blob: 7df65041ace5563fe1541a2e5e98daed2eb92a44 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Focusrite Control Protocol Driver for ALSA
*
* Copyright (c) 2024-2025 by Geoffrey D. Bennett <g at b4.vu>
*/
/*
* DOC: Theory of Operation
*
* The Focusrite Control Protocol (FCP) driver provides a minimal
* kernel interface that allows a user-space driver (primarily
* fcp-server) to communicate with Focusrite USB audio interfaces
* using their vendor-specific protocol. This protocol is used by
* Scarlett 2nd Gen, 3rd Gen, 4th Gen, Clarett USB, Clarett+, and
* Vocaster series devices.
*
* Unlike the existing scarlett2 driver which implements all controls
* in kernel space, this driver takes a lighter-weight approach by
* moving most functionality to user space. The only control
* implemented in kernel space is the Level Meter, since it requires
* frequent polling of volatile data.
*
* The driver provides an hwdep interface that allows the user-space
* driver to:
* - Initialise the protocol
* - Send arbitrary FCP commands to the device
* - Receive notifications from the device
* - Configure the Level Meter control
*
* Usage Flow
* ----------
* 1. Open the hwdep device (requires CAP_SYS_RAWIO)
* 2. Get protocol version using FCP_IOCTL_PVERSION
* 3. Initialise protocol using FCP_IOCTL_INIT
* 4. Send commands using FCP_IOCTL_CMD
* 5. Receive notifications using read()
* 6. Optionally set up the Level Meter control using
* FCP_IOCTL_SET_METER_MAP
* 7. Optionally add labels to the Level Meter control using
* FCP_IOCTL_SET_METER_LABELS
*
* Level Meter
* -----------
* The Level Meter is implemented as an ALSA control that provides
* real-time level monitoring. When the control is read, the driver
* requests the current meter levels from the device, translates the
* levels using the configured mapping, and returns the result to the
* user. The mapping between device meters and the ALSA control's
* channels is configured with FCP_IOCTL_SET_METER_MAP.
*
* Labels for the Level Meter channels can be set using
* FCP_IOCTL_SET_METER_LABELS and read by applications through the
* control's TLV data. The labels are transferred as a sequence of
* null-terminated strings.
*/
#include <linux/slab.h>
#include <linux/usb.h>
#include <sound/control.h>
#include <sound/hwdep.h>
#include <sound/tlv.h>
#include <uapi/sound/fcp.h>
#include "usbaudio.h"
#include "mixer.h"
#include "helper.h"
#include "fcp.h"
/* notify waiting to send to *file */
struct fcp_notify {
wait_queue_head_t queue;
u32 event;
spinlock_t lock;
};
struct fcp_data {
struct usb_mixer_interface *mixer;
struct mutex mutex; /* serialise access to the device */
struct completion cmd_done; /* wait for command completion */
struct file *file; /* hwdep file */
struct fcp_notify notify;
u8 bInterfaceNumber;
u8 bEndpointAddress;
u16 wMaxPacketSize;
u8 bInterval;
uint16_t step0_resp_size;
uint16_t step2_resp_size;
uint32_t init1_opcode;
uint32_t init2_opcode;
u8 init;
u16 seq;
u8 num_meter_slots;
s16 *meter_level_map;
__le32 *meter_levels;
struct snd_kcontrol *meter_ctl;
unsigned int *meter_labels_tlv;
int meter_labels_tlv_size;
};
/*** USB Interactions ***/
/* FCP Command ACK notification bit */
#define FCP_NOTIFY_ACK 1
/* Vendor-specific USB control requests */
