|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/freezer.h> | 
|  |  | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  | static kmem_zone_t *xfs_buf_zone; | 
|  | STATIC int xfsbufd(void *); | 
|  |  | 
|  | static struct workqueue_struct *xfslogd_workqueue; | 
|  | struct workqueue_struct *xfsdatad_workqueue; | 
|  | struct workqueue_struct *xfsconvertd_workqueue; | 
|  |  | 
|  | #ifdef XFS_BUF_LOCK_TRACKING | 
|  | # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid) | 
|  | # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1) | 
|  | # define XB_GET_OWNER(bp)	((bp)->b_last_holder) | 
|  | #else | 
|  | # define XB_SET_OWNER(bp)	do { } while (0) | 
|  | # define XB_CLEAR_OWNER(bp)	do { } while (0) | 
|  | # define XB_GET_OWNER(bp)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define xb_to_gfp(flags) \ | 
|  | ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ | 
|  | ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) | 
|  |  | 
|  | #define xb_to_km(flags) \ | 
|  | (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) | 
|  |  | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_is_vmapped( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | /* | 
|  | * Return true if the buffer is vmapped. | 
|  | * | 
|  | * The XBF_MAPPED flag is set if the buffer should be mapped, but the | 
|  | * code is clever enough to know it doesn't have to map a single page, | 
|  | * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. | 
|  | */ | 
|  | return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_vmap_len( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_buf_lru_add - add a buffer to the LRU. | 
|  | * | 
|  | * The LRU takes a new reference to the buffer so that it will only be freed | 
|  | * once the shrinker takes the buffer off the LRU. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_buf_lru_add( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_buftarg *btp = bp->b_target; | 
|  |  | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | if (list_empty(&bp->b_lru)) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | list_add_tail(&bp->b_lru, &btp->bt_lru); | 
|  | btp->bt_lru_nr++; | 
|  | } | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_buf_lru_del - remove a buffer from the LRU | 
|  | * | 
|  | * The unlocked check is safe here because it only occurs when there are not | 
|  | * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there | 
|  | * to optimise the shrinker removing the buffer from the LRU and calling | 
|  | * xfs_buf_free(). i.e. it removes an unnecessary round trip on the | 
|  | * bt_lru_lock. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_buf_lru_del( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_buftarg *btp = bp->b_target; | 
|  |  | 
|  | if (list_empty(&bp->b_lru)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | if (!list_empty(&bp->b_lru)) { | 
|  | list_del_init(&bp->b_lru); | 
|  | btp->bt_lru_nr--; | 
|  | } | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we mark a buffer stale, we remove the buffer from the LRU and clear the | 
|  | * b_lru_ref count so that the buffer is freed immediately when the buffer | 
|  | * reference count falls to zero. If the buffer is already on the LRU, we need | 
|  | * to remove the reference that LRU holds on the buffer. | 
|  | * | 
|  | * This prevents build-up of stale buffers on the LRU. | 
|  | */ | 
|  | void | 
|  | xfs_buf_stale( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | bp->b_flags |= XBF_STALE; | 
|  | xfs_buf_delwri_dequeue(bp); | 
|  | atomic_set(&(bp)->b_lru_ref, 0); | 
|  | if (!list_empty(&bp->b_lru)) { | 
|  | struct xfs_buftarg *btp = bp->b_target; | 
|  |  | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | if (!list_empty(&bp->b_lru)) { | 
|  | list_del_init(&bp->b_lru); | 
|  | btp->bt_lru_nr--; | 
|  | atomic_dec(&bp->b_hold); | 
|  | } | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | } | 
|  | ASSERT(atomic_read(&bp->b_hold) >= 1); | 
|  | } | 
|  |  | 
|  | struct xfs_buf * | 
|  | xfs_buf_alloc( | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_off_t		range_base, | 
|  | size_t			range_length, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)); | 
|  | if (unlikely(!bp)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We don't want certain flags to appear in b_flags. | 
|  | */ | 
|  | flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); | 
|  |  | 
|  | memset(bp, 0, sizeof(xfs_buf_t)); | 
|  | atomic_set(&bp->b_hold, 1); | 
|  | atomic_set(&bp->b_lru_ref, 1); | 
|  | init_completion(&bp->b_iowait); | 
|  | INIT_LIST_HEAD(&bp->b_lru); | 
|  | INIT_LIST_HEAD(&bp->b_list); | 
|  | RB_CLEAR_NODE(&bp->b_rbnode); | 
|  | sema_init(&bp->b_sema, 0); /* held, no waiters */ | 
|  | XB_SET_OWNER(bp); | 
|  | bp->b_target = target; | 
|  | bp->b_file_offset = range_base; | 
|  | /* | 
|  | * Set buffer_length and count_desired to the same value initially. | 
|  | * I/O routines should use count_desired, which will be the same in | 
|  | * most cases but may be reset (e.g. XFS recovery). | 
|  | */ | 
|  | bp->b_buffer_length = bp->b_count_desired = range_length; | 
|  | bp->b_flags = flags; | 
|  | bp->b_bn = XFS_BUF_DADDR_NULL; | 
|  | atomic_set(&bp->b_pin_count, 0); | 
|  | init_waitqueue_head(&bp->b_waiters); | 
|  |  | 
|  | XFS_STATS_INC(xb_create); | 
|  | trace_xfs_buf_init(bp, _RET_IP_); | 
|  |  | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Allocate a page array capable of holding a specified number | 
|  | *	of pages, and point the page buf at it. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_get_pages( | 
|  | xfs_buf_t		*bp, | 
|  | int			page_count, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | /* Make sure that we have a page list */ | 
|  | if (bp->b_pages == NULL) { | 
|  | bp->b_offset = xfs_buf_poff(bp->b_file_offset); | 
|  | bp->b_page_count = page_count; | 
|  | if (page_count <= XB_PAGES) { | 
|  | bp->b_pages = bp->b_page_array; | 
|  | } else { | 
|  | bp->b_pages = kmem_alloc(sizeof(struct page *) * | 
|  | page_count, xb_to_km(flags)); | 
