| /* | 
 |  * fs/f2fs/checkpoint.c | 
 |  * | 
 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 |  *             http://www.samsung.com/ | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/fs.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/f2fs_fs.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include "f2fs.h" | 
 | #include "node.h" | 
 | #include "segment.h" | 
 | #include <trace/events/f2fs.h> | 
 |  | 
 | static struct kmem_cache *orphan_entry_slab; | 
 | static struct kmem_cache *inode_entry_slab; | 
 |  | 
 | /* | 
 |  * We guarantee no failure on the returned page. | 
 |  */ | 
 | struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	struct address_space *mapping = sbi->meta_inode->i_mapping; | 
 | 	struct page *page = NULL; | 
 | repeat: | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (!page) { | 
 | 		cond_resched(); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	/* We wait writeback only inside grab_meta_page() */ | 
 | 	wait_on_page_writeback(page); | 
 | 	SetPageUptodate(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * We guarantee no failure on the returned page. | 
 |  */ | 
 | struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	struct address_space *mapping = sbi->meta_inode->i_mapping; | 
 | 	struct page *page; | 
 | repeat: | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (!page) { | 
 | 		cond_resched(); | 
 | 		goto repeat; | 
 | 	} | 
 | 	if (PageUptodate(page)) | 
 | 		goto out; | 
 |  | 
 | 	if (f2fs_readpage(sbi, page, index, READ_SYNC)) | 
 | 		goto repeat; | 
 |  | 
 | 	lock_page(page); | 
 | 	if (page->mapping != mapping) { | 
 | 		f2fs_put_page(page, 1); | 
 | 		goto repeat; | 
 | 	} | 
 | out: | 
 | 	mark_page_accessed(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | static int f2fs_write_meta_page(struct page *page, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
 |  | 
 | 	/* Should not write any meta pages, if any IO error was occurred */ | 
 | 	if (wbc->for_reclaim || | 
 | 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { | 
 | 		dec_page_count(sbi, F2FS_DIRTY_META); | 
 | 		wbc->pages_skipped++; | 
 | 		set_page_dirty(page); | 
 | 		return AOP_WRITEPAGE_ACTIVATE; | 
 | 	} | 
 |  | 
 | 	wait_on_page_writeback(page); | 
 |  | 
 | 	write_meta_page(sbi, page); | 
 | 	dec_page_count(sbi, F2FS_DIRTY_META); | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int f2fs_write_meta_pages(struct address_space *mapping, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 
 | 	struct block_device *bdev = sbi->sb->s_bdev; | 
 | 	long written; | 
 |  | 
 | 	if (wbc->for_kupdate) | 
 | 		return 0; | 
 |  | 
 | 	if (get_pages(sbi, F2FS_DIRTY_META) == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* if mounting is failed, skip writing node pages */ | 
 | 	mutex_lock(&sbi->cp_mutex); | 
 | 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); | 
 | 	mutex_unlock(&sbi->cp_mutex); | 
 | 	wbc->nr_to_write -= written; | 
 | 	return 0; | 
 | } | 
 |  | 
 | long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, | 
 | 						long nr_to_write) | 
 | { | 
 | 	struct address_space *mapping = sbi->meta_inode->i_mapping; | 
 | 	pgoff_t index = 0, end = LONG_MAX; | 
 | 	struct pagevec pvec; | 
 | 	long nwritten = 0; | 
 | 	struct writeback_control wbc = { | 
 | 		.for_reclaim = 0, | 
 | 	}; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 |  | 
 | 	while (index <= end) { | 
 | 		int i, nr_pages; | 
 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 				PAGECACHE_TAG_DIRTY, | 
 | 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
 | 		if (nr_pages == 0) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			lock_page(page); | 
 | 			BUG_ON(page->mapping != mapping); | 
 | 			BUG_ON(!PageDirty(page)); | 
 | 			clear_page_dirty_for_io(page); | 
 | 			if (f2fs_write_meta_page(page, &wbc)) { | 
 | 				unlock_page(page); | 
 | 				break; | 
 | 			} | 
 | 			if (nwritten++ >= nr_to_write) | 
 | 				break; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (nwritten) | 
 | 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); | 
 |  | 
 | 	return nwritten; | 