#define FCP_USB_REQ_STEP0 0
#define FCP_USB_REQ_CMD_TX 2
#define FCP_USB_REQ_CMD_RX 3
/* Focusrite Control Protocol opcodes that the kernel side needs to
* know about
*/
#define FCP_USB_REBOOT 0x00000003
#define FCP_USB_GET_METER 0x00001001
#define FCP_USB_FLASH_ERASE 0x00004002
#define FCP_USB_FLASH_WRITE 0x00004004
#define FCP_USB_METER_LEVELS_GET_MAGIC 1
#define FCP_SEGMENT_APP_GOLD 0
/* Forward declarations */
static int fcp_init(struct usb_mixer_interface *mixer,
void *step0_resp, void *step2_resp);
/* FCP command request/response format */
struct fcp_usb_packet {
__le32 opcode;
__le16 size;
__le16 seq;
__le32 error;
__le32 pad;
u8 data[];
};
static void fcp_fill_request_header(struct fcp_data *private,
struct fcp_usb_packet *req,
u32 opcode, u16 req_size)
{
/* sequence must go up by 1 for each request */
u16 seq = private->seq++;
req->opcode = cpu_to_le32(opcode);
req->size = cpu_to_le16(req_size);
req->seq = cpu_to_le16(seq);
req->error = 0;
req->pad = 0;
}
static int fcp_usb_tx(struct usb_device *dev, int interface,
void *buf, u16 size)
{
return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
FCP_USB_REQ_CMD_TX,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
0, interface, buf, size);
}
static int fcp_usb_rx(struct usb_device *dev, int interface,
void *buf, u16 size)
{
return snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
FCP_USB_REQ_CMD_RX,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
0, interface, buf, size);
}
/* Send an FCP command and get the response */
static int fcp_usb(struct usb_mixer_interface *mixer, u32 opcode,
const void *req_data, u16 req_size,
void *resp_data, u16 resp_size)
{
struct fcp_data *private = mixer->private_data;
struct usb_device *dev = mixer->chip->dev;
struct fcp_usb_packet *req __free(kfree) = NULL;
struct fcp_usb_packet *resp __free(kfree) = NULL;
size_t req_buf_size = struct_size(req, data, req_size);
size_t resp_buf_size = struct_size(resp, data, resp_size);
int retries = 0;
const int max_retries = 5;
int err;
if (!mixer->urb)
return -ENODEV;
req = kmalloc(req_buf_size, GFP_KERNEL);
if (!req)
return -ENOMEM;
resp = kmalloc(resp_buf_size, GFP_KERNEL);
if (!resp)
return -ENOMEM;
/* build request message */
fcp_fill_request_header(private, req, opcode, req_size);
if (req_size)
memcpy(req->data, req_data, req_size);
/* send the request and retry on EPROTO */
retry:
err = fcp_usb_tx(dev, private->bInterfaceNumber, req, req_buf_size);
if (err == -EPROTO && ++retries <= max_retries) {
msleep(1 << (retries - 1));
goto retry;
}
if (err != req_buf_size) {
usb_audio_err(mixer->chip,
"FCP request %08x failed: %d\n", opcode, err);
return -EINVAL;
}
if (!wait_for_completion_timeout(&private->cmd_done,
msecs_to_jiffies(1000))) {
usb_audio_err(mixer->chip,
"FCP request %08x timed out\n", opcode);
return -ETIMEDOUT;
}
/* send a second message to get the response */
err = fcp_usb_rx(dev, private->bInterfaceNumber, resp, resp_buf_size);
/* validate the response */
if (err < 0) {
/* ESHUTDOWN and EPROTO are valid responses to a
* reboot request
*/
if (opcode == FCP_USB_REBOOT &&
(err == -ESHUTDOWN || err == -EPROTO))
return 0;
usb_audio_err(mixer->chip,
"FCP read response %08x failed: %d\n",
opcode, err);
return -EINVAL;
}
if (err < sizeof(*resp)) {