|  | if (bp->b_pages == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(bp->b_pages, 0, sizeof(struct page *) * page_count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees b_pages if it was allocated. | 
|  | */ | 
|  | STATIC void | 
|  | _xfs_buf_free_pages( | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | if (bp->b_pages != bp->b_page_array) { | 
|  | kmem_free(bp->b_pages); | 
|  | bp->b_pages = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the specified buffer. | 
|  | * | 
|  | * 	The modification state of any associated pages is left unchanged. | 
|  | * 	The buffer most not be on any hash - use xfs_buf_rele instead for | 
|  | * 	hashed and refcounted buffers | 
|  | */ | 
|  | void | 
|  | xfs_buf_free( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_free(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  |  | 
|  | if (bp->b_flags & _XBF_PAGES) { | 
|  | uint		i; | 
|  |  | 
|  | if (xfs_buf_is_vmapped(bp)) | 
|  | vm_unmap_ram(bp->b_addr - bp->b_offset, | 
|  | bp->b_page_count); | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | struct page	*page = bp->b_pages[i]; | 
|  |  | 
|  | __free_page(page); | 
|  | } | 
|  | } else if (bp->b_flags & _XBF_KMEM) | 
|  | kmem_free(bp->b_addr); | 
|  | _xfs_buf_free_pages(bp); | 
|  | kmem_zone_free(xfs_buf_zone, bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates all the pages for buffer in question and builds it's page list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_buf_allocate_memory( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | size_t			size = bp->b_count_desired; | 
|  | size_t			nbytes, offset; | 
|  | gfp_t			gfp_mask = xb_to_gfp(flags); | 
|  | unsigned short		page_count, i; | 
|  | xfs_off_t		end; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * for buffers that are contained within a single page, just allocate | 
|  | * the memory from the heap - there's no need for the complexity of | 
|  | * page arrays to keep allocation down to order 0. | 
|  | */ | 
|  | if (bp->b_buffer_length < PAGE_SIZE) { | 
|  | bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); | 
|  | if (!bp->b_addr) { | 
|  | /* low memory - use alloc_page loop instead */ | 
|  | goto use_alloc_page; | 
|  | } | 
|  |  | 
|  | if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & | 
|  | PAGE_MASK) != | 
|  | ((unsigned long)bp->b_addr & PAGE_MASK)) { | 
|  | /* b_addr spans two pages - use alloc_page instead */ | 
|  | kmem_free(bp->b_addr); | 
|  | bp->b_addr = NULL; | 
|  | goto use_alloc_page; | 
|  | } | 
|  | bp->b_offset = offset_in_page(bp->b_addr); | 
|  | bp->b_pages = bp->b_page_array; | 
|  | bp->b_pages[0] = virt_to_page(bp->b_addr); | 
|  | bp->b_page_count = 1; | 
|  | bp->b_flags |= XBF_MAPPED | _XBF_KMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | use_alloc_page: | 
|  | end = bp->b_file_offset + bp->b_buffer_length; | 
|  | page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); | 
|  | error = _xfs_buf_get_pages(bp, page_count, flags); | 
|  | if (unlikely(error)) | 
|  | return error; | 
|  |  | 
|  | offset = bp->b_offset; | 
|  | bp->b_flags |= _XBF_PAGES; | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | struct page	*page; | 
|  | uint		retries = 0; | 
|  | retry: | 
|  | page = alloc_page(gfp_mask); | 
|  | if (unlikely(page == NULL)) { | 
|  | if (flags & XBF_READ_AHEAD) { | 
|  | bp->b_page_count = i; | 
|  | error = ENOMEM; | 
|  | goto out_free_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This could deadlock. | 
|  | * | 
|  | * But until all the XFS lowlevel code is revamped to | 
|  | * handle buffer allocation failures we can't do much. | 
|  | */ | 
|  | if (!(++retries % 100)) | 
|  | xfs_err(NULL, | 
|  | "possible memory allocation deadlock in %s (mode:0x%x)", | 
|  | __func__, gfp_mask); | 
|  |  | 
|  | XFS_STATS_INC(xb_page_retries); | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(xb_page_found); | 
|  |  | 
|  | nbytes = min_t(size_t, size, PAGE_SIZE - offset); | 
|  | size -= nbytes; | 
|  | bp->b_pages[i] = page; | 
|  | offset = 0; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_free_pages: | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | __free_page(bp->b_pages[i]); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Map buffer into kernel address-space if necessary. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_map_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | ASSERT(bp->b_flags & _XBF_PAGES); | 
|  | if (bp->b_page_count == 1) { | 
|  | /* A single page buffer is always mappable */ | 
|  | bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  | } else if (flags & XBF_MAPPED) { | 
|  | int retried = 0; | 
|  |  | 
|  | do { | 
|  | bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, | 
|  | -1, PAGE_KERNEL); | 
|  | if (bp->b_addr) | 
|  | break; | 
|  | vm_unmap_aliases(); | 
|  | } while (retried++ <= 1); | 
|  |  | 
|  | if (!bp->b_addr) | 
|  | return -ENOMEM; | 
|  | bp->b_addr += bp->b_offset; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Look up, and creates if absent, a lockable buffer for | 
|  | *	a given range of an inode.  The buffer is returned | 
|  | *	locked.	No I/O is implied by this call. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | _xfs_buf_find( | 
|  | xfs_buftarg_t		*btp,	/* block device target		*/ | 
|  | xfs_off_t		ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | xfs_buf_flags_t		flags, | 
|  | xfs_buf_t		*new_bp) | 
|  | { | 
|  | xfs_off_t		range_base; | 
|  | size_t			range_length; | 
|  | struct xfs_perag	*pag; | 
|  | struct rb_node		**rbp; | 
|  | struct rb_node		*parent; | 
|  | xfs_buf_t		*bp; | 
|  |  | 
|  | range_base = (ioff << BBSHIFT); | 
|  | range_length = (isize << BBSHIFT); | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(range_length < (1 << btp->bt_sshift))); | 
|  | ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); | 
|  |  | 
|  | /* get tree root */ | 
|  | pag = xfs_perag_get(btp->bt_mount, | 
|  | xfs_daddr_to_agno(btp->bt_mount, ioff)); | 
|  |  | 
|  | /* walk tree */ | 
|  | spin_lock(&pag->pag_buf_lock); | 
|  | rbp = &pag->pag_buf_tree.rb_node; | 
|  | parent = NULL; | 
|  | bp = NULL; | 
|  | while (*rbp) { | 
|  | parent = *rbp; | 
|  | bp = rb_entry(parent, struct xfs_buf, b_rbnode); | 
|  |  | 
|  | if (range_base < bp->b_file_offset) | 
|  | rbp = &(*rbp)->rb_left; | 
|  | else if (range_base > bp->b_file_offset) | 
|  | rbp = &(*rbp)->rb_right; | 
|  | else { | 
|  | /* | 
|  | * found a block offset match. If the range doesn't | 
|  | * match, the only way this is allowed is if the buffer | 
|  | * in the cache is stale and the transaction that made | 
|  | * it stale has not yet committed. i.e. we are | 
|  | * reallocating a busy extent. Skip this buffer and | 
|  | * continue searching to the right for an exact match. | 
|  | */ | 
|  | if (bp->b_buffer_length != range_length) { | 
|  | ASSERT(bp->b_flags & XBF_STALE); | 
|  | rbp = &(*rbp)->rb_right; | 
|  | continue; | 
|  | } | 
|  | atomic_inc(&bp->b_hold); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No match found */ | 
|  | if (new_bp) { | 
|  | rb_link_node(&new_bp->b_rbnode, parent, rbp); | 
|  | rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); | 
|  | /* the buffer keeps the perag reference until it is freed */ | 
|  | new_bp->b_pag = pag; | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | } else { | 
|  | XFS_STATS_INC(xb_miss_locked); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  | return new_bp; | 
|  |  | 
|  | found: | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | if (!xfs_buf_trylock(bp)) { | 
|  | if (flags & XBF_TRYLOCK) { | 
|  | xfs_buf_rele(bp); | 
|  | XFS_STATS_INC(xb_busy_locked); | 
|  | return NULL; | 
|  | } | 
|  | xfs_buf_lock(bp); | 
|  | XFS_STATS_INC(xb_get_locked_waited); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the buffer is stale, clear all the external state associated with | 
|  | * it. We need to keep flags such as how we allocated the buffer memory | 
|  | * intact here. | 
|  | */ | 
|  | if (bp->b_flags & XBF_STALE) { | 
|  | ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
|  | bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_find(bp, flags, _RET_IP_); | 
|  | XFS_STATS_INC(xb_get_locked); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assembles a buffer covering the specified range. The code is optimised for | 
|  | * cache hits, as metadata intensive workloads will see 3 orders of magnitude | 
|  | * more hits than misses. | 
|  | */ | 
|  | struct xfs_buf * | 
|  | xfs_buf_get( | 
|  | xfs_buftarg_t		*target,/* target for buffer		*/ | 
|  | xfs_off_t		ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_buf		*new_bp; | 
|  | int			error = 0; | 
|  |  | 
|  | bp = _xfs_buf_find(target, ioff, isize, flags, NULL); | 
|  | if (likely(bp)) | 
|  | goto found; | 
|  |  | 
|  | new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT, | 
|  | flags); | 
|  | if (unlikely(!new_bp)) | 
|  | return NULL; | 
|  |  | 
|  | bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); | 
|  | if (!bp) { | 
|  | kmem_zone_free(xfs_buf_zone, new_bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (bp == new_bp) { | 
|  | error = xfs_buf_allocate_memory(bp, flags); | 
|  | if (error) | 
|  | goto no_buffer; | 
|  | } else | 
|  | kmem_zone_free(xfs_buf_zone, new_bp); | 
|  |  | 
|  | /* | 
|  | * Now we have a workable buffer, fill in the block number so | 
|  | * that we can do IO on it. | 
|  | */ | 
|  | bp->b_bn = ioff; | 
|  | bp->b_count_desired = bp->b_buffer_length; | 
|  |  | 
|  | found: | 
|  | if (!(bp->b_flags & XBF_MAPPED)) { | 
|  | error = _xfs_buf_map_pages(bp, flags); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn(target->bt_mount, | 
|  | "%s: failed to map pages\n", __func__); | 
|  | goto no_buffer; | 
|  | } | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(xb_get); | 
|  | trace_xfs_buf_get(bp, flags, _RET_IP_); | 
|  | return bp; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
|  | xfs_buf_unlock(bp); | 
|  | xfs_buf_rele(bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | _xfs_buf_read( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | int			status; | 
|  |  | 
|  | ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); | 
|  | ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD); | 
|  | bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | status = xfs_buf_iorequest(bp); | 
|  | if (status || bp->b_error || (flags & XBF_ASYNC)) | 
|  | return status; | 
|  | return xfs_buf_iowait(bp); | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_read( | 
|  | xfs_buftarg_t		*target, | 
|  | xfs_off_t		ioff, | 
|  | size_t			isize, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | xfs_buf_t		*bp; | 
|  |  | 
|  | flags |= XBF_READ; | 
|  |  | 
|  | bp = xfs_buf_get(target, ioff, isize, flags); | 
|  | if (bp) { | 
|  | trace_xfs_buf_read(bp, flags, _RET_IP_); | 
|  |  | 
|  | if (!XFS_BUF_ISDONE(bp)) { | 
|  | XFS_STATS_INC(xb_get_read); | 
|  | _xfs_buf_read(bp, flags); | 
|  | } else if (flags & XBF_ASYNC) { | 
|  | /* | 
|  | * Read ahead call which is already satisfied, | 
|  | * drop the buffer | 
|  | */ | 
|  | goto no_buffer; | 
|  | } else { | 
|  | /* We do not want read in the flags */ | 
|  | bp->b_flags &= ~XBF_READ; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bp; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
|  | xfs_buf_unlock(bp); | 
|  | xfs_buf_rele(bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are not low on memory then do the readahead in a deadlock | 
|  | *	safe manner. | 
|  | */ | 
|  | void | 
|  | xfs_buf_readahead( | 
|  | xfs_buftarg_t		*target, | 
|  | xfs_off_t		ioff, | 
|  | size_t			isize) | 
|  | { | 
|  | if (bdi_read_congested(target->bt_bdi)) | 
|  | return; | 
|  |  | 
|  | xfs_buf_read(target, ioff, isize, | 
|  | XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an uncached buffer from disk. Allocates and returns a locked | 
|  | * buffer containing the disk contents or nothing. | 
|  | */ | 
|  | struct xfs_buf * | 
|  | xfs_buf_read_uncached( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_daddr_t		daddr, | 
|  | size_t			length, | 
|  | int			flags) | 
|  | { | 
|  | xfs_buf_t		*bp; | 
|  | int			error; | 
|  |  | 
|  | bp = xfs_buf_get_uncached(target, length, flags); | 
|  | if (!bp) | 
|  | return NULL; | 
|  |  | 
|  | /* set up the buffer for a read IO */ | 
|  | XFS_BUF_SET_ADDR(bp, daddr); | 
|  | XFS_BUF_READ(bp); | 
|  |  | 
|  | xfsbdstrat(mp, bp); | 
|  | error = xfs_buf_iowait(bp); | 
|  | if (error || bp->b_error) { | 
|  | xfs_buf_relse(bp); | 
|  | return NULL; | 
|  | } | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a buffer allocated as an empty buffer and associated to external | 
|  | * memory via xfs_buf_associate_memory() back to it's empty state. | 
|  | */ | 
|  | void | 
|  | xfs_buf_set_empty( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			len) | 
|  | { | 
|  | if (bp->b_pages) | 
|  | _xfs_buf_free_pages(bp); | 
|  |  | 
|  | bp->b_pages = NULL; | 
|  | bp->b_page_count = 0; | 
|  | bp->b_addr = NULL; | 
|  | bp->b_file_offset = 0; | 
|  | bp->b_buffer_length = bp->b_count_desired = len; | 
|  | bp->b_bn = XFS_BUF_DADDR_NULL; | 
|  | bp->b_flags &= ~XBF_MAPPED; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | mem_to_page( | 
|  | void			*addr) | 
|  | { | 
|  | if ((!is_vmalloc_addr(addr))) { | 
|  | return virt_to_page(addr); | 
|  | } else { | 
|  | return vmalloc_to_page(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_associate_memory( | 
|  | xfs_buf_t		*bp, | 
|  | void			*mem, | 
|  | size_t			len) | 
|  | { | 
|  | int			rval; | 
|  | int			i = 0; | 
|  | unsigned long		pageaddr; | 
|  | unsigned long		offset; | 
|  | size_t			buflen; | 
|  | int			page_count; | 
|  |  | 
|  | pageaddr = (unsigned long)mem & PAGE_MASK; | 
|  | offset = (unsigned long)mem - pageaddr; | 
|  | buflen = PAGE_ALIGN(len + offset); | 
|  | page_count = buflen >> PAGE_SHIFT; | 
|  |  | 
|  | /* Free any previous set of page pointers */ | 
|  | if (bp->b_pages) | 
|  | _xfs_buf_free_pages(bp); | 
|  |  | 
|  | bp->b_pages = NULL; | 
|  | bp->b_addr = mem; | 
|  |  | 
|  | rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | bp->b_offset = offset; | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | bp->b_pages[i] = mem_to_page((void *)pageaddr); | 
|  | pageaddr += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | bp->b_count_desired = len; | 
|  | bp->b_buffer_length = buflen; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | size_t			len, | 
|  | int			flags) | 
|  | { | 
|  | unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; | 
|  | int			error, i; | 
|  | xfs_buf_t		*bp; | 
|  |  | 
|  | bp = xfs_buf_alloc(target, 0, len, 0); | 
|  | if (unlikely(bp == NULL)) | 
|  | goto fail; | 
|  |  | 
|  | error = _xfs_buf_get_pages(bp, page_count, 0); | 
|  | if (error) | 
|  | goto fail_free_buf; | 
|  |  | 
|  | for (i = 0; i < page_count; i++) { | 
|  | bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); | 
|  | if (!bp->b_pages[i]) | 
|  | goto fail_free_mem; | 
|  | } | 
|  | bp->b_flags |= _XBF_PAGES; | 
|  |  | 
|  | error = _xfs_buf_map_pages(bp, XBF_MAPPED); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn(target->bt_mount, | 
|  | "%s: failed to map pages\n", __func__); | 
|  | goto fail_free_mem; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_get_uncached(bp, _RET_IP_); | 
|  | return bp; | 
|  |  | 
|  | fail_free_mem: | 
|  | while (--i >= 0) | 
|  | __free_page(bp->b_pages[i]); | 
|  | _xfs_buf_free_pages(bp); | 
|  | fail_free_buf: | 
|  | kmem_zone_free(xfs_buf_zone, bp); | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | xfs_buf_hold( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_hold(bp, _RET_IP_); | 
|  | atomic_inc(&bp->b_hold); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases a hold on the specified buffer.  If the | 
|  | *	the hold count is 1, calls xfs_buf_free. | 
|  | */ | 
|  | void | 
|  | xfs_buf_rele( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | struct xfs_perag	*pag = bp->b_pag; | 
|  |  | 
|  | trace_xfs_buf_rele(bp, _RET_IP_); | 
|  |  | 
|  | if (!pag) { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); | 
|  | if (atomic_dec_and_test(&bp->b_hold)) | 
|  | xfs_buf_free(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); | 
|  |  | 
|  | ASSERT(atomic_read(&bp->b_hold) > 0); | 
|  | if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { | 
|  | if (!(bp->b_flags & XBF_STALE) && | 
|  | atomic_read(&bp->b_lru_ref)) { | 
|  | xfs_buf_lru_add(bp); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | } else { | 
|  | xfs_buf_lru_del(bp); | 
|  | ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); | 
|  | rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object, if it is not already locked. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we are | 
|  | *	being asked to lock a buffer that has been reallocated. Because it is | 
|  | *	pinned, we know that the log has not been pushed to disk and hence it | 
|  | *	will still be locked.  Rather than continuing to have trylock attempts | 
|  | *	fail until someone else pushes the log, push it ourselves before | 
|  | *	returning.  This means that the xfsaild will not get stuck trying | 
|  | *	to push on stale inode buffers. | 
|  | */ | 
|  | int | 
|  | xfs_buf_trylock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&bp->b_sema) == 0; | 
|  | if (locked) | 
|  | XB_SET_OWNER(bp); | 
|  | else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
|  | xfs_log_force(bp->b_target->bt_mount, 0); | 
|  |  | 
|  | trace_xfs_buf_trylock(bp, _RET_IP_); | 
|  | return locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we | 
|  | *	are being asked to lock a buffer that has been reallocated. Because | 
|  | *	it is pinned, we know that the log has not been pushed to disk and | 
|  | *	hence it will still be locked. Rather than sleeping until someone | 
|  | *	else pushes the log, push it ourselves before trying to get the lock. | 
|  | */ | 
|  | void | 
|  | xfs_buf_lock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_lock(bp, _RET_IP_); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
|  | xfs_log_force(bp->b_target->bt_mount, 0); | 
|  | down(&bp->b_sema); | 
|  | XB_SET_OWNER(bp); | 
|  |  | 
|  | trace_xfs_buf_lock_done(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the lock on the buffer object. | 
|  | *	If the buffer is marked delwri but is not queued, do so before we | 
|  | *	unlock the buffer as we need to set flags correctly.  We also need to | 