 | } | 
 |  | 
 | static int f2fs_set_meta_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 
 |  | 
 | 	SetPageUptodate(page); | 
 | 	if (!PageDirty(page)) { | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		inc_page_count(sbi, F2FS_DIRTY_META); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct address_space_operations f2fs_meta_aops = { | 
 | 	.writepage	= f2fs_write_meta_page, | 
 | 	.writepages	= f2fs_write_meta_pages, | 
 | 	.set_page_dirty	= f2fs_set_meta_page_dirty, | 
 | }; | 
 |  | 
 | int check_orphan_space(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	unsigned int max_orphans; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * considering 512 blocks in a segment 5 blocks are needed for cp | 
 | 	 * and log segment summaries. Remaining blocks are used to keep | 
 | 	 * orphan entries with the limitation one reserved segment | 
 | 	 * for cp pack we can have max 1020*507 orphan entries | 
 | 	 */ | 
 | 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; | 
 | 	mutex_lock(&sbi->orphan_inode_mutex); | 
 | 	if (sbi->n_orphans >= max_orphans) | 
 | 		err = -ENOSPC; | 
 | 	mutex_unlock(&sbi->orphan_inode_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct list_head *head, *this; | 
 | 	struct orphan_inode_entry *new = NULL, *orphan = NULL; | 
 |  | 
 | 	mutex_lock(&sbi->orphan_inode_mutex); | 
 | 	head = &sbi->orphan_inode_list; | 
 | 	list_for_each(this, head) { | 
 | 		orphan = list_entry(this, struct orphan_inode_entry, list); | 
 | 		if (orphan->ino == ino) | 
 | 			goto out; | 
 | 		if (orphan->ino > ino) | 
 | 			break; | 
 | 		orphan = NULL; | 
 | 	} | 
 | retry: | 
 | 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); | 
 | 	if (!new) { | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	new->ino = ino; | 
 |  | 
 | 	/* add new_oentry into list which is sorted by inode number */ | 
 | 	if (orphan) | 
 | 		list_add(&new->list, this->prev); | 
 | 	else | 
 | 		list_add_tail(&new->list, head); | 
 |  | 
 | 	sbi->n_orphans++; | 
 | out: | 
 | 	mutex_unlock(&sbi->orphan_inode_mutex); | 
 | } | 
 |  | 
 | void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct list_head *this, *next, *head; | 
 | 	struct orphan_inode_entry *orphan; | 
 |  | 
 | 	mutex_lock(&sbi->orphan_inode_mutex); | 
 | 	head = &sbi->orphan_inode_list; | 
 | 	list_for_each_safe(this, next, head) { | 
 | 		orphan = list_entry(this, struct orphan_inode_entry, list); | 
 | 		if (orphan->ino == ino) { | 
 | 			list_del(&orphan->list); | 
 | 			kmem_cache_free(orphan_entry_slab, orphan); | 
 | 			sbi->n_orphans--; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&sbi->orphan_inode_mutex); | 
 | } | 
 |  | 
 | static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct inode *inode = f2fs_iget(sbi->sb, ino); | 
 | 	BUG_ON(IS_ERR(inode)); | 
 | 	clear_nlink(inode); | 
 |  | 
 | 	/* truncate all the data during iput */ | 
 | 	iput(inode); | 
 | } | 
 |  | 
 | int recover_orphan_inodes(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	block_t start_blk, orphan_blkaddr, i, j; | 
 |  | 
 | 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) | 
 | 		return 0; | 
 |  | 
 | 	sbi->por_doing = 1; | 
 | 	start_blk = __start_cp_addr(sbi) + 1; | 
 | 	orphan_blkaddr = __start_sum_addr(sbi) - 1; | 
 |  | 
 | 	for (i = 0; i < orphan_blkaddr; i++) { | 
 | 		struct page *page = get_meta_page(sbi, start_blk + i); | 
 | 		struct f2fs_orphan_block *orphan_blk; | 
 |  | 
 | 		orphan_blk = (struct f2fs_orphan_block *)page_address(page); | 
 | 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { | 
 | 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]); | 
 | 			recover_orphan_inode(sbi, ino); | 
 | 		} | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 | 	/* clear Orphan Flag */ | 
 | 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); | 
 | 	sbi->por_doing = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) | 
 | { | 
 | 	struct list_head *head, *this, *next; | 
 | 	struct f2fs_orphan_block *orphan_blk = NULL; | 
 | 	struct page *page = NULL; | 
 | 	unsigned int nentries = 0; | 
 | 	unsigned short index = 1; | 
 | 	unsigned short orphan_blocks; | 