usb_audio_err(mixer->chip,
"FCP response %08x too short: %d\n",
opcode, err);
return -EINVAL;
}
if (req->seq != resp->seq) {
usb_audio_err(mixer->chip,
"FCP response %08x seq mismatch %d/%d\n",
opcode,
le16_to_cpu(req->seq), le16_to_cpu(resp->seq));
return -EINVAL;
}
if (req->opcode != resp->opcode) {
usb_audio_err(mixer->chip,
"FCP response %08x opcode mismatch %08x\n",
opcode, le32_to_cpu(resp->opcode));
return -EINVAL;
}
if (resp->error) {
usb_audio_err(mixer->chip,
"FCP response %08x error %d\n",
opcode, le32_to_cpu(resp->error));
return -EINVAL;
}
if (err != resp_buf_size) {
usb_audio_err(mixer->chip,
"FCP response %08x buffer size mismatch %d/%zu\n",
opcode, err, resp_buf_size);
return -EINVAL;
}
if (resp_size != le16_to_cpu(resp->size)) {
usb_audio_err(mixer->chip,
"FCP response %08x size mismatch %d/%d\n",
opcode, resp_size, le16_to_cpu(resp->size));
return -EINVAL;
}
if (resp_data && resp_size > 0)
memcpy(resp_data, resp->data, resp_size);
return 0;
}
static int fcp_reinit(struct usb_mixer_interface *mixer)
{
struct fcp_data *private = mixer->private_data;
void *step0_resp __free(kfree) = NULL;
void *step2_resp __free(kfree) = NULL;
if (mixer->urb)
return 0;
step0_resp = kmalloc(private->step0_resp_size, GFP_KERNEL);
if (!step0_resp)
return -ENOMEM;
step2_resp = kmalloc(private->step2_resp_size, GFP_KERNEL);
if (!step2_resp)
return -ENOMEM;
return fcp_init(mixer, step0_resp, step2_resp);
}
/*** Control Functions ***/
/* helper function to create a new control */
static int fcp_add_new_ctl(struct usb_mixer_interface *mixer,
const struct snd_kcontrol_new *ncontrol,
int index, int channels, const char *name,
struct snd_kcontrol **kctl_return)
{
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *elem;
int err;
elem = kzalloc(sizeof(*elem), GFP_KERNEL);
if (!elem)
return -ENOMEM;
/* We set USB_MIXER_BESPOKEN type, so that the core USB mixer code
* ignores them for resume and other operations.
* Also, the head.id field is set to 0, as we don't use this field.
*/
elem->head.mixer = mixer;
elem->control = index;
elem->head.id = 0;
elem->channels = channels;
elem->val_type = USB_MIXER_BESPOKEN;
kctl = snd_ctl_new1(ncontrol, elem);
if (!kctl) {
kfree(elem);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
err = snd_usb_mixer_add_control(&elem->head, kctl);
if (err < 0)
return err;
if (kctl_return)
*kctl_return = kctl;
return 0;
}
/*** Level Meter Control ***/
static int fcp_meter_ctl_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *elem = kctl->private_data;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = elem->channels;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 4095;
uinfo->value.integer.step = 1;
return 0;
}
static int fcp_meter_ctl_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *elem = kctl->private_data;
struct usb_mixer_interface *mixer = elem->head.mixer;
struct fcp_data *private = mixer->private_data;
int num_meter_slots, resp_size;
__le32 *resp = private->meter_levels;
int i, err = 0;
struct {
__le16 pad;
__le16 num_meters;
__le32 magic;
} __packed req;
guard(mutex)(&private->mutex);
err = fcp_reinit(mixer);
if (err < 0)
return err;
num_meter_slots = private->num_meter_slots;
resp_size = num_meter_slots * sizeof(u32);
req.pad = 0;