|  | *	take a reference for the delwri queue because the unlocker is going to | 
|  | *	drop their's and they don't know we just queued it. | 
|  | */ | 
|  | void | 
|  | xfs_buf_unlock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | XB_CLEAR_OWNER(bp); | 
|  | up(&bp->b_sema); | 
|  |  | 
|  | trace_xfs_buf_unlock(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_wait_unpin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&bp->b_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | break; | 
|  | io_schedule(); | 
|  | } | 
|  | remove_wait_queue(&bp->b_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Buffer Utility Routines | 
|  | */ | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_iodone_work( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | xfs_buf_t		*bp = | 
|  | container_of(work, xfs_buf_t, b_iodone_work); | 
|  |  | 
|  | if (bp->b_iodone) | 
|  | (*(bp->b_iodone))(bp); | 
|  | else if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioend( | 
|  | xfs_buf_t		*bp, | 
|  | int			schedule) | 
|  | { | 
|  | trace_xfs_buf_iodone(bp, _RET_IP_); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); | 
|  | if (bp->b_error == 0) | 
|  | bp->b_flags |= XBF_DONE; | 
|  |  | 
|  | if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { | 
|  | if (schedule) { | 
|  | INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); | 
|  | queue_work(xfslogd_workqueue, &bp->b_iodone_work); | 
|  | } else { | 
|  | xfs_buf_iodone_work(&bp->b_iodone_work); | 
|  | } | 
|  | } else { | 
|  | complete(&bp->b_iowait); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror( | 
|  | xfs_buf_t		*bp, | 
|  | int			error) | 
|  | { | 
|  | ASSERT(error >= 0 && error <= 0xffff); | 
|  | bp->b_error = (unsigned short)error; | 
|  | trace_xfs_buf_ioerror(bp, error, _RET_IP_); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror_alert( | 
|  | struct xfs_buf		*bp, | 
|  | const char		*func) | 
|  | { | 
|  | xfs_alert(bp->b_target->bt_mount, | 
|  | "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd", | 
|  | (__uint64_t)XFS_BUF_ADDR(bp), func, | 
|  | bp->b_error, XFS_BUF_COUNT(bp)); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_bwrite( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | bp->b_flags &= ~(XBF_ASYNC | XBF_READ); | 
|  |  | 
|  | xfs_buf_delwri_dequeue(bp); | 
|  | xfs_bdstrat_cb(bp); | 
|  |  | 
|  | error = xfs_buf_iowait(bp); | 
|  | if (error) { | 
|  | xfs_force_shutdown(bp->b_target->bt_mount, | 
|  | SHUTDOWN_META_IO_ERROR); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when we want to stop a buffer from getting written or read. | 
|  | * We attach the EIO error, muck with its flags, and call xfs_buf_ioend | 
|  | * so that the proper iodone callbacks get called. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_bioerror( | 
|  | xfs_buf_t *bp) | 
|  | { | 
|  | #ifdef XFSERRORDEBUG | 
|  | ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * No need to wait until the buffer is unpinned, we aren't flushing it. | 
|  | */ | 
|  | xfs_buf_ioerror(bp, EIO); | 
|  |  | 
|  | /* | 
|  | * We're calling xfs_buf_ioend, so delete XBF_DONE flag. | 
|  | */ | 
|  | XFS_BUF_UNREAD(bp); | 
|  | XFS_BUF_UNDONE(bp); | 
|  | xfs_buf_stale(bp); | 
|  |  | 
|  | xfs_buf_ioend(bp, 0); | 
|  |  | 
|  | return EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as xfs_bioerror, except that we are releasing the buffer | 
|  | * here ourselves, and avoiding the xfs_buf_ioend call. | 
|  | * This is meant for userdata errors; metadata bufs come with | 
|  | * iodone functions attached, so that we can track down errors. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_bioerror_relse( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | int64_t		fl = bp->b_flags; | 
|  | /* | 
|  | * No need to wait until the buffer is unpinned. | 
|  | * We aren't flushing it. | 
|  | * | 
|  | * chunkhold expects B_DONE to be set, whether | 
|  | * we actually finish the I/O or not. We don't want to | 
|  | * change that interface. | 
|  | */ | 
|  | XFS_BUF_UNREAD(bp); | 
|  | XFS_BUF_DONE(bp); | 
|  | xfs_buf_stale(bp); | 
|  | bp->b_iodone = NULL; | 
|  | if (!(fl & XBF_ASYNC)) { | 
|  | /* | 
|  | * Mark b_error and B_ERROR _both_. | 
|  | * Lot's of chunkcache code assumes that. | 
|  | * There's no reason to mark error for | 
|  | * ASYNC buffers. | 
|  | */ | 
|  | xfs_buf_ioerror(bp, EIO); | 
|  | complete(&bp->b_iowait); | 
|  | } else { | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | return EIO; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * All xfs metadata buffers except log state machine buffers | 
|  | * get this attached as their b_bdstrat callback function. | 
|  | * This is so that we can catch a buffer | 
|  | * after prematurely unpinning it to forcibly shutdown the filesystem. | 
|  | */ | 
|  | int | 
|  | xfs_bdstrat_cb( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { | 
|  | trace_xfs_bdstrat_shut(bp, _RET_IP_); | 
|  | /* | 
|  | * Metadata write that didn't get logged but | 
|  | * written delayed anyway. These aren't associated | 
|  | * with a transaction, and can be ignored. | 
|  | */ | 
|  | if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) | 
|  | return xfs_bioerror_relse(bp); | 
|  | else | 
|  | return xfs_bioerror(bp); | 
|  | } | 
|  |  | 
|  | xfs_buf_iorequest(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper around bdstrat so that we can stop data from going to disk in case | 
|  | * we are shutting down the filesystem.  Typically user data goes thru this | 
|  | * path; one of the exceptions is the superblock. | 
|  | */ | 
|  | void | 
|  | xfsbdstrat( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | trace_xfs_bdstrat_shut(bp, _RET_IP_); | 
|  | xfs_bioerror_relse(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | xfs_buf_iorequest(bp); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_ioend( | 
|  | xfs_buf_t		*bp, | 
|  | int			schedule) | 
|  | { | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) | 
|  | xfs_buf_ioend(bp, schedule); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_bio_end_io( | 
|  | struct bio		*bio, | 
|  | int			error) | 
|  | { | 
|  | xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private; | 
|  |  | 
|  | xfs_buf_ioerror(bp, -error); | 
|  |  | 
|  | if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) | 
|  | invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); | 
|  |  | 
|  | _xfs_buf_ioend(bp, 1); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_ioapply( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | int			rw, map_i, total_nr_pages, nr_pages; | 
|  | struct bio		*bio; | 
|  | int			offset = bp->b_offset; | 
|  | int			size = bp->b_count_desired; | 
|  | sector_t		sector = bp->b_bn; | 
|  |  | 
|  | total_nr_pages = bp->b_page_count; | 
|  | map_i = 0; | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) { | 
|  | if (bp->b_flags & XBF_SYNCIO) | 
|  | rw = WRITE_SYNC; | 
|  | else | 
|  | rw = WRITE; | 
|  | if (bp->b_flags & XBF_FUA) | 
|  | rw |= REQ_FUA; | 
|  | if (bp->b_flags & XBF_FLUSH) | 
|  | rw |= REQ_FLUSH; | 
|  | } else if (bp->b_flags & XBF_READ_AHEAD) { | 
|  | rw = READA; | 
|  | } else { | 
|  | rw = READ; | 
|  | } | 
|  |  | 
|  | /* we only use the buffer cache for meta-data */ | 
|  | rw |= REQ_META; | 
|  |  | 
|  | next_chunk: | 
|  | atomic_inc(&bp->b_io_remaining); | 
|  | nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); | 
|  | if (nr_pages > total_nr_pages) | 
|  | nr_pages = total_nr_pages; | 
|  |  | 
|  | bio = bio_alloc(GFP_NOIO, nr_pages); | 
|  | bio->bi_bdev = bp->b_target->bt_bdev; | 
|  | bio->bi_sector = sector; | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  | bio->bi_private = bp; | 
|  |  | 
|  |  | 
|  | for (; size && nr_pages; nr_pages--, map_i++) { | 
|  | int	rbytes, nbytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); | 
|  | if (rbytes < nbytes) | 
|  | break; | 
|  |  | 
|  | offset = 0; | 
|  | sector += nbytes >> BBSHIFT; | 
|  | size -= nbytes; | 
|  | total_nr_pages--; | 
|  | } | 
|  |  | 
|  | if (likely(bio->bi_size)) { | 
|  | if (xfs_buf_is_vmapped(bp)) { | 
|  | flush_kernel_vmap_range(bp->b_addr, | 
|  | xfs_buf_vmap_len(bp)); | 
|  | } | 
|  | submit_bio(rw, bio); | 
|  | if (size) | 
|  | goto next_chunk; | 
|  | } else { | 
|  | xfs_buf_ioerror(bp, EIO); | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_iorequest( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_iorequest(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(!(bp->b_flags & XBF_DELWRI)); | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) | 
|  | xfs_buf_wait_unpin(bp); | 
|  | xfs_buf_hold(bp); | 
|  |  | 
|  | /* Set the count to 1 initially, this will stop an I/O | 
|  | * completion callout which happens before we have started | 
|  | * all the I/O from calling xfs_buf_ioend too early. | 
|  | */ | 
|  | atomic_set(&bp->b_io_remaining, 1); | 
|  | _xfs_buf_ioapply(bp); | 
|  | _xfs_buf_ioend(bp, 0); | 
|  |  | 
|  | xfs_buf_rele(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Waits for I/O to complete on the buffer supplied. | 
|  | *	It returns immediately if no I/O is pending. | 
|  | *	It returns the I/O error code, if any, or 0 if there was no error. | 
|  | */ | 
|  | int | 
|  | xfs_buf_iowait( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_iowait(bp, _RET_IP_); | 
|  |  | 
|  | wait_for_completion(&bp->b_iowait); | 
|  |  | 
|  | trace_xfs_buf_iowait_done(bp, _RET_IP_); | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | xfs_caddr_t | 
|  | xfs_buf_offset( | 
|  | xfs_buf_t		*bp, | 
|  | size_t			offset) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | if (bp->b_flags & XBF_MAPPED) | 
|  | return bp->b_addr + offset; | 
|  |  | 
|  | offset += bp->b_offset; | 
|  | page = bp->b_pages[offset >> PAGE_SHIFT]; | 
|  | return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Move data into or out of a buffer. | 
|  | */ | 
|  | void | 
|  | xfs_buf_iomove( | 
|  | xfs_buf_t		*bp,	/* buffer to process		*/ | 
|  | size_t			boff,	/* starting buffer offset	*/ | 
|  | size_t			bsize,	/* length to copy		*/ | 
|  | void			*data,	/* data address			*/ | 
|  | xfs_buf_rw_t		mode)	/* read/write/zero flag		*/ | 
|  | { | 
|  | size_t			bend, cpoff, csize; | 
|  | struct page		*page; | 
|  |  | 
|  | bend = boff + bsize; | 
|  | while (boff < bend) { | 
|  | page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; | 
|  | cpoff = xfs_buf_poff(boff + bp->b_offset); | 
|  | csize = min_t(size_t, | 
|  | PAGE_SIZE-cpoff, bp->b_count_desired-boff); | 
|  |  | 
|  | ASSERT(((csize + cpoff) <= PAGE_SIZE)); | 
|  |  | 
|  | switch (mode) { | 
|  | case XBRW_ZERO: | 
|  | memset(page_address(page) + cpoff, 0, csize); | 
|  | break; | 
|  | case XBRW_READ: | 
|  | memcpy(data, page_address(page) + cpoff, csize); | 
|  | break; | 
|  | case XBRW_WRITE: | 
|  | memcpy(page_address(page) + cpoff, data, csize); | 
|  | } | 
|  |  | 
|  | boff += csize; | 
|  | data += csize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buffer targets (buftargs). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Wait for any bufs with callbacks that have been submitted but have not yet | 
|  | * returned. These buffers will have an elevated hold count, so wait on those | 
|  | * while freeing all the buffers only held by the LRU. | 
|  | */ | 
|  | void | 
|  | xfs_wait_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | restart: | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | while (!list_empty(&btp->bt_lru)) { | 
|  | bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); | 
|  | if (atomic_read(&bp->b_hold) > 1) { | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | delay(100); | 
|  | goto restart; | 
|  | } | 
|  | /* | 
|  | * clear the LRU reference count so the bufer doesn't get | 
|  | * ignored in xfs_buf_rele(). | 
|  | */ | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | xfs_buf_rele(bp); | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | } | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buftarg_shrink( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = container_of(shrink, | 
|  | struct xfs_buftarg, bt_shrinker); | 
|  | struct xfs_buf		*bp; | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  | LIST_HEAD(dispose); | 
|  |  | 
|  | if (!nr_to_scan) | 
|  | return btp->bt_lru_nr; | 
