PTEs are all in the same PMD. |
| */ |
| static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, unsigned int nr) |
| { |
| for (;;) { |
| ptep_set_wrprotect(mm, addr, ptep); |
| if (--nr == 0) |
| break; |
| ptep++; |
| addr += PAGE_SIZE; |
| } |
| } |
| #endif |
| |
| /* |
| * On some architectures hardware does not set page access bit when accessing |
| * memory page, it is responsibility of software setting this bit. It brings |
| * out extra page fault penalty to track page access bit. For optimization page |
| * access bit can be set during all page fault flow on these arches. |
| * To be differentiate with macro pte_mkyoung, this macro is used on platforms |
| * where software maintains page access bit. |
| */ |
| #ifndef pte_sw_mkyoung |
| static inline pte_t pte_sw_mkyoung(pte_t pte) |
| { |
| return pte; |
| } |
| #define pte_sw_mkyoung pte_sw_mkyoung |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmd_t old_pmd = *pmdp; |
| set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); |
| } |
| #else |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| BUILD_BUG(); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif |
| #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pud_t *pudp) |
| { |
| pud_t old_pud = *pudp; |
| |
| set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); |
| } |
| #else |
| static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pud_t *pudp) |
| { |
| BUILD_BUG(); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| #endif |
| |
| #ifndef pmdp_collapse_flush |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #else |
| static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| BUILD_BUG(); |
| return *pmdp; |
| } |
| #define pmdp_collapse_flush pmdp_collapse_flush |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT |
| extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW |
| extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| #endif |
| |
| #ifndef arch_needs_pgtable_deposit |
| #define arch_needs_pgtable_deposit() (false) |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * This is an implementation of pmdp_establish() that is only suitable for an |
| * architecture that doesn't have hardware dirty/accessed bits. In this case we |
| * can't race with CPU which sets these bits and non-atomic approach is fine. |
| */ |
| static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| { |
| pmd_t old_pmd = *pmdp; |
| set_pmd_at(vma->vm_mm, address, pmdp, pmd); |
| return old_pmd; |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_INVALIDATE |
| extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD |
| |
| /* |
| * pmdp_invalidate_ad() invalidates the PMD while changing a transparent |
| * hugepage mapping in the page tables. This function is similar to |
| * pmdp_invalidate(), but should only be used if the access and dirty bits would |
| * not be cleared by the software in the new PMD value. The function ensures |
| * that hardware changes of the access and dirty bits updates would not be lost. |
| * |
| * Doing so can allow in certain architectures to avoid a TLB flush in most |
| * cases. Yet, another TLB flush might be necessary later if the PMD update |
| * itself requires such flush (e.g., if protection was set to be stricter). Yet, |
| * even when a TLB flush is needed because of the update, the caller may be able |
| * to batch these TLB flushing operations, so fewer TLB flush operations are |
| * needed. |
| */ |
| extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTE_SAME |
| static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| { |
| return pte_val(pte_a) == pte_val(pte_b); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTE_UNUSED |
| /* |
| * Some architectures provide facilities to virtualization guests |
| * so that they can flag allocated pages as unused. This allows the |
| * host to transparently reclaim unused pages. This function returns |
| * whether the pte's page is unused. |
| */ |
| static inline int pte_unused(pte_t pte) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifndef pte_access_permitted |
| #define pte_access_permitted(pte, write) \ |
| (pte_present(pte) && (!(write) || pte_write(pte))) |
| #endif |
| |
| #ifndef pmd_access_permitted |
| #define pmd_access_permitted(pmd, write) \ |
| (pmd_present(pmd) && (!(write) || pmd_write(pmd))) |
| #endif |
| |
| #ifndef pud_access_permitted |
| #define pud_access_permitted(pud, write) \ |
| (pud_present(pud) && (!(write) || pud_write(pud))) |
| #endif |
| |
| #ifndef p4d_access_permitted |
| #define p4d_access_permitted(p4d, write) \ |
| (p4d_present(p4d) && (!(write) || p4d_write(p4d))) |
| #endif |
| |
| #ifndef pgd_access_permitted |
| #define pgd_access_permitted(pgd, write) \ |
| (pgd_present(pgd) && (!(write) || pgd_write(pgd))) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PMD_SAME |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| { |
| return pmd_val(pmd_a) == pmd_val(pmd_b); |
| } |
| #endif |
| |
| #ifndef pud_same |
| static inline int pud_same(pud_t pud_a, pud_t pud_b) |
| { |
| return pud_val(pud_a) == pud_val(pud_b); |
| } |
| #define pud_same pud_same |
| #endif |
| |
| #ifndef __HAVE_ARCH_P4D_SAME |
| static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) |
| { |
| return p4d_val(p4d_a) == p4d_val(p4d_b); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGD_SAME |
| static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) |
| { |
| return pgd_val(pgd_a) == pgd_val(pgd_b); |
| } |
| #endif |
| |
| /* |
| * Use set_p*_safe(), and elide TLB flushing, when confident that *no* |
| * TLB flush will be required as a result of the "set". For example, use |
| * in scenarios where it is known ahead of time that the routine is |
| * setting non-present entries, or re-setting an existing entry to the |
| * same value. Otherwise, use the typical "set" helpers and flush the |
| * TLB. |
| */ |
| #define set_pte_safe(ptep, pte) \ |
| ({ \ |
| WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ |
| set_pte(ptep, pte); \ |
| }) |
| |
| #define set_pmd_safe(pmdp, pmd) \ |
| ({ \ |
| WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ |
| set_pmd(pmdp, pmd); \ |
| }) |
| |
| #define set_pud_safe(pudp, pud) \ |
| ({ \ |
| WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ |
| set_pud(pudp, pud); \ |
| }) |
| |
| #define set_p4d_safe(p4dp, p4d) \ |
| ({ \ |
| WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ |
| set_p4d(p4dp, p4d); \ |
| }) |
| |
| #define set_pgd_safe(pgdp, pgd) \ |
| ({ \ |
| WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ |
| set_pgd(pgdp, pgd); \ |
| }) |
| |
| #ifndef __HAVE_ARCH_DO_SWAP_PAGE |
| static inline void arch_do_swap_page_nr(struct mm_struct *mm, |
| struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t pte, pte_t oldpte, |
| int nr) |
| { |
| |
| } |
| #else |
| /* |
| * Some architectures support metadata associated with a page. When a |
| * page is being swapped out, this metadata must be saved so it can be |
| * restored when the page is swapped back in. SPARC M7 and newer |
| * processors support an ADI (Application Data Integrity) tag for the |
| * page as metadata for the page. arch_do_swap_page() can restore this |
| * metadata when a page is swapped back in. |
| */ |
| static inline void arch_do_swap_page_nr(struct mm_struct *mm, |
| struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t pte, pte_t oldpte, |
| int nr) |
| { |
| for (int i = 0; i < nr; i++) { |
| arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, |
| pte_advance_pfn(pte, i), |
| pte_advance_pfn(oldpte, i)); |
| } |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_UNMAP_ONE |
| /* |
| * Some architectures support metadata associated with a page. When a |
| * page is being swapped out, this metadata must be saved so it can be |
| * restored when the page is swapped back in. SPARC M7 and newer |
| * processors support an ADI (Application Data Integrity) tag for the |
| * page as metadata for the page. arch_unmap_one() can save this |
| * metadata on a swap-out of a page. |
| */ |
| static inline int arch_unmap_one(struct mm_struct *mm, |
| struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t orig_pte) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Allow architectures to preserve additional metadata associated with |
| * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function |
| * prototypes must be defined in the arch-specific asm/pgtable.h file. |
| */ |
| #ifndef __HAVE_ARCH_PREPARE_TO_SWAP |
| static inline int arch_prepare_to_swap(struct folio *folio) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_SWAP_INVALIDATE |
| static inline void arch_swap_invalidate_page(int type, pgoff_t offset) |
| { |
| } |
| |
| static inline void arch_swap_invalidate_area(int type) |
| { |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_SWAP_RESTORE |
| static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) |
| { |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE |
| #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) |
| #endif |
| |
| #ifndef __HAVE_ARCH_MOVE_PTE |
| #define move_pte(pte, prot, old_addr, new_addr) (pte) |
| #endif |
| |
| #ifndef pte_accessible |
| # define pte_accessible(mm, pte) ((void)(pte), 1) |
| #endif |
| |
| #ifndef flush_tlb_fix_spurious_fault |
| #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) |
| #endif |
| |
| /* |
| * When walking page tables, get the address of the next boundary, |
| * or the end address of the range if that comes earlier. Although no |
| * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. |
| */ |
| |
| #define pgd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| |
| #ifndef p4d_addr_end |
| #define p4d_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef pud_addr_end |
| #define pud_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef pmd_addr_end |
| #define pmd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| /* |
| * When walking page tables, we usually want to skip any p?d_none entries; |
| * and any p?d_bad entries - reporting the error before resetting to none. |
| * Do the tests inline, but report and clear the bad entry in mm/memory.c. |
| */ |
| void pgd_clear_bad(pgd_t *); |
| |
| #ifndef __PAGETABLE_P4D_FOLDED |
| void p4d_clear_bad(p4d_t *); |
| #else |
| #define p4d_clear_bad(p4d) do { } while (0) |
| #endif |
| |
| #ifndef __PAGETABLE_PUD_FOLDED |
| void pud_clear_bad(pud_t *); |
| #else |
| #define pud_clear_bad(p4d) do { } while (0) |
| #endif |
| |
| void pmd_clear_bad(pmd_t *); |
| |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd) |
| { |
| if (pgd_none(*pgd)) |
| return 1; |
| if (unlikely(pgd_bad(*pgd))) { |
| pgd_clear_bad(pgd); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int p4d_none_or_clear_bad(p4d_t *p4d) |
| { |
| if (p4d_none(*p4d)) |
| return 1; |
| if (unlikely(p4d_bad(*p4d))) { |
| p4d_clear_bad(p4d); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pud_none_or_clear_bad(pud_t *pud) |
| { |
| if (pud_none(*pud)) |
| return 1; |
| if (unlikely(pud_bad(*pud))) { |
| pud_clear_bad(pud); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd) |
| { |
| if (pmd_none(*pmd)) |
| return 1; |
| if (unlikely(pmd_bad(*pmd))) { |
| pmd_clear_bad(pmd); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t *ptep) |
| { |
| /* |
| * Get the current pte state, but zero it out to make it |
| * non-present, preventing the hardware from asynchronously |
| * updating it. |
| */ |
| return ptep_get_and_clear(vma->vm_mm, addr, ptep); |
| } |
| |
| static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| /* |
| * The pte is non-present, so there's no hardware state to |
| * preserve. |
| */ |
| set_pte_at(vma->vm_mm, addr, ptep, pte); |
| } |
| |
| #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| /* |
| * Start a pte protection read-modify-write transaction, which |
| * protects against asynchronous hardware modifications to the pte. |
| * The intention is not to prevent the hardware from making pte |
| * updates, but to prevent any updates it may make from being lost. |
| * |
| * This does not protect against other software modifications of the |
| * pte; the appropriate pte lock must be held over the transaction. |
| * |
| * Note that this interface is intended to be batchable, meaning that |
| * ptep_modify_prot_commit may not actually update the pte, but merely |
| * queue the update to be done at some later time. The update must be |
| * actually committed before the pte lock is released, however. |
| */ |