 |  | 
 | 	orphan_blocks = (unsigned short)((sbi->n_orphans + | 
 | 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); | 
 |  | 
 | 	mutex_lock(&sbi->orphan_inode_mutex); | 
 | 	head = &sbi->orphan_inode_list; | 
 |  | 
 | 	/* loop for each orphan inode entry and write them in Jornal block */ | 
 | 	list_for_each_safe(this, next, head) { | 
 | 		struct orphan_inode_entry *orphan; | 
 |  | 
 | 		orphan = list_entry(this, struct orphan_inode_entry, list); | 
 |  | 
 | 		if (nentries == F2FS_ORPHANS_PER_BLOCK) { | 
 | 			/* | 
 | 			 * an orphan block is full of 1020 entries, | 
 | 			 * then we need to flush current orphan blocks | 
 | 			 * and bring another one in memory | 
 | 			 */ | 
 | 			orphan_blk->blk_addr = cpu_to_le16(index); | 
 | 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | 
 | 			orphan_blk->entry_count = cpu_to_le32(nentries); | 
 | 			set_page_dirty(page); | 
 | 			f2fs_put_page(page, 1); | 
 | 			index++; | 
 | 			start_blk++; | 
 | 			nentries = 0; | 
 | 			page = NULL; | 
 | 		} | 
 | 		if (page) | 
 | 			goto page_exist; | 
 |  | 
 | 		page = grab_meta_page(sbi, start_blk); | 
 | 		orphan_blk = (struct f2fs_orphan_block *)page_address(page); | 
 | 		memset(orphan_blk, 0, sizeof(*orphan_blk)); | 
 | page_exist: | 
 | 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); | 
 | 	} | 
 | 	if (!page) | 
 | 		goto end; | 
 |  | 
 | 	orphan_blk->blk_addr = cpu_to_le16(index); | 
 | 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | 
 | 	orphan_blk->entry_count = cpu_to_le32(nentries); | 
 | 	set_page_dirty(page); | 
 | 	f2fs_put_page(page, 1); | 
 | end: | 
 | 	mutex_unlock(&sbi->orphan_inode_mutex); | 
 | } | 
 |  | 
 | static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, | 
 | 				block_t cp_addr, unsigned long long *version) | 
 | { | 
 | 	struct page *cp_page_1, *cp_page_2 = NULL; | 
 | 	unsigned long blk_size = sbi->blocksize; | 
 | 	struct f2fs_checkpoint *cp_block; | 
 | 	unsigned long long cur_version = 0, pre_version = 0; | 
 | 	size_t crc_offset; | 
 | 	__u32 crc = 0; | 
 |  | 
 | 	/* Read the 1st cp block in this CP pack */ | 
 | 	cp_page_1 = get_meta_page(sbi, cp_addr); | 
 |  | 
 | 	/* get the version number */ | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); | 
 | 	crc_offset = le32_to_cpu(cp_block->checksum_offset); | 
 | 	if (crc_offset >= blk_size) | 
 | 		goto invalid_cp1; | 
 |  | 
 | 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); | 
 | 	if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | 
 | 		goto invalid_cp1; | 
 |  | 
 | 	pre_version = le64_to_cpu(cp_block->checkpoint_ver); | 
 |  | 
 | 	/* Read the 2nd cp block in this CP pack */ | 
 | 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; | 
 | 	cp_page_2 = get_meta_page(sbi, cp_addr); | 
 |  | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); | 
 | 	crc_offset = le32_to_cpu(cp_block->checksum_offset); | 
 | 	if (crc_offset >= blk_size) | 
 | 		goto invalid_cp2; | 
 |  | 
 | 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); | 
 | 	if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | 
 | 		goto invalid_cp2; | 
 |  | 
 | 	cur_version = le64_to_cpu(cp_block->checkpoint_ver); | 
 |  | 
 | 	if (cur_version == pre_version) { | 
 | 		*version = cur_version; | 
 | 		f2fs_put_page(cp_page_2, 1); | 
 | 		return cp_page_1; | 
 | 	} | 
 | invalid_cp2: | 
 | 	f2fs_put_page(cp_page_2, 1); | 
 | invalid_cp1: | 
 | 	f2fs_put_page(cp_page_1, 1); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int get_valid_checkpoint(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_checkpoint *cp_block; | 
 | 	struct f2fs_super_block *fsb = sbi->raw_super; | 
 | 	struct page *cp1, *cp2, *cur_page; | 
 | 	unsigned long blk_size = sbi->blocksize; | 
 | 	unsigned long long cp1_version = 0, cp2_version = 0; | 
 | 	unsigned long long cp_start_blk_no; | 
 |  | 
 | 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); | 
 | 	if (!sbi->ckpt) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * Finding out valid cp block involves read both | 
 | 	 * sets( cp pack1 and cp pack 2) | 
 | 	 */ | 
