|  | /* | 
|  | * Common Flash Interface support: | 
|  | *   Intel Extended Vendor Command Set (ID 0x0001) | 
|  | * | 
|  | * (C) 2000 Red Hat. GPL'd | 
|  | * | 
|  | * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ | 
|  | * | 
|  | * | 
|  | * 10/10/2000	Nicolas Pitre <[email protected]> | 
|  | * 	- completely revamped method functions so they are aware and | 
|  | * 	  independent of the flash geometry (buswidth, interleave, etc.) | 
|  | * 	- scalability vs code size is completely set at compile-time | 
|  | * 	  (see include/linux/mtd/cfi.h for selection) | 
|  | *	- optimized write buffer method | 
|  | * 02/05/2002	Christopher Hoover <[email protected]>/<[email protected]> | 
|  | *	- reworked lock/unlock/erase support for var size flash | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mtd/xip.h> | 
|  | #include <linux/mtd/map.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/compatmac.h> | 
|  | #include <linux/mtd/cfi.h> | 
|  |  | 
|  | /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ | 
|  | /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ | 
|  |  | 
|  | // debugging, turns off buffer write mode if set to 1 | 
|  | #define FORCE_WORD_WRITE 0 | 
|  |  | 
|  | #define MANUFACTURER_INTEL	0x0089 | 
|  | #define I82802AB	0x00ad | 
|  | #define I82802AC	0x00ac | 
|  | #define MANUFACTURER_ST         0x0020 | 
|  | #define M50LPW080       0x002F | 
|  |  | 
|  | static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 
|  | //static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 
|  | //static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 
|  | static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 
|  | static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 
|  | static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); | 
|  | static void cfi_intelext_sync (struct mtd_info *); | 
|  | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); | 
|  | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); | 
|  | static int cfi_intelext_suspend (struct mtd_info *); | 
|  | static void cfi_intelext_resume (struct mtd_info *); | 
|  |  | 
|  | static void cfi_intelext_destroy(struct mtd_info *); | 
|  |  | 
|  | struct mtd_info *cfi_cmdset_0001(struct map_info *, int); | 
|  |  | 
|  | static struct mtd_info *cfi_intelext_setup (struct mtd_info *); | 
|  | static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); | 
|  |  | 
|  | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char **mtdbuf); | 
|  | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, | 
|  | size_t len); | 
|  |  | 
|  | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | 
|  | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | 
|  | #include "fwh_lock.h" | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | *  *********** SETUP AND PROBE BITS  *********** | 
|  | */ | 
|  |  | 
|  | static struct mtd_chip_driver cfi_intelext_chipdrv = { | 
|  | .probe		= NULL, /* Not usable directly */ | 
|  | .destroy	= cfi_intelext_destroy, | 
|  | .name		= "cfi_cmdset_0001", | 
|  | .module		= THIS_MODULE | 
|  | }; | 
|  |  | 
|  | /* #define DEBUG_LOCK_BITS */ | 
|  | /* #define DEBUG_CFI_FEATURES */ | 
|  |  | 
|  | #ifdef DEBUG_CFI_FEATURES | 
|  | static void cfi_tell_features(struct cfi_pri_intelext *extp) | 
|  | { | 
|  | int i; | 
|  | printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport); | 
|  | printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported"); | 
|  | printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported"); | 
|  | printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported"); | 
|  | printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported"); | 
|  | printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported"); | 
|  | printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported"); | 
|  | printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported"); | 
|  | printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported"); | 
|  | printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported"); | 
|  | printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); | 
|  | for (i=10; i<32; i++) { | 
|  | if (extp->FeatureSupport & (1<<i)) | 
|  | printk("     - Unknown Bit %X:      supported\n", i); | 
|  | } | 
|  |  | 
|  | printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); | 
|  | printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); | 
|  | for (i=1; i<8; i++) { | 
|  | if (extp->SuspendCmdSupport & (1<<i)) | 
|  | printk("     - Unknown Bit %X:               supported\n", i); | 
|  | } | 
|  |  | 
|  | printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); | 
|  | printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no"); | 
|  | printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no"); | 
|  | for (i=2; i<16; i++) { | 
|  | if (extp->BlkStatusRegMask & (1<<i)) | 
|  | printk("     - Unknown Bit %X Active: yes\n",i); | 
|  | } | 
|  |  | 
|  | printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", | 
|  | extp->VccOptimal >> 4, extp->VccOptimal & 0xf); | 
|  | if (extp->VppOptimal) | 
|  | printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", | 
|  | extp->VppOptimal >> 4, extp->VppOptimal & 0xf); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | 
|  | /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ | 
|  | static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 
|  |  | 
|  | printk(KERN_WARNING "cfi_cmdset_0001: Suspend " | 
|  | "erase on write disabled.\n"); | 
|  | extp->SuspendCmdSupport &= ~1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | 
|  | static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | 
|  |  | 
|  | if (cfip && (cfip->FeatureSupport&4)) { | 
|  | cfip->FeatureSupport &= ~4; | 
|  | printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */ | 
|  | cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */ | 
|  | } | 
|  |  | 
|  | static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | /* Note this is done after the region info is endian swapped */ | 
|  | cfi->cfiq->EraseRegionInfo[1] = | 
|  | (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; | 
|  | }; | 
|  |  | 
|  | static void fixup_use_point(struct mtd_info *mtd, void *param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | if (!mtd->point && map_is_linear(map)) { | 
|  | mtd->point   = cfi_intelext_point; | 
|  | mtd->unpoint = cfi_intelext_unpoint; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | if (cfi->cfiq->BufWriteTimeoutTyp) { | 
|  | printk(KERN_INFO "Using buffer write method\n" ); | 
|  | mtd->write = cfi_intelext_write_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct cfi_fixup cfi_fixup_table[] = { | 
|  | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, | 
|  | #endif | 
|  | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, | 
|  | #endif | 
|  | #if !FORCE_WORD_WRITE | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, | 
|  | #endif | 
|  | { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, | 
|  | { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, | 
|  | { 0, 0, NULL, NULL } | 
|  | }; | 
|  |  | 
|  | static struct cfi_fixup jedec_fixup_table[] = { | 
|  | { MANUFACTURER_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, }, | 
|  | { MANUFACTURER_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, }, | 
|  | { MANUFACTURER_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, }, | 
|  | { 0, 0, NULL, NULL } