| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * EDAC driver for Intel(R) Xeon(R) Skylake processors | 
 |  * Copyright (c) 2016, Intel Corporation. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/processor.h> | 
 | #include <asm/cpu_device_id.h> | 
 | #include <asm/intel-family.h> | 
 | #include <asm/mce.h> | 
 |  | 
 | #include "edac_module.h" | 
 | #include "skx_common.h" | 
 |  | 
 | #define EDAC_MOD_STR    "skx_edac" | 
 |  | 
 | /* | 
 |  * Debug macros | 
 |  */ | 
 | #define skx_printk(level, fmt, arg...)			\ | 
 | 	edac_printk(level, "skx", fmt, ##arg) | 
 |  | 
 | #define skx_mc_printk(mci, level, fmt, arg...)		\ | 
 | 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) | 
 |  | 
 | static struct list_head *skx_edac_list; | 
 |  | 
 | static u64 skx_tolm, skx_tohm; | 
 | static int skx_num_sockets; | 
 | static unsigned int nvdimm_count; | 
 |  | 
 | #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */ | 
 | #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */ | 
 |  | 
 | static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) | 
 | { | 
 | 	struct skx_dev *d; | 
 |  | 
 | 	list_for_each_entry(d, skx_edac_list, list) { | 
 | 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) | 
 | 			return d; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | enum munittype { | 
 | 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD | 
 | }; | 
 |  | 
 | struct munit { | 
 | 	u16	did; | 
 | 	u16	devfn[SKX_NUM_IMC]; | 
 | 	u8	busidx; | 
 | 	u8	per_socket; | 
 | 	enum munittype mtype; | 
 | }; | 
 |  | 
 | /* | 
 |  * List of PCI device ids that we need together with some device | 
 |  * number and function numbers to tell which memory controller the | 
 |  * device belongs to. | 
 |  */ | 
 | static const struct munit skx_all_munits[] = { | 
 | 	{ 0x2054, { }, 1, 1, SAD_ALL }, | 
 | 	{ 0x2055, { }, 1, 1, UTIL_ALL }, | 
 | 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, | 
 | 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, | 
 | 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, | 
 | 	{ 0x208e, { }, 1, 0, SAD }, | 
 | 	{ } | 
 | }; | 
 |  | 
 | static int get_all_munits(const struct munit *m) | 
 | { | 
 | 	struct pci_dev *pdev, *prev; | 
 | 	struct skx_dev *d; | 
 | 	u32 reg; | 
 | 	int i = 0, ndev = 0; | 
 |  | 
 | 	prev = NULL; | 
 | 	for (;;) { | 
 | 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); | 
 | 		if (!pdev) | 
 | 			break; | 
 | 		ndev++; | 
 | 		if (m->per_socket == SKX_NUM_IMC) { | 
 | 			for (i = 0; i < SKX_NUM_IMC; i++) | 
 | 				if (m->devfn[i] == pdev->devfn) | 
 | 					break; | 
 | 			if (i == SKX_NUM_IMC) | 
 | 				goto fail; | 
 | 		} | 
 | 		d = get_skx_dev(pdev->bus, m->busidx); | 
 | 		if (!d) | 
 | 			goto fail; | 
 |  | 
 | 		/* Be sure that the device is enabled */ | 
 | 		if (unlikely(pci_enable_device(pdev) < 0)) { | 
 | 			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n", | 
 | 				   PCI_VENDOR_ID_INTEL, m->did); | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		switch (m->mtype) { | 
 | 		case CHAN0: case CHAN1: case CHAN2: | 
 | 			pci_dev_get(pdev); | 
 | 			d->imc[i].chan[m->mtype].cdev = pdev; | 
 | 			break; | 
 | 		case SAD_ALL: | 
 | 			pci_dev_get(pdev); | 
 | 			d->sad_all = pdev; | 
 | 			break; | 
 | 		case UTIL_ALL: | 
 | 			pci_dev_get(pdev); | 
 | 			d->util_all = pdev; | 
 | 			break; | 
 | 		case SAD: | 
 | 			/* | 
 | 			 * one of these devices per core, including cores | 
 | 			 * that don't exist on this SKU. Ignore any that | 
 | 			 * read a route table of zero, make sure all the | 
 | 			 * non-zero values match. | 
 | 			 */ | 
 | 			pci_read_config_dword(pdev, 0xB4, ®); | 
 | 			if (reg != 0) { | 
 | 				if (d->mcroute == 0) { | 
 | 					d->mcroute = reg; | 
 | 				} else if (d->mcroute != reg) { | 
 | 					skx_printk(KERN_ERR, "mcroute mismatch\n"); | 
 | 					goto fail; | 
 | 				} | 
 | 			} | 
 | 			ndev--; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		prev = pdev; | 