| static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t *ptep) |
| { |
| return __ptep_modify_prot_start(vma, addr, ptep); |
| } |
| |
| /* |
| * Commit an update to a pte, leaving any hardware-controlled bits in |
| * the PTE unmodified. |
| */ |
| static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, |
| unsigned long addr, |
| pte_t *ptep, pte_t old_pte, pte_t pte) |
| { |
| __ptep_modify_prot_commit(vma, addr, ptep, pte); |
| } |
| #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ |
| #endif /* CONFIG_MMU */ |
| |
| /* |
| * No-op macros that just return the current protection value. Defined here |
| * because these macros can be used even if CONFIG_MMU is not defined. |
| */ |
| |
| #ifndef pgprot_nx |
| #define pgprot_nx(prot) (prot) |
| #endif |
| |
| #ifndef pgprot_noncached |
| #define pgprot_noncached(prot) (prot) |
| #endif |
| |
| #ifndef pgprot_writecombine |
| #define pgprot_writecombine pgprot_noncached |
| #endif |
| |
| #ifndef pgprot_writethrough |
| #define pgprot_writethrough pgprot_noncached |
| #endif |
| |
| #ifndef pgprot_device |
| #define pgprot_device pgprot_noncached |
| #endif |
| |
| #ifndef pgprot_mhp |
| #define pgprot_mhp(prot) (prot) |
| #endif |
| |
| #ifdef CONFIG_MMU |
| #ifndef pgprot_modify |
| #define pgprot_modify pgprot_modify |
| static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) |
| { |
| if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) |
| newprot = pgprot_noncached(newprot); |
| if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) |
| newprot = pgprot_writecombine(newprot); |
| if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) |
| newprot = pgprot_device(newprot); |
| return newprot; |
| } |
| #endif |
| #endif /* CONFIG_MMU */ |
| |
| #ifndef pgprot_encrypted |
| #define pgprot_encrypted(prot) (prot) |
| #endif |
| |
| #ifndef pgprot_decrypted |
| #define pgprot_decrypted(prot) (prot) |
| #endif |
| |
| /* |
| * A facility to provide batching of the reload of page tables and |
| * other process state with the actual context switch code for |
| * paravirtualized guests. By convention, only one of the batched |
| * update (lazy) modes (CPU, MMU) should be active at any given time, |
| * entry should never be nested, and entry and exits should always be |
| * paired. This is for sanity of maintaining and reasoning about the |
| * kernel code. In this case, the exit (end of the context switch) is |
| * in architecture-specific code, and so doesn't need a generic |
| * definition. |
| */ |
| #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH |
| #define arch_start_context_switch(prev) do {} while (0) |
| #endif |
| |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| |
| static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| #endif |
| #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| static inline int pte_soft_dirty(pte_t pte) |
| { |
| return 0; |
| } |
| |
| static inline int pmd_soft_dirty(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| static inline pte_t pte_mksoft_dirty(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| |
| static inline pte_t pte_clear_soft_dirty(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| |
| static inline pte_t pte_swp_mksoft_dirty(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline int pte_swp_soft_dirty(pte_t pte) |
| { |
| return 0; |
| } |
| |
| static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| |
| static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| { |
| return pmd; |
| } |
| #endif |
| |
| #ifndef __HAVE_PFNMAP_TRACKING |
| /* |
| * Interfaces that can be used by architecture code to keep track of |
| * memory type of pfn mappings specified by the remap_pfn_range, |
| * vmf_insert_pfn. |
| */ |
| |
| /* |
| * track_pfn_remap is called when a _new_ pfn mapping is being established |
| * by remap_pfn_range() for physical range indicated by pfn and size. |
| */ |
| static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
| unsigned long pfn, unsigned long addr, |
| unsigned long size) |
| { |
| return 0; |
| } |
| |
| /* |
| * track_pfn_insert is called when a _new_ single pfn is established |
| * by vmf_insert_pfn(). |