|  |  | 
|  | spin_lock(&btp->bt_lru_lock); | 
|  | while (!list_empty(&btp->bt_lru)) { | 
|  | if (nr_to_scan-- <= 0) | 
|  | break; | 
|  |  | 
|  | bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); | 
|  |  | 
|  | /* | 
|  | * Decrement the b_lru_ref count unless the value is already | 
|  | * zero. If the value is already zero, we need to reclaim the | 
|  | * buffer, otherwise it gets another trip through the LRU. | 
|  | */ | 
|  | if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { | 
|  | list_move_tail(&bp->b_lru, &btp->bt_lru); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove the buffer from the LRU now to avoid needing another | 
|  | * lock round trip inside xfs_buf_rele(). | 
|  | */ | 
|  | list_move(&bp->b_lru, &dispose); | 
|  | btp->bt_lru_nr--; | 
|  | } | 
|  | spin_unlock(&btp->bt_lru_lock); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  |  | 
|  | return btp->bt_lru_nr; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | unregister_shrinker(&btp->bt_shrinker); | 
|  |  | 
|  | xfs_flush_buftarg(btp, 1); | 
|  | if (mp->m_flags & XFS_MOUNT_BARRIER) | 
|  | xfs_blkdev_issue_flush(btp); | 
|  |  | 
|  | kthread_stop(btp->bt_task); | 
|  | kmem_free(btp); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_flags( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize, | 
|  | int			verbose) | 
|  | { | 
|  | btp->bt_bsize = blocksize; | 
|  | btp->bt_sshift = ffs(sectorsize) - 1; | 
|  | btp->bt_smask = sectorsize - 1; | 
|  |  | 
|  | if (set_blocksize(btp->bt_bdev, sectorsize)) { | 
|  | char name[BDEVNAME_SIZE]; | 
|  |  | 
|  | bdevname(btp->bt_bdev, name); | 
|  |  | 
|  | xfs_warn(btp->bt_mount, | 
|  | "Cannot set_blocksize to %u on device %s\n", | 
|  | sectorsize, name); | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	When allocating the initial buffer target we have not yet | 
|  | *	read in the superblock, so don't know what sized sectors | 
|  | *	are being used is at this early stage.  Play safe. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_early( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, | 
|  | PAGE_SIZE, bdev_logical_block_size(bdev), 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_setsize_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_alloc_delwri_queue( | 
|  | xfs_buftarg_t		*btp, | 
|  | const char		*fsname) | 
|  | { | 
|  | INIT_LIST_HEAD(&btp->bt_delwri_queue); | 
|  | spin_lock_init(&btp->bt_delwri_lock); | 
|  | btp->bt_flags = 0; | 
|  | btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); | 
|  | if (IS_ERR(btp->bt_task)) | 
|  | return PTR_ERR(btp->bt_task); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buftarg_t * | 
|  | xfs_alloc_buftarg( | 
|  | struct xfs_mount	*mp, | 
|  | struct block_device	*bdev, | 
|  | int			external, | 
|  | const char		*fsname) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  |  | 
|  | btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); | 
|  |  | 
|  | btp->bt_mount = mp; | 
|  | btp->bt_dev =  bdev->bd_dev; | 
|  | btp->bt_bdev = bdev; | 
|  | btp->bt_bdi = blk_get_backing_dev_info(bdev); | 
|  | if (!btp->bt_bdi) | 
|  | goto error; | 
|  |  | 
|  | INIT_LIST_HEAD(&btp->bt_lru); | 
|  | spin_lock_init(&btp->bt_lru_lock); | 
|  | if (xfs_setsize_buftarg_early(btp, bdev)) | 
|  | goto error; | 
|  | if (xfs_alloc_delwri_queue(btp, fsname)) | 
|  | goto error; | 
|  | btp->bt_shrinker.shrink = xfs_buftarg_shrink; | 
|  | btp->bt_shrinker.seeks = DEFAULT_SEEKS; | 
|  | register_shrinker(&btp->bt_shrinker); | 
|  | return btp; | 
|  |  | 
|  | error: | 
|  | kmem_free(btp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Delayed write buffer handling | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_queue( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | struct xfs_buftarg	*btp = bp->b_target; | 
|  |  | 
|  | trace_xfs_buf_delwri_queue(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(!(bp->b_flags & XBF_READ)); | 
|  |  | 
|  | spin_lock(&btp->bt_delwri_lock); | 
|  | if (!list_empty(&bp->b_list)) { | 
|  | /* if already in the queue, move it to the tail */ | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  | list_move_tail(&bp->b_list, &btp->bt_delwri_queue); | 
|  | } else { | 
|  | /* start xfsbufd as it is about to have something to do */ | 
|  | if (list_empty(&btp->bt_delwri_queue)) | 
|  | wake_up_process(bp->b_target->bt_task); | 
|  |  | 
|  | atomic_inc(&bp->b_hold); | 
|  | bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC; | 
|  | list_add_tail(&bp->b_list, &btp->bt_delwri_queue); | 
|  | } | 
|  | bp->b_queuetime = jiffies; | 
|  | spin_unlock(&btp->bt_delwri_lock); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_delwri_dequeue( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | int			dequeued = 0; | 
|  |  | 
|  | spin_lock(&bp->b_target->bt_delwri_lock); | 
|  | if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  | list_del_init(&bp->b_list); | 
|  | dequeued = 1; | 
|  | } | 
|  | bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); | 
|  | spin_unlock(&bp->b_target->bt_delwri_lock); | 
|  |  | 
|  | if (dequeued) | 
|  | xfs_buf_rele(bp); | 
|  |  | 
|  | trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a delwri buffer needs to be pushed before it has aged out, then promote | 
|  | * it to the head of the delwri queue so that it will be flushed on the next | 
|  | * xfsbufd run. We do this by resetting the queuetime of the buffer to be older | 
|  | * than the age currently needed to flush the buffer. Hence the next time the | 
|  | * xfsbufd sees it is guaranteed to be considered old enough to flush. | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_promote( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_buftarg *btp = bp->b_target; | 
|  | long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; | 
|  |  | 
|  | ASSERT(bp->b_flags & XBF_DELWRI); | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  |  | 
|  | /* | 
|  | * Check the buffer age before locking the delayed write queue as we | 
|  | * don't need to promote buffers that are already past the flush age. | 
|  | */ | 
|  | if (bp->b_queuetime < jiffies - age) | 