req.num_meters = cpu_to_le16(num_meter_slots);
req.magic = cpu_to_le32(FCP_USB_METER_LEVELS_GET_MAGIC);
err = fcp_usb(mixer, FCP_USB_GET_METER,
&req, sizeof(req), resp, resp_size);
if (err < 0)
return err;
/* copy & translate from resp[] using meter_level_map[] */
for (i = 0; i < elem->channels; i++) {
int idx = private->meter_level_map[i];
int value = idx < 0 ? 0 : le32_to_cpu(resp[idx]);
ucontrol->value.integer.value[i] = value;
}
return 0;
}
static int fcp_meter_tlv_callback(struct snd_kcontrol *kctl,
int op_flag, unsigned int size,
unsigned int __user *tlv)
{
struct usb_mixer_elem_info *elem = kctl->private_data;
struct usb_mixer_interface *mixer = elem->head.mixer;
struct fcp_data *private = mixer->private_data;
guard(mutex)(&private->mutex);
if (op_flag == SNDRV_CTL_TLV_OP_READ) {
if (private->meter_labels_tlv_size == 0)
return 0;
if (size > private->meter_labels_tlv_size)
size = private->meter_labels_tlv_size;
if (copy_to_user(tlv, private->meter_labels_tlv, size))
return -EFAULT;
return size;
}
return -EINVAL;
}
static const struct snd_kcontrol_new fcp_meter_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fcp_meter_ctl_info,
.get = fcp_meter_ctl_get,
.tlv = { .c = fcp_meter_tlv_callback },
};
/*** hwdep interface ***/
/* FCP initialisation */
static int fcp_ioctl_init(struct usb_mixer_interface *mixer,
struct fcp_init __user *arg)
{
struct fcp_init init;
struct usb_device *dev = mixer->chip->dev;
struct fcp_data *private = mixer->private_data;
void *resp __free(kfree) = NULL;
void *step2_resp;
int err, buf_size;
if (usb_pipe_type_check(dev, usb_sndctrlpipe(dev, 0)))
return -EINVAL;
/* Get initialisation parameters */
if (copy_from_user(&init, arg, sizeof(init)))
return -EFAULT;
/* Validate the response sizes */
if (init.step0_resp_size < 1 ||
init.step0_resp_size > 255 ||
init.step2_resp_size < 1 ||
init.step2_resp_size > 255)
return -EINVAL;
/* Allocate response buffer */
buf_size = init.step0_resp_size + init.step2_resp_size;
resp = kmalloc(buf_size, GFP_KERNEL);
if (!resp)
return -ENOMEM;
private->step0_resp_size = init.step0_resp_size;
private->step2_resp_size = init.step2_resp_size;
private->init1_opcode = init.init1_opcode;
private->init2_opcode = init.init2_opcode;
step2_resp = resp + private->step0_resp_size;
err = fcp_init(mixer, resp, step2_resp);
if (err < 0)
return err;
if (copy_to_user(arg->resp, resp, buf_size))
return -EFAULT;
return 0;
}
/* Check that the command is allowed
* Don't permit erasing/writing segment 0 (App_Gold)
*/
static int fcp_validate_cmd(u32 opcode, void *data, u16 size)
{
if (opcode == FCP_USB_FLASH_ERASE) {
struct {
__le32 segment_num;
__le32 pad;
} __packed *req = data;
if (size != sizeof(*req))
return -EINVAL;
if (le32_to_cpu(req->segment_num) == FCP_SEGMENT_APP_GOLD)
return -EPERM;
if (req->pad != 0)
return -EINVAL;
} else if (opcode == FCP_USB_FLASH_WRITE) {
struct {
__le32 segment_num;
__le32 offset;
__le32 pad;
u8 data[];
} __packed *req = data;
if (size < sizeof(*req))
return -EINVAL;
if (le32_to_cpu(req->segment_num) == FCP_SEGMENT_APP_GOLD)
return -EPERM;
if (req->pad != 0)
return -EINVAL;
}
return 0;
}
/* Execute an FCP command specified by the user */
static int fcp_ioctl_cmd(struct usb_mixer_interface *mixer,
struct fcp_cmd __user *arg)
{
struct fcp_cmd cmd;
int err, buf_size;
void *data __free(kfree) = NULL;
/* get opcode and request/response size */
if (copy_from_user(&cmd, arg, sizeof(cmd)))
return -EFAULT;
/* validate request and response sizes */
if (cmd.req_size > 4096 || cmd.resp_size > 4096)
return -EINVAL;
/* reinit if needed */
err = fcp_reinit(mixer);
if (err < 0)
return err;
/* allocate request/response buffer */
buf_size = max(cmd.req_size, cmd.resp_size);
if (buf_size > 0) {
data = kmalloc(buf_size, GFP_KERNEL);
if (!data)
return -ENOMEM;
}
/* copy request from user */
if (cmd.req_size > 0)
if (copy_from_user(data, arg->data, cmd.req_size))
return -EFAULT;
/* check that the command is allowed */
err = fcp_validate_cmd(cmd.opcode, data, cmd.req_size);
if (err < 0)
return err;
/* send request, get response */
err = fcp_usb(mixer, cmd.opcode,
data, cmd.req_size, data, cmd.resp_size);
if (err < 0)
return err;
/* copy response to user */
if (cmd.resp_size > 0)
if (copy_to_user(arg->data, data, cmd.resp_size))
return -EFAULT;
return 0;
}
/* Validate the Level Meter map passed by the user */
static int validate_meter_map(const s16 *map, int map_size, int meter_slots)
{
int i;
for (i = 0; i < map_size; i++)
if (map[i] < -1 || map[i] >= meter_slots)
return -EINVAL;
return 0;
}
/* Set the Level Meter map and add the control */
static int fcp_ioctl_set_meter_map(struct usb_mixer_interface *mixer,
struct fcp_meter_map __user *arg)
{
struct fcp_meter_map map;
struct fcp_data *private = mixer->private_data;
s16 *tmp_map __free(kfree) = NULL;
int err;
if (copy_from_user(&map, arg, sizeof(map)))
return -EFAULT;
/* Don't allow changing the map size or meter slots once set */
if (private->meter_ctl) {
struct usb_mixer_elem_info *elem =
private->meter_ctl->private_data;
if (map.map_size != elem->channels ||
map.meter_slots != private->num_meter_slots)
return -EINVAL;
}
/* Validate the map size */
if (map.map_size < 1 || map.map_size > 255 ||
map.meter_slots < 1 || map.meter_slots > 255)
return -EINVAL;
/* Allocate and copy the map data */
tmp_map = kmalloc_array(map.map_size, sizeof(s16), GFP_KERNEL);
if (!tmp_map)
return -ENOMEM;
if (copy_from_user(tmp_map, arg->map, map.map_size * sizeof(s16)))
return -EFAULT;
err = validate_meter_map(tmp_map, map.map_size, map.meter_slots);
if (err < 0)
return err;
/* If the control doesn't exist, create it */
if (!private->meter_ctl) {
s16 *new_map __free(kfree) = NULL;
__le32 *meter_levels __free(kfree) = NULL;
/* Allocate buffer for the map */
new_map = kmalloc_array(map.map_size, sizeof(s16), GFP_KERNEL);
if (!new_map)
return -ENOMEM;
/* Allocate buffer for reading meter levels */
meter_levels = kmalloc_array(map.meter_slots, sizeof(__le32),
GFP_KERNEL);
if (!meter_levels)
return -ENOMEM;
/* Create the Level Meter control */
err = fcp_add_new_ctl(mixer, &fcp_meter_ctl, 0, map.map_size,
"Level Meter", &private->meter_ctl);
if (err < 0)
return err;
/* Success; save the pointers in private and don't free them */
private->meter_level_map = new_map;
private->meter_levels = meter_levels;
private->num_meter_slots = map.meter_slots;
new_map = NULL;
meter_levels = NULL;
}
/* Install the new map */
memcpy(private->meter_level_map, tmp_map, map.map_size * sizeof(s16));
return 0;
}
/* Set the Level Meter labels */
static int fcp_ioctl_set_meter_labels(struct usb_mixer_interface *mixer,
struct fcp_meter_labels __user *arg)
{
struct fcp_meter_labels labels;
struct fcp_data *private = mixer->private_data;
unsigned int *tlv_data;
unsigned int tlv_size, data_size;
if (copy_from_user(&labels, arg, sizeof(labels)))
return -EFAULT;
/* Remove existing labels if size is zero */
if (!labels.labels_size) {
/* Clear TLV read/callback bits if labels were present */
if (private->meter_labels_tlv) {
private->meter_ctl->vd[0].access &=
~(SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK);
snd_ctl_notify(mixer->chip->card,
SNDRV_CTL_EVENT_MASK_INFO,
&private->meter_ctl->id);
}
kfree(private->meter_labels_tlv);
private->meter_labels_tlv = NULL;
private->meter_labels_tlv_size = 0;
return 0;
}
/* Validate size */
if (labels.labels_size > 4096)
return -EINVAL;
/* Calculate padded data size */
data_size = ALIGN(labels.labels_size, sizeof(unsigned int));
/* Calculate total TLV size including header */
tlv_size = sizeof(unsigned int) * 2 + data_size;
/* Allocate, set up TLV header, and copy the labels data */
tlv_data = kzalloc(tlv_size, GFP_KERNEL);
if (!tlv_data)
return -ENOMEM;
tlv_data[0] = SNDRV_CTL_TLVT_FCP_CHANNEL_LABELS;
tlv_data[1] = data_size;
if (copy_from_user(&tlv_data[2], arg->labels, labels.labels_size)) {
kfree(tlv_data);
return -EFAULT;
}
/* Set TLV read/callback bits if labels weren't present */
if (!private->meter_labels_tlv) {
private->meter_ctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
snd_ctl_notify(mixer->chip->card,
SNDRV_CTL_EVENT_MASK_INFO,
&private->meter_ctl->id);
}
/* Swap in the new labels */
kfree(private->meter_labels_tlv);
private->meter_labels_tlv = tlv_data;
private->meter_labels_tlv_size = tlv_size;
return 0;
}
static int fcp_hwdep_open(struct snd_hwdep *hw, struct file *file)
{
struct usb_mixer_interface *mixer = hw->private_data;
struct fcp_data *private = mixer->private_data;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
private->file = file;
return 0;
}
static int fcp_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct usb_mixer_interface *mixer = hw->private_data;
struct fcp_data *private = mixer->private_data;
void __user *argp = (void __user *)arg;
guard(mutex)(&private->mutex);
switch (cmd) {
case FCP_IOCTL_PVERSION:
return put_user(FCP_HWDEP_VERSION,
(int __user *)argp) ? -EFAULT : 0;
break;
case FCP_IOCTL_INIT:
return fcp_ioctl_init(mixer, argp);
case FCP_IOCTL_CMD:
if (!private->init)
return -EINVAL;
return fcp_ioctl_cmd(mixer, argp);
case FCP_IOCTL_SET_METER_MAP:
if (!private->init)
return -EINVAL;
return fcp_ioctl_set_meter_map(mixer, argp);
case FCP_IOCTL_SET_METER_LABELS:
if (!private->init)
return -EINVAL;
if (!private->meter_ctl)
return -EINVAL;
return fcp_ioctl_set_meter_labels(mixer, argp);
default:
return -ENOIOCTLCMD;
}
/* not reached */
}
static long fcp_hwdep_read(struct snd_hwdep *hw, char __user *buf,
long count, loff_t *offset)
{
struct usb_mixer_interface *mixer = hw->private_data;
struct fcp_data *private = mixer->private_data;
unsigned long flags;
long ret = 0;
u32 event;
if (count < sizeof(event))
return -EINVAL;
ret = wait_event_interruptible(private->notify.queue,
private->notify.event);
if (ret)
return ret;
spin_lock_irqsave(&private->notify.lock, flags);
event = private->notify.event;
private->notify.event = 0;
spin_unlock_irqrestore(&private->notify.lock, flags);
if (copy_to_user(buf, &event, sizeof(event)))
return -EFAULT;
return sizeof(event);
}
static __poll_t fcp_hwdep_poll(struct snd_hwdep *hw,
struct file *file,
poll_table *wait)
{
struct usb_mixer_interface *mixer = hw->private_data;
struct fcp_data *private = mixer->private_data;
__poll_t mask = 0;
poll_wait(file, &private->notify.queue, wait);
if (private->notify.event)
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
static int fcp_hwdep_release(struct snd_hwdep *hw, struct file *file)
{
struct usb_mixer_interface *mixer = hw->private_data;
struct fcp_data *private = mixer->private_data;
if (!private)
return 0;
private->file = NULL;
return 0;
}
static int fcp_hwdep_init(struct usb_mixer_interface *mixer)
{
struct snd_hwdep *hw;
int err;
err = snd_hwdep_new(mixer->chip->card, "Focusrite Control", 0, &hw);
if (err < 0)
return err;
hw->private_data = mixer;
hw->exclusive = 1;
hw->ops.open = fcp_hwdep_open;
hw->ops.ioctl = fcp_hwdep_ioctl;
hw->ops.ioctl_compat = fcp_hwdep_ioctl;
hw->ops.read = fcp_hwdep_read;
hw->ops.poll = fcp_hwdep_poll;
hw->ops.release = fcp_hwdep_release;
return 0;
}
/*** Cleanup ***/
static void fcp_cleanup_urb(struct usb_mixer_interface *mixer)
{
if (!mixer->urb)
return;
usb_kill_urb(mixer->urb);
kfree(mixer->urb->transfer_buffer);
usb_free_urb(mixer->urb);
mixer->urb = NULL;
}
static void fcp_private_free(struct usb_mixer_interface *mixer)
{
struct fcp_data *private = mixer->private_data;
fcp_cleanup_urb(mixer);
kfree(private->meter_level_map);
kfree(private->meter_levels);
kfree(private->meter_labels_tlv);
kfree(private);
mixer->private_data = NULL;
}
static void fcp_private_suspend(struct usb_mixer_interface *mixer)
{
fcp_cleanup_urb(mixer);
}
/*** Callbacks ***/
static void fcp_notify(struct urb *urb)
{
struct usb_mixer_interface *mixer = urb->context;
struct fcp_data *private = mixer->private_data;
int len = urb->actual_length;
int ustatus = urb->status;
u32 data;
if (ustatus != 0 || len != 8)
goto requeue;
data = le32_to_cpu(*(__le32 *)urb->transfer_buffer);
/* Handle command acknowledgement */
if (data & FCP_NOTIFY_ACK) {
complete(&private->cmd_done);
data &= ~FCP_NOTIFY_ACK;
}
if (data) {
unsigned long flags;
spin_lock_irqsave(&private->notify.lock, flags);
private->notify.event |= data;
spin_unlock_irqrestore(&private->notify.lock, flags);
wake_up_interruptible(&private->notify.queue);
}
requeue:
if (ustatus != -ENOENT &&
ustatus != -ECONNRESET &&
ustatus != -ESHUTDOWN) {
urb->dev = mixer->chip->dev;
usb_submit_urb(urb, GFP_ATOMIC);
} else {
complete(&private->cmd_done);
}
}
/* Submit a URB to receive notifications from the device */
static int fcp_init_notify(struct usb_mixer_interface *mixer)
{
struct usb_device *dev = mixer->chip->dev;
struct fcp_data *private = mixer->private_data;
unsigned int pipe = usb_rcvintpipe(dev, private->bEndpointAddress);
void *transfer_buffer;
int err;
/* Already set up */
if (mixer->urb)
return 0;
if (usb_pipe_type_check(dev, pipe))
return -EINVAL;
mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!mixer->urb)
return -ENOMEM;
transfer_buffer = kmalloc(private->wMaxPacketSize, GFP_KERNEL);