 | 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); | 
 | 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); | 
 |  | 
 | 	/* The second checkpoint pack should start at the next segment */ | 
 | 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); | 
 | 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); | 
 |  | 
 | 	if (cp1 && cp2) { | 
 | 		if (ver_after(cp2_version, cp1_version)) | 
 | 			cur_page = cp2; | 
 | 		else | 
 | 			cur_page = cp1; | 
 | 	} else if (cp1) { | 
 | 		cur_page = cp1; | 
 | 	} else if (cp2) { | 
 | 		cur_page = cp2; | 
 | 	} else { | 
 | 		goto fail_no_cp; | 
 | 	} | 
 |  | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page); | 
 | 	memcpy(sbi->ckpt, cp_block, blk_size); | 
 |  | 
 | 	f2fs_put_page(cp1, 1); | 
 | 	f2fs_put_page(cp2, 1); | 
 | 	return 0; | 
 |  | 
 | fail_no_cp: | 
 | 	kfree(sbi->ckpt); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
 | 	struct list_head *head = &sbi->dir_inode_list; | 
 | 	struct list_head *this; | 
 |  | 
 | 	list_for_each(this, head) { | 
 | 		struct dir_inode_entry *entry; | 
 | 		entry = list_entry(this, struct dir_inode_entry, list); | 
 | 		if (entry->inode == inode) | 
 | 			return -EEXIST; | 
 | 	} | 
 | 	list_add_tail(&new->list, head); | 
 | #ifdef CONFIG_F2FS_STAT_FS | 
 | 	sbi->n_dirty_dirs++; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | void set_dirty_dir_page(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
 | 	struct dir_inode_entry *new; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 | retry: | 
 | 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | 
 | 	if (!new) { | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	new->inode = inode; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	if (__add_dirty_inode(inode, new)) | 
 | 		kmem_cache_free(inode_entry_slab, new); | 
 |  | 
 | 	inc_page_count(sbi, F2FS_DIRTY_DENTS); | 
 | 	inode_inc_dirty_dents(inode); | 
 | 	SetPagePrivate(page); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | } | 
 |  | 
 | void add_dirty_dir_inode(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
 | 	struct dir_inode_entry *new; | 
 | retry: | 
 | 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | 
 | 	if (!new) { | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	new->inode = inode; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	if (__add_dirty_inode(inode, new)) | 
 | 		kmem_cache_free(inode_entry_slab, new); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | } | 
 |  | 
 | void remove_dirty_dir_inode(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
 | 	struct list_head *head = &sbi->dir_inode_list; | 
 | 	struct list_head *this; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) { | 
 | 		spin_unlock(&sbi->dir_inode_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_for_each(this, head) { | 
 | 		struct dir_inode_entry *entry; | 
 | 		entry = list_entry(this, struct dir_inode_entry, list); | 
 | 		if (entry->inode == inode) { | 
 | 			list_del(&entry->list); | 
 | 			kmem_cache_free(inode_entry_slab, entry); | 
 | #ifdef CONFIG_F2FS_STAT_FS | 
 | 			sbi->n_dirty_dirs--; | 
 | #endif | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 |  | 
 | 	/* Only from the recovery routine */ | 
 | 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { | 
 | 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); | 
 | 		iput(inode); | 
 | 	} | 
 | } | 
 |  | 
 | struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct list_head *head = &sbi->dir_inode_list; | 
 | 	struct list_head *this; | 
 | 	struct inode *inode = NULL; | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	list_for_each(this, head) { | 
 | 		struct dir_inode_entry *entry; | 
 | 		entry = list_entry(this, struct dir_inode_entry, list); | 
 | 		if (entry->inode->i_ino == ino) { | 
 | 			inode = entry->inode; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | 	return inode; | 
 | } | 
 |  | 
 | void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct list_head *head = &sbi->dir_inode_list; | 
 | 	struct dir_inode_entry *entry; | 
 | 	struct inode *inode; | 
 | retry: | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	if (list_empty(head)) { | 
 | 		spin_unlock(&sbi->dir_inode_lock); | 
 | 		return; | 
 | 	} | 
 | 	entry = list_entry(head->next, struct dir_inode_entry, list); | 
 | 	inode = igrab(entry->inode); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | 	if (inode) { | 
 | 		filemap_flush(inode->i_mapping); | 
 | 		iput(inode); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We should submit bio, since it exists several | 
 | 		 * wribacking dentry pages in the freeing inode. | 
 | 		 */ | 
 | 		f2fs_submit_bio(sbi, DATA, true); | 
 | 	} | 
 | 	goto retry; | 
 | } | 
 |  | 
 | /* | 
 |  * Freeze all the FS-operations for checkpoint. | 
 |  */ | 
 | static void block_operations(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_ALL, | 
 | 		.nr_to_write = LONG_MAX, | 
 | 		.for_reclaim = 0, | 
 | 	}; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | retry_flush_dents: | 
 | 	mutex_lock_all(sbi); | 
 |  | 
 | 	/* write all the dirty dentry pages */ | 
 | 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) { | 
 | 		mutex_unlock_all(sbi); | 
 | 		sync_dirty_dir_inodes(sbi); | 
 | 		goto retry_flush_dents; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * POR: we should ensure that there is no dirty node pages | 
 | 	 * until finishing nat/sit flush. | 
 | 	 */ | 
 | retry_flush_nodes: | 
 | 	mutex_lock(&sbi->node_write); | 
 |  | 
 | 	if (get_pages(sbi, F2FS_DIRTY_NODES)) { | 
 | 		mutex_unlock(&sbi->node_write); | 
 | 		sync_node_pages(sbi, 0, &wbc); | 
 | 		goto retry_flush_nodes; | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static void unblock_operations(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	mutex_unlock(&sbi->node_write); | 
 | 	mutex_unlock_all(sbi); | 
 | } | 
 |  | 
 | static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	nid_t last_nid = 0; | 
 | 	block_t start_blk; | 
 | 	struct page *cp_page; | 
 | 	unsigned int data_sum_blocks, orphan_blocks; | 
 | 	__u32 crc32 = 0; | 
 | 	void *kaddr; | 
 | 	int i; | 
 |  | 
 | 	/* Flush all the NAT/SIT pages */ | 
 | 	while (get_pages(sbi, F2FS_DIRTY_META)) | 
 | 		sync_meta_pages(sbi, META, LONG_MAX); | 
 |  | 
 | 	next_free_nid(sbi, &last_nid); | 
 |  | 
 | 	/* | 
 | 	 * modify checkpoint | 
 | 	 * version number is already updated | 
 | 	 */ | 
 | 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); | 
 | 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); | 
 | 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		ckpt->cur_node_segno[i] = | 
 | 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); | 
 | 		ckpt->cur_node_blkoff[i] = | 
 | 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); | 
 | 		ckpt->alloc_type[i + CURSEG_HOT_NODE] = | 
 | 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); | 
 | 	} | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		ckpt->cur_data_segno[i] = | 
 | 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); | 
 | 		ckpt->cur_data_blkoff[i] = | 
 | 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); | 
 | 		ckpt->alloc_type[i + CURSEG_HOT_DATA] = | 
 | 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); | 
 | 	} | 
 |  | 
 | 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); | 
 | 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); | 
 | 	ckpt->next_free_nid = cpu_to_le32(last_nid); | 
 |  | 
 | 	/* 2 cp  + n data seg summary + orphan inode blocks */ | 
 | 	data_sum_blocks = npages_for_summary_flush(sbi); | 
 | 	if (data_sum_blocks < 3) | 
 | 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | 
 |  | 
 | 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) | 
 | 					/ F2FS_ORPHANS_PER_BLOCK; | 
 | 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); | 
 |  | 
 | 	if (is_umount) { | 
 | 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | 
 | 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 + | 
 | 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); | 
 | 	} else { | 
 | 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | 
 | 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 + | 
 | 			data_sum_blocks + orphan_blocks); | 
 | 	} | 
 |  | 
 | 	if (sbi->n_orphans) | 
 | 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | 
 |  | 
 | 	/* update SIT/NAT bitmap */ | 
 | 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); | 
 | 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); | 
 |  | 
 | 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); | 
 | 	*((__le32 *)((unsigned char *)ckpt + | 
 | 				le32_to_cpu(ckpt->checksum_offset))) | 
 | 				= cpu_to_le32(crc32); | 
 |  | 
 | 	start_blk = __start_cp_addr(sbi); | 
 |  | 
 | 	/* write out checkpoint buffer at block 0 */ | 
 | 	cp_page = grab_meta_page(sbi, start_blk++); | 
 | 	kaddr = page_address(cp_page); | 
 | 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); | 
 | 	set_page_dirty(cp_page); | 
 | 	f2fs_put_page(cp_page, 1); | 
 |  | 
 | 	if (sbi->n_orphans) { | 
 | 		write_orphan_inodes(sbi, start_blk); | 
 | 		start_blk += orphan_blocks; | 
 | 	} | 
 |  | 
 | 	write_data_summaries(sbi, start_blk); | 
 | 	start_blk += data_sum_blocks; | 
 | 	if (is_umount) { | 
 | 		write_node_summaries(sbi, start_blk); | 
 | 		start_blk += NR_CURSEG_NODE_TYPE; | 
 | 	} | 
 |  | 
 | 	/* writeout checkpoint block */ | 
 | 	cp_page = grab_meta_page(sbi, start_blk); | 
 | 	kaddr = page_address(cp_page); | 
 | 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); | 
 | 	set_page_dirty(cp_page); | 
 | 	f2fs_put_page(cp_page, 1); | 
 |  | 
 | 	/* wait for previous submitted node/meta pages writeback */ | 
 | 	while (get_pages(sbi, F2FS_WRITEBACK)) | 
 | 		congestion_wait(BLK_RW_ASYNC, HZ / 50); | 
 |  | 
 | 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); | 
 | 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); | 
 |  | 
 | 	/* update user_block_counts */ | 
 | 	sbi->last_valid_block_count = sbi->total_valid_block_count; | 
 | 	sbi->alloc_valid_block_count = 0; | 
 |  | 
 | 	/* Here, we only have one bio having CP pack */ | 
 | 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX); | 
 |  | 
 | 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { | 
 | 		clear_prefree_segments(sbi); | 
 | 		F2FS_RESET_SB_DIRT(sbi); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We guarantee that this checkpoint procedure should not fail. | 
 |  */ | 
 | void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	unsigned long long ckpt_ver; | 
 |  | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); | 
 |  | 
 | 	mutex_lock(&sbi->cp_mutex); | 
 | 	block_operations(sbi); | 
 |  | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); | 
 |  | 
 | 	f2fs_submit_bio(sbi, DATA, true); | 
 | 	f2fs_submit_bio(sbi, NODE, true); | 
 | 	f2fs_submit_bio(sbi, META, true); | 
 |  | 
 | 	/* | 
 | 	 * update checkpoint pack index | 
 | 	 * Increase the version number so that | 
 | 	 * SIT entries and seg summaries are written at correct place | 
 | 	 */ | 
 | 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); | 
 | 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); | 
 |  | 
 | 	/* write cached NAT/SIT entries to NAT/SIT area */ | 
 | 	flush_nat_entries(sbi); | 
 | 	flush_sit_entries(sbi); | 
 |  | 
 | 	/* unlock all the fs_lock[] in do_checkpoint() */ | 
 | 	do_checkpoint(sbi, is_umount); | 
 |  | 
 | 	unblock_operations(sbi); | 
 | 	mutex_unlock(&sbi->cp_mutex); | 
 |  | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); | 
 | } | 
 |  | 
 | void init_orphan_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	mutex_init(&sbi->orphan_inode_mutex); | 
 | 	INIT_LIST_HEAD(&sbi->orphan_inode_list); | 
 | 	sbi->n_orphans = 0; | 
 | } | 
 |  | 
 | int __init create_checkpoint_caches(void) | 
 | { | 
 | 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", | 
 | 			sizeof(struct orphan_inode_entry), NULL); | 
 | 	if (unlikely(!orphan_entry_slab)) | 
 | 		return -ENOMEM; | 
 | 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", | 
 | 			sizeof(struct dir_inode_entry), NULL); | 
 | 	if (unlikely(!inode_entry_slab)) { | 
 | 		kmem_cache_destroy(orphan_entry_slab); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void destroy_checkpoint_caches(void) | 
 | { | 
 | 	kmem_cache_destroy(orphan_entry_slab); | 
 | 	kmem_cache_destroy(inode_entry_slab); | 
 | } |