 | 	} | 
 |  | 
 | 	return ndev; | 
 | fail: | 
 | 	pci_dev_put(pdev); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static const struct x86_cpu_id skx_cpuids[] = { | 
 | 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); | 
 |  | 
 | #define SKX_GET_MTMTR(dev, reg) \ | 
 | 	pci_read_config_dword((dev), 0x87c, &(reg)) | 
 |  | 
 | static bool skx_check_ecc(struct pci_dev *pdev) | 
 | { | 
 | 	u32 mtmtr; | 
 |  | 
 | 	SKX_GET_MTMTR(pdev, mtmtr); | 
 |  | 
 | 	return !!GET_BITFIELD(mtmtr, 2, 2); | 
 | } | 
 |  | 
 | static int skx_get_dimm_config(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct skx_pvt *pvt = mci->pvt_info; | 
 | 	struct skx_imc *imc = pvt->imc; | 
 | 	u32 mtr, amap, mcddrtcfg; | 
 | 	struct dimm_info *dimm; | 
 | 	int i, j; | 
 | 	int ndimms; | 
 |  | 
 | 	for (i = 0; i < SKX_NUM_CHANNELS; i++) { | 
 | 		ndimms = 0; | 
 | 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); | 
 | 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); | 
 | 		for (j = 0; j < SKX_NUM_DIMMS; j++) { | 
 | 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | 
 | 					     mci->n_layers, i, j, 0); | 
 | 			pci_read_config_dword(imc->chan[i].cdev, | 
 | 					      0x80 + 4 * j, &mtr); | 
 | 			if (IS_DIMM_PRESENT(mtr)) { | 
 | 				ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j); | 
 | 			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) { | 
 | 				ndimms += skx_get_nvdimm_info(dimm, imc, i, j, | 
 | 							      EDAC_MOD_STR); | 
 | 				nvdimm_count++; | 
 | 			} | 
 | 		} | 
 | 		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { | 
 | 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define	SKX_MAX_SAD 24 | 
 |  | 
 | #define SKX_GET_SAD(d, i, reg)	\ | 
 | 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg)) | 
 | #define SKX_GET_ILV(d, i, reg)	\ | 
 | 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg)) | 
 |  | 
 | #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31) | 
 | #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27) | 
 | #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) | 
 | #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6) | 
 | #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4) | 
 | #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2) | 
 | #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0) | 
 |  | 
 | #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0) | 
 | #define SKX_ILV_TARGET(tgt)	((tgt) & 7) | 
 |  | 
 | static bool skx_sad_decode(struct decoded_addr *res) | 
 | { | 
 | 	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list); | 
 | 	u64 addr = res->addr; | 
 | 	int i, idx, tgt, lchan, shift; | 
 | 	u32 sad, ilv; | 
 | 	u64 limit, prev_limit; | 
 | 	int remote = 0; | 
 |  | 
 | 	/* Simple sanity check for I/O space or out of range */ | 
 | 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { | 
 | 		edac_dbg(0, "Address 0x%llx out of range\n", addr); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | restart: | 
 | 	prev_limit = 0; | 
 | 	for (i = 0; i < SKX_MAX_SAD; i++) { | 
 | 		SKX_GET_SAD(d, i, sad); | 
 | 		limit = SKX_SAD_LIMIT(sad); | 
 | 		if (SKX_SAD_ENABLE(sad)) { | 
 | 			if (addr >= prev_limit && addr <= limit) | 
 | 				goto sad_found; | 
 | 		} | 
 | 		prev_limit = limit + 1; | 
 | 	} | 
 | 	edac_dbg(0, "No SAD entry for 0x%llx\n", addr); | 
 | 	return false; | 
 |  | 
 | sad_found: | 
 | 	SKX_GET_ILV(d, i, ilv); | 
 |  | 
 | 	switch (SKX_SAD_INTERLEAVE(sad)) { | 
 | 	case 0: | 
 | 		idx = GET_BITFIELD(addr, 6, 8); | 
 | 		break; | 
 | 	case 1: | 
 | 		idx = GET_BITFIELD(addr, 8, 10); | 
 | 		break; | 
 | 	case 2: | 
 | 		idx = GET_BITFIELD(addr, 12, 14); | 
 | 		break; | 
 | 	case 3: | 
 | 		idx = GET_BITFIELD(addr, 30, 32); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); | 
 |  | 
 | 	/* If point to another node, find it and start over */ | 
 | 	if (SKX_ILV_REMOTE(tgt)) { | 
 | 		if (remote) { | 
 | 			edac_dbg(0, "Double remote!\n"); | 