| */ |
| static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
| pfn_t pfn) |
| { |
| } |
| |
| /* |
| * track_pfn_copy is called when vma that is covering the pfnmap gets |
| * copied through copy_page_range(). |
| */ |
| static inline int track_pfn_copy(struct vm_area_struct *vma) |
| { |
| return 0; |
| } |
| |
| /* |
| * untrack_pfn is called while unmapping a pfnmap for a region. |
| * untrack can be called for a specific region indicated by pfn and size or |
| * can be for the entire vma (in which case pfn, size are zero). |
| */ |
| static inline void untrack_pfn(struct vm_area_struct *vma, |
| unsigned long pfn, unsigned long size, |
| bool mm_wr_locked) |
| { |
| } |
| |
| /* |
| * untrack_pfn_clear is called while mremapping a pfnmap for a new region |
| * or fails to copy pgtable during duplicate vm area. |
| */ |
| static inline void untrack_pfn_clear(struct vm_area_struct *vma) |
| { |
| } |
| #else |
| extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
| unsigned long pfn, unsigned long addr, |
| unsigned long size); |
| extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
| pfn_t pfn); |
| extern int track_pfn_copy(struct vm_area_struct *vma); |
| extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, |
| unsigned long size, bool mm_wr_locked); |
| extern void untrack_pfn_clear(struct vm_area_struct *vma); |
| #endif |
| |
| #ifdef CONFIG_MMU |
| #ifdef __HAVE_COLOR_ZERO_PAGE |
| static inline int is_zero_pfn(unsigned long pfn) |
| { |
| extern unsigned long zero_pfn; |
| unsigned long offset_from_zero_pfn = pfn - zero_pfn; |
| return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); |
| } |
| |
| #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) |
| |
| #else |
| static inline int is_zero_pfn(unsigned long pfn) |
| { |
| extern unsigned long zero_pfn; |
| return pfn == zero_pfn; |
| } |
| |
| static inline unsigned long my_zero_pfn(unsigned long addr) |
| { |
| extern unsigned long zero_pfn; |
| return zero_pfn; |
| } |
| #endif |
| #else |
| static inline int is_zero_pfn(unsigned long pfn) |
| { |
| return 0; |
| } |
| |
| static inline unsigned long my_zero_pfn(unsigned long addr) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| #ifdef CONFIG_MMU |
| |
| #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| return 0; |
| } |
| #ifndef pmd_write |
| static inline int pmd_write(pmd_t pmd) |
| { |
| BUG(); |
| return 0; |
| } |
| #endif /* pmd_write */ |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #ifndef pud_write |
| static inline int pud_write(pud_t pud) |
| { |
| BUG(); |
| return 0; |
| } |
| #endif /* pud_write */ |
| |
| #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| static inline int pmd_devmap(pmd_t pmd) |
| { |
| return 0; |
| } |
| static inline int pud_devmap(pud_t pud) |
| { |
| return 0; |
| } |
| static inline int pgd_devmap(pgd_t pgd) |
| { |
| return 0; |
| } |
| #endif |
| |
| #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ |
| !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| static inline int pud_trans_huge(pud_t pud) |
| { |
| return 0; |
| } |
| #endif |
| |
| static inline int pud_trans_unstable(pud_t *pud) |
| { |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
| defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| pud_t pudval = READ_ONCE(*pud); |
| |
| if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) |
| return 1; |
| if (unlikely(pud_bad(pudval))) { |
| pud_clear_bad(pud); |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| #ifndef CONFIG_NUMA_BALANCING |
| /* |
| * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is |
| * perfectly valid to indicate "no" in that case, which is why our default |
| * implementation defaults to "always no". |
| * |
| * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE |
| * page protection due to NUMA hinting. NUMA hinting faults only apply in |
| * accessible VMAs. |
| * |
| * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, |
| * looking at the VMA accessibility is sufficient. |
| */ |
| static inline int pte_protnone(pte_t pte) |
| { |
| return 0; |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #endif /* CONFIG_MMU */ |