|  | return; | 
|  | bp->b_queuetime = jiffies - age; | 
|  | spin_lock(&btp->bt_delwri_lock); | 
|  | list_move(&bp->b_list, &btp->bt_delwri_queue); | 
|  | spin_unlock(&btp->bt_delwri_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move as many buffers as specified to the supplied list | 
|  | * idicating if we skipped any buffers to prevent deadlocks. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_buf_delwri_split( | 
|  | xfs_buftarg_t	*target, | 
|  | struct list_head *list, | 
|  | unsigned long	age) | 
|  | { | 
|  | xfs_buf_t	*bp, *n; | 
|  | int		skipped = 0; | 
|  | int		force; | 
|  |  | 
|  | force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); | 
|  | INIT_LIST_HEAD(list); | 
|  | spin_lock(&target->bt_delwri_lock); | 
|  | list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) { | 
|  | ASSERT(bp->b_flags & XBF_DELWRI); | 
|  |  | 
|  | if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) { | 
|  | if (!force && | 
|  | time_before(jiffies, bp->b_queuetime + age)) { | 
|  | xfs_buf_unlock(bp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q); | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | list_move_tail(&bp->b_list, list); | 
|  | trace_xfs_buf_delwri_split(bp, _RET_IP_); | 
|  | } else | 
|  | skipped++; | 
|  | } | 
|  |  | 
|  | spin_unlock(&target->bt_delwri_lock); | 
|  | return skipped; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare function is more complex than it needs to be because | 
|  | * the return value is only 32 bits and we are doing comparisons | 
|  | * on 64 bit values | 
|  | */ | 
|  | static int | 
|  | xfs_buf_cmp( | 
|  | void		*priv, | 
|  | struct list_head *a, | 
|  | struct list_head *b) | 
|  | { | 
|  | struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); | 
|  | struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); | 
|  | xfs_daddr_t		diff; | 
|  |  | 
|  | diff = ap->b_bn - bp->b_bn; | 
|  | if (diff < 0) | 
|  | return -1; | 
|  | if (diff > 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfsbufd( | 
|  | void		*data) | 
|  | { | 
|  | xfs_buftarg_t   *target = (xfs_buftarg_t *)data; | 
|  |  | 
|  | current->flags |= PF_MEMALLOC; | 
|  |  | 
|  | set_freezable(); | 
|  |  | 
|  | do { | 
|  | long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10); | 
|  | long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); | 
|  | struct list_head tmp; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | if (unlikely(freezing(current))) { | 
|  | set_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
|  | refrigerator(); | 
|  | } else { | 
|  | clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
|  | } | 
|  |  | 
|  | /* sleep for a long time if there is nothing to do. */ | 
|  | if (list_empty(&target->bt_delwri_queue)) | 
|  | tout = MAX_SCHEDULE_TIMEOUT; | 
|  | schedule_timeout_interruptible(tout); | 
|  |  | 
|  | xfs_buf_delwri_split(target, &tmp, age); | 
|  | list_sort(NULL, &tmp, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | while (!list_empty(&tmp)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&tmp, struct xfs_buf, b_list); | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_bdstrat_cb(bp); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } while (!kthread_should_stop()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Go through all incore buffers, and release buffers if they belong to | 
|  | *	the given device. This is used in filesystem error handling to | 
|  | *	preserve the consistency of its metadata. | 
|  | */ | 
|  | int | 
|  | xfs_flush_buftarg( | 
|  | xfs_buftarg_t	*target, | 
|  | int		wait) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  | int		pincount = 0; | 
|  | LIST_HEAD(tmp_list); | 
|  | LIST_HEAD(wait_list); | 
|  | struct blk_plug plug; | 
|  |  | 
|  | flush_workqueue(xfslogd_workqueue); | 
|  |  | 
|  | set_bit(XBT_FORCE_FLUSH, &target->bt_flags); | 
|  | pincount = xfs_buf_delwri_split(target, &tmp_list, 0); | 
|  |  | 
|  | /* | 
|  | * Dropped the delayed write list lock, now walk the temporary list. | 
|  | * All I/O is issued async and then if we need to wait for completion | 
|  | * we do that after issuing all the IO. | 
|  | */ | 
|  | list_sort(NULL, &tmp_list, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | while (!list_empty(&tmp_list)) { | 
|  | bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); | 
|  | ASSERT(target == bp->b_target); | 
|  | list_del_init(&bp->b_list); | 
|  | if (wait) { | 
|  | bp->b_flags &= ~XBF_ASYNC; | 
|  | list_add(&bp->b_list, &wait_list); | 
|  | } | 
|  | xfs_bdstrat_cb(bp); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | if (wait) { | 
|  | /* Wait for IO to complete. */ | 
|  | while (!list_empty(&wait_list)) { | 
|  | bp = list_first_entry(&wait_list, struct xfs_buf, b_list); | 
|  |  | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_iowait(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return pincount; | 
|  | } | 
|  |  | 
|  | int __init | 
|  | xfs_buf_init(void) | 
|  | { | 
|  | xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", | 
|  | KM_ZONE_HWALIGN, NULL); | 
|  | if (!xfs_buf_zone) | 
|  | goto out; | 
|  |  | 
|  | xfslogd_workqueue = alloc_workqueue("xfslogd", | 
|  | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); | 
|  | if (!xfslogd_workqueue) | 
|  | goto out_free_buf_zone; | 
|  |  | 
|  | xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1); | 
|  | if (!xfsdatad_workqueue) | 
|  | goto out_destroy_xfslogd_workqueue; | 
|  |  | 
|  | xfsconvertd_workqueue = alloc_workqueue("xfsconvertd", | 
|  | WQ_MEM_RECLAIM, 1); | 
|  | if (!xfsconvertd_workqueue) | 
|  | goto out_destroy_xfsdatad_workqueue; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_destroy_xfsdatad_workqueue: | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | out_destroy_xfslogd_workqueue: | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | out_free_buf_zone: | 
|  | kmem_zone_destroy(xfs_buf_zone); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_terminate(void) | 
|  | { | 
|  | destroy_workqueue(xfsconvertd_workqueue); | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | kmem_zone_destroy(xfs_buf_zone); | 
|  | } |