 | 			return false; | 
 | 		} | 
 | 		remote = 1; | 
 | 		list_for_each_entry(d, skx_edac_list, list) { | 
 | 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) | 
 | 				goto restart; | 
 | 		} | 
 | 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (SKX_SAD_MOD3(sad) == 0) { | 
 | 		lchan = SKX_ILV_TARGET(tgt); | 
 | 	} else { | 
 | 		switch (SKX_SAD_MOD3MODE(sad)) { | 
 | 		case 0: | 
 | 			shift = 6; | 
 | 			break; | 
 | 		case 1: | 
 | 			shift = 8; | 
 | 			break; | 
 | 		case 2: | 
 | 			shift = 12; | 
 | 			break; | 
 | 		default: | 
 | 			edac_dbg(0, "illegal mod3mode\n"); | 
 | 			return false; | 
 | 		} | 
 | 		switch (SKX_SAD_MOD3ASMOD2(sad)) { | 
 | 		case 0: | 
 | 			lchan = (addr >> shift) % 3; | 
 | 			break; | 
 | 		case 1: | 
 | 			lchan = (addr >> shift) % 2; | 
 | 			break; | 
 | 		case 2: | 
 | 			lchan = (addr >> shift) % 2; | 
 | 			lchan = (lchan << 1) | !lchan; | 
 | 			break; | 
 | 		case 3: | 
 | 			lchan = ((addr >> shift) % 2) << 1; | 
 | 			break; | 
 | 		} | 
 | 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); | 
 | 	} | 
 |  | 
 | 	res->dev = d; | 
 | 	res->socket = d->imc[0].src_id; | 
 | 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); | 
 | 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); | 
 |  | 
 | 	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n", | 
 | 		 res->addr, res->socket, res->imc, res->channel); | 
 | 	return true; | 
 | } | 
 |  | 
 | #define	SKX_MAX_TAD 8 | 
 |  | 
 | #define SKX_GET_TADBASE(d, mc, i, reg)			\ | 
 | 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg)) | 
 | #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\ | 
 | 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg)) | 
 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\ | 
 | 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg)) | 
 |  | 
 | #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26) | 
 | #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5) | 
 | #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7) | 
 | #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) | 
 | #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26) | 
 | #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11)) | 
 | #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1) | 
 |  | 
 | /* which bit used for both socket and channel interleave */ | 
 | static int skx_granularity[] = { 6, 8, 12, 30 }; | 
 |  | 
 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) | 
 | { | 
 | 	addr >>= shift; | 
 | 	addr /= ways; | 
 | 	addr <<= shift; | 
 |  | 
 | 	return addr | (lowbits & ((1ull << shift) - 1)); | 
 | } | 
 |  | 
 | static bool skx_tad_decode(struct decoded_addr *res) | 
 | { | 
 | 	int i; | 
 | 	u32 base, wayness, chnilvoffset; | 
 | 	int skt_interleave_bit, chn_interleave_bit; | 
 | 	u64 channel_addr; | 
 |  | 
 | 	for (i = 0; i < SKX_MAX_TAD; i++) { | 
 | 		SKX_GET_TADBASE(res->dev, res->imc, i, base); | 
 | 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); | 
 | 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) | 
 | 			goto tad_found; | 
 | 	} | 
 | 	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr); | 
 | 	return false; | 
 |  | 
 | tad_found: | 
 | 	res->sktways = SKX_TAD_SKTWAYS(wayness); | 
 | 	res->chanways = SKX_TAD_CHNWAYS(wayness); | 
 | 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; | 
 | 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; | 
 |  | 
 | 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); | 
 | 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); | 
 |  | 
 | 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { | 
 | 		/* Must handle channel first, then socket */ | 
 | 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | 
 | 						 res->chanways, channel_addr); | 
 | 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | 
 | 						 res->sktways, channel_addr); | 
 | 	} else { | 
 | 		/* Handle socket then channel. Preserve low bits from original address */ | 