| |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
| |
| #ifndef __PAGETABLE_P4D_FOLDED |
| int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); |
| void p4d_clear_huge(p4d_t *p4d); |
| #else |
| static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| { |
| return 0; |
| } |
| static inline void p4d_clear_huge(p4d_t *p4d) { } |
| #endif /* !__PAGETABLE_P4D_FOLDED */ |
| |
| int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); |
| int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); |
| int pud_clear_huge(pud_t *pud); |
| int pmd_clear_huge(pmd_t *pmd); |
| int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); |
| int pud_free_pmd_page(pud_t *pud, unsigned long addr); |
| int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); |
| #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| { |
| return 0; |
| } |
| static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) |
| { |
| return 0; |
| } |
| static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) |
| { |
| return 0; |
| } |
| static inline void p4d_clear_huge(p4d_t *p4d) { } |
| static inline int pud_clear_huge(pud_t *pud) |
| { |
| return 0; |
| } |
| static inline int pmd_clear_huge(pmd_t *pmd) |
| { |
| return 0; |
| } |
| static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) |
| { |
| return 0; |
| } |
| static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) |
| { |
| return 0; |
| } |
| static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| |
| #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * ARCHes with special requirements for evicting THP backing TLB entries can |
| * implement this. Otherwise also, it can help optimize normal TLB flush in |
| * THP regime. Stock flush_tlb_range() typically has optimization to nuke the |
| * entire TLB if flush span is greater than a threshold, which will |
| * likely be true for a single huge page. Thus a single THP flush will |
| * invalidate the entire TLB which is not desirable. |
| * e.g. see arch/arc: flush_pmd_tlb_range |
| */ |
| #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| #else |
| #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() |
| #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() |
| #endif |
| #endif |
| |
| struct file; |
| int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t *vma_prot); |
| |
| #ifndef CONFIG_X86_ESPFIX64 |
| static inline void init_espfix_bsp(void) { } |
| #endif |
| |
| extern void __init pgtable_cache_init(void); |
| |
| #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED |
| static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) |
| { |
| return true; |
| } |
| |
| static inline bool arch_has_pfn_modify_check(void) |
| { |
| return false; |
| } |
| #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ |
| |
| /* |
| * Architecture PAGE_KERNEL_* fallbacks |
| * |
| * Some architectures don't define certain PAGE_KERNEL_* flags. This is either |
| * because they really don't support them, or the port needs to be updated to |
| * reflect the required functionality. Below are a set of relatively safe |
| * fallbacks, as best effort, which we can count on in lieu of the architectures |
| * not defining them on their own yet. |
| */ |
| |
| #ifndef PAGE_KERNEL_RO |
| # define PAGE_KERNEL_RO PAGE_KERNEL |
| #endif |
| |
| #ifndef PAGE_KERNEL_EXEC |
| # define PAGE_KERNEL_EXEC PAGE_KERNEL |
| #endif |
| |
| /* |
| * Page Table Modification bits for pgtbl_mod_mask. |
| * |
| * These are used by the p?d_alloc_track*() set of functions an in the generic |
| * vmalloc/ioremap code to track at which page-table levels entries have been |
| * modified. Based on that the code can better decide when vmalloc and ioremap |
| * mapping changes need to be synchronized to other page-tables in the system. |
| */ |
| #define __PGTBL_PGD_MODIFIED 0 |
| #define __PGTBL_P4D_MODIFIED 1 |
| #define __PGTBL_PUD_MODIFIED 2 |
| #define __PGTBL_PMD_MODIFIED 3 |
| #define __PGTBL_PTE_MODIFIED 4 |
| |
| #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) |
| #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) |
| #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) |
| #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) |
| #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) |
| |
| /* Page-Table Modification Mask */ |
| typedef unsigned int pgtbl_mod_mask; |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| /* |
| * ZSMALLOC needs to know the highest PFN on 32-bit architectures |
| * with physical address space extension, but falls back to |
| * BITS_PER_LONG otherwise. |
| */ |
| #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition |
| #else |
| #define MAX_POSSIBLE_PHYSMEM_BITS 32 |
| #endif |
| #endif |
| |
| #ifndef has_transparent_hugepage |
| #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) |
| #endif |
| |
| #ifndef has_transparent_pud_hugepage |
| #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| #endif |
| /* |
| * On some architectures it depends on the mm if the p4d/pud or pmd |
| * layer of the page table hierarchy is folded or not. |
| */ |
| #ifndef mm_p4d_folded |
| #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) |
| #endif |
| |
| #ifndef mm_pud_folded |
| #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) |
| #endif |
| |
| #ifndef mm_pmd_folded |
| #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) |
| #endif |
| |
| #ifndef p4d_offset_lockless |
| #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) |
| #endif |
| #ifndef pud_offset_lockless |
| #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) |
| #endif |
| #ifndef pmd_offset_lockless |
| #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) |
| #endif |
| |
| /* |
| * p?d_leaf() - true if this entry is a final mapping to a physical address. |
| * This differs from p?d_huge() by the fact that they are always available (if |
| * the architecture supports large pages at the appropriate level) even |
| * if CONFIG_HUGETLB_PAGE is not defined. |
| * Only meaningful when called on a valid entry. |
| */ |
| #ifndef pgd_leaf |
| #define pgd_leaf(x) 0 |
| #endif |
| #ifndef p4d_leaf |
| #define p4d_leaf(x) 0 |
| #endif |
| #ifndef pud_leaf |
| #define pud_leaf(x) 0 |
| #endif |
| #ifndef pmd_leaf |
| #define pmd_leaf(x) 0 |
| #endif |
| |
| #ifndef pgd_leaf_size |
| #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) |
| #endif |
| #ifndef p4d_leaf_size |
| #define p4d_leaf_size(x) P4D_SIZE |
| #endif |
| #ifndef pud_leaf_size |
| #define pud_leaf_size(x) PUD_SIZE |
| #endif |
| #ifndef pmd_leaf_size |
| #define pmd_leaf_size(x) PMD_SIZE |
| #endif |
| #ifndef pte_leaf_size |
| #define pte_leaf_size(x) PAGE_SIZE |
| #endif |
| |
| /* |
| * Some architectures have MMUs that are configurable or selectable at boot |
| * time. These lead to variable PTRS_PER_x. For statically allocated arrays it |
| * helps to have a static maximum value. |
| */ |
| |
| #ifndef MAX_PTRS_PER_PTE |
| #define MAX_PTRS_PER_PTE PTRS_PER_PTE |
| #endif |
| |
| #ifndef MAX_PTRS_PER_PMD |
| #define MAX_PTRS_PER_PMD PTRS_PER_PMD |
| #endif |
| |
| #ifndef MAX_PTRS_PER_PUD |
| #define MAX_PTRS_PER_PUD PTRS_PER_PUD |
| #endif |
| |
| #ifndef MAX_PTRS_PER_P4D |
| #define MAX_PTRS_PER_P4D PTRS_PER_P4D |
| #endif |
| |
| /* description of effects of mapping type and prot in current implementation. |
| * this is due to the limited x86 page protection hardware. The expected |
| * behavior is in parens: |
| * |
| * map_type prot |
| * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC |
| * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
| * w: (no) no w: (no) no w: (yes) yes w: (no) no |
| * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
| * |
| * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
| * w: (no) no w: (no) no w: (copy) copy w: (no) no |
| * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
| * |
| * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and |
| * MAP_PRIVATE (with Enhanced PAN supported): |
| * r: (no) no |
| * w: (no) no |
| * x: (yes) yes |
| */ |
| #define DECLARE_VM_GET_PAGE_PROT \ |
| pgprot_t vm_get_page_prot(unsigned long vm_flags) \ |
| { \ |
| return protection_map[vm_flags & \ |
| (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ |
| } \ |
| EXPORT_SYMBOL(vm_get_page_prot); |
| |
| #endif /* _LINUX_PGTABLE_H */ |