if (!transfer_buffer) {
usb_free_urb(mixer->urb);
mixer->urb = NULL;
return -ENOMEM;
}
usb_fill_int_urb(mixer->urb, dev, pipe,
transfer_buffer, private->wMaxPacketSize,
fcp_notify, mixer, private->bInterval);
init_completion(&private->cmd_done);
err = usb_submit_urb(mixer->urb, GFP_KERNEL);
if (err) {
usb_audio_err(mixer->chip,
"%s: usb_submit_urb failed: %d\n",
__func__, err);
kfree(transfer_buffer);
usb_free_urb(mixer->urb);
mixer->urb = NULL;
}
return err;
}
/*** Initialisation ***/
static int fcp_init(struct usb_mixer_interface *mixer,
void *step0_resp, void *step2_resp)
{
struct fcp_data *private = mixer->private_data;
struct usb_device *dev = mixer->chip->dev;
int err;
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
FCP_USB_REQ_STEP0,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
0, private->bInterfaceNumber,
step0_resp, private->step0_resp_size);
if (err < 0)
return err;
err = fcp_init_notify(mixer);
if (err < 0)
return err;
private->seq = 0;
private->init = 1;
err = fcp_usb(mixer, private->init1_opcode, NULL, 0, NULL, 0);
if (err < 0)
return err;
err = fcp_usb(mixer, private->init2_opcode,
NULL, 0, step2_resp, private->step2_resp_size);
if (err < 0)
return err;
return 0;
}
static int fcp_init_private(struct usb_mixer_interface *mixer)
{
struct fcp_data *private =
kzalloc(sizeof(struct fcp_data), GFP_KERNEL);
if (!private)
return -ENOMEM;
mutex_init(&private->mutex);
init_waitqueue_head(&private->notify.queue);
spin_lock_init(&private->notify.lock);
mixer->private_data = private;
mixer->private_free = fcp_private_free;
mixer->private_suspend = fcp_private_suspend;
private->mixer = mixer;
return 0;
}
/* Look through the interface descriptors for the Focusrite Control
* interface (bInterfaceClass = 255 Vendor Specific Class) and set
* bInterfaceNumber, bEndpointAddress, wMaxPacketSize, and bInterval
* in private
*/
static int fcp_find_fc_interface(struct usb_mixer_interface *mixer)
{
struct snd_usb_audio *chip = mixer->chip;
struct fcp_data *private = mixer->private_data;
struct usb_host_config *config = chip->dev->actconfig;
int i;
for (i = 0; i < config->desc.bNumInterfaces; i++) {
struct usb_interface *intf = config->interface[i];
struct usb_interface_descriptor *desc =
&intf->altsetting[0].desc;
struct usb_endpoint_descriptor *epd;
if (desc->bInterfaceClass != 255)
continue;
epd = get_endpoint(intf->altsetting, 0);
private->bInterfaceNumber = desc->bInterfaceNumber;
private->bEndpointAddress = epd->bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
private->wMaxPacketSize = le16_to_cpu(epd->wMaxPacketSize);
private->bInterval = epd->bInterval;
return 0;
}
usb_audio_err(chip, "Focusrite vendor-specific interface not found\n");
return -EINVAL;
}
int snd_fcp_init(struct usb_mixer_interface *mixer)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
/* only use UAC_VERSION_2 */
if (!mixer->protocol)
return 0;
err = fcp_init_private(mixer);
if (err < 0)
return err;
err = fcp_find_fc_interface(mixer);
if (err < 0)
return err;
err = fcp_hwdep_init(mixer);
if (err < 0)
return err;
usb_audio_info(chip,
"Focusrite Control Protocol Driver ready (pid=0x%04x); "
"report any issues to "
"https://github.com/geoffreybennett/fcp-support/issues",
USB_ID_PRODUCT(chip->usb_id));
return err;
}