 | 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | 
 | 						 res->sktways, res->addr); | 
 | 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | 
 | 						 res->chanways, res->addr); | 
 | 	} | 
 |  | 
 | 	res->chan_addr = channel_addr; | 
 |  | 
 | 	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n", | 
 | 		 res->addr, res->chan_addr, res->sktways, res->chanways); | 
 | 	return true; | 
 | } | 
 |  | 
 | #define SKX_MAX_RIR 4 | 
 |  | 
 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\ | 
 | 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\ | 
 | 			      0x108 + 4 * (i), &(reg)) | 
 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\ | 
 | 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\ | 
 | 			      0x120 + 16 * (idx) + 4 * (i), &(reg)) | 
 |  | 
 | #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) | 
 | #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) | 
 | #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) | 
 | #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) | 
 | #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) | 
 |  | 
 | static bool skx_rir_decode(struct decoded_addr *res) | 
 | { | 
 | 	int i, idx, chan_rank; | 
 | 	int shift; | 
 | 	u32 rirway, rirlv; | 
 | 	u64 rank_addr, prev_limit = 0, limit; | 
 |  | 
 | 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) | 
 | 		shift = 6; | 
 | 	else | 
 | 		shift = 13; | 
 |  | 
 | 	for (i = 0; i < SKX_MAX_RIR; i++) { | 
 | 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); | 
 | 		limit = SKX_RIR_LIMIT(rirway); | 
 | 		if (SKX_RIR_VALID(rirway)) { | 
 | 			if (prev_limit <= res->chan_addr && | 
 | 			    res->chan_addr <= limit) | 
 | 				goto rir_found; | 
 | 		} | 
 | 		prev_limit = limit; | 
 | 	} | 
 | 	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr); | 
 | 	return false; | 
 |  | 
 | rir_found: | 
 | 	rank_addr = res->chan_addr >> shift; | 
 | 	rank_addr /= SKX_RIR_WAYS(rirway); | 
 | 	rank_addr <<= shift; | 
 | 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); | 
 |  | 
 | 	res->rank_address = rank_addr; | 
 | 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); | 
 |  | 
 | 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); | 
 | 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); | 
 | 	chan_rank = SKX_RIR_CHAN_RANK(rirlv); | 
 | 	res->channel_rank = chan_rank; | 
 | 	res->dimm = chan_rank / 4; | 
 | 	res->rank = chan_rank % 4; | 
 |  | 
 | 	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n", | 
 | 		 res->addr, res->dimm, res->rank, | 
 | 		 res->channel_rank, res->rank_address); | 
 | 	return true; | 
 | } | 
 |  | 
 | static u8 skx_close_row[] = { | 
 | 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | 
 | }; | 
 |  | 
 | static u8 skx_close_column[] = { | 
 | 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | 
 | }; | 
 |  | 
 | static u8 skx_open_row[] = { | 
 | 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | 
 | }; | 
 |  | 
 | static u8 skx_open_column[] = { | 
 | 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 
 | }; | 
 |  | 
 | static u8 skx_open_fine_column[] = { | 
 | 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | 
 | }; | 
 |  | 
 | static int skx_bits(u64 addr, int nbits, u8 *bits) | 
 | { | 
 | 	int i, res = 0; | 
 |  | 
 | 	for (i = 0; i < nbits; i++) | 
 | 		res |= ((addr >> bits[i]) & 1) << i; | 
 | 	return res; | 
 | } | 
 |  | 
 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | 
 | { | 
 | 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | 
 |  | 
 | 	if (do_xor) | 
 | 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool skx_mad_decode(struct decoded_addr *r) | 
 | { | 
 | 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; | 
 | 	int bg0 = dimm->fine_grain_bank ? 6 : 13; | 
 |  | 
 | 	if (dimm->close_pg) { | 
 | 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); | 
 | 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); | 
 | 		r->column |= 0x400; /* C10 is autoprecharge, always set */ | 
 | 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); | 
 | 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); | 
 | 	} else { | 
 | 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); | 
 | 		if (dimm->fine_grain_bank) | 
 | 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); | 
 | 		else | 
 | 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); | 
 | 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); | 
 | 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); | 
 | 	} | 
 | 	r->row &= (1u << dimm->rowbits) - 1; | 
 |  | 
 | 	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n", | 
 | 		 r->addr, r->row, r->column, r->bank_address, | 
 | 		 r->bank_group); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool skx_decode(struct decoded_addr *res) | 
 | { | 
 | 	return skx_sad_decode(res) && skx_tad_decode(res) && | 
 | 		skx_rir_decode(res) && skx_mad_decode(res); | 
 | } | 
 |  | 
 | static struct notifier_block skx_mce_dec = { | 
 | 	.notifier_call	= skx_mce_check_error, | 
 | 	.priority	= MCE_PRIO_EDAC, | 
 | }; | 
 |  | 
 | /* | 
 |  * skx_init: | 
 |  *	make sure we are running on the correct cpu model | 
 |  *	search for all the devices we need | 
 |  *	check which DIMMs are present. | 
 |  */ | 
 | static int __init skx_init(void) | 
 | { | 
 | 	const struct x86_cpu_id *id; | 
 | 	const struct munit *m; | 
 | 	const char *owner; | 
 | 	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8}; | 
 | 	u8 mc = 0, src_id, node_id; | 
 | 	struct skx_dev *d; | 
 |  | 
 | 	edac_dbg(2, "\n"); | 
 |  | 
 | 	owner = edac_get_owner(); | 
 | 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	id = x86_match_cpu(skx_cpuids); | 
 | 	if (!id) | 
 | 		return -ENODEV; | 
 |  | 
 | 	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list); | 
 | 	if (rc < 0) | 
 | 		goto fail; | 
 | 	if (rc == 0) { | 
 | 		edac_dbg(2, "No memory controllers found\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	skx_num_sockets = rc; | 
 |  | 
 | 	for (m = skx_all_munits; m->did; m++) { | 
 | 		rc = get_all_munits(m); | 
 | 		if (rc < 0) | 
 | 			goto fail; | 
 | 		if (rc != m->per_socket * skx_num_sockets) { | 
 | 			edac_dbg(2, "Expected %d, got %d of 0x%x\n", | 
 | 				 m->per_socket * skx_num_sockets, rc, m->did); | 
 | 			rc = -ENODEV; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(d, skx_edac_list, list) { | 
 | 		rc = skx_get_src_id(d, &src_id); | 
 | 		if (rc < 0) | 
 | 			goto fail; | 
 | 		rc = skx_get_node_id(d, &node_id); | 
 | 		if (rc < 0) | 
 | 			goto fail; | 
 | 		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); | 
 | 		for (i = 0; i < SKX_NUM_IMC; i++) { | 
 | 			d->imc[i].mc = mc++; | 
 | 			d->imc[i].lmc = i; | 
 | 			d->imc[i].src_id = src_id; | 
 | 			d->imc[i].node_id = node_id; | 
 | 			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev, | 
 | 					      "Skylake Socket", EDAC_MOD_STR, | 
 | 					      skx_get_dimm_config); | 
 | 			if (rc < 0) | 
 | 				goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	skx_set_decode(skx_decode); | 
 |  | 
 | 	if (nvdimm_count && skx_adxl_get() == -ENODEV) | 
 | 		skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n"); | 
 |  | 
 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 	opstate_init(); | 
 |  | 
 | 	setup_skx_debug("skx_test"); | 
 |  | 
 | 	mce_register_decode_chain(&skx_mce_dec); | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	skx_remove(); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit skx_exit(void) | 
 | { | 
 | 	edac_dbg(2, "\n"); | 
 | 	mce_unregister_decode_chain(&skx_mce_dec); | 
 | 	teardown_skx_debug(); | 
 | 	if (nvdimm_count) | 
 | 		skx_adxl_put(); | 
 | 	skx_remove(); | 
 | } | 
 |  | 
 | module_init(skx_init); | 
 | module_exit(skx_exit); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_AUTHOR("Tony Luck"); | 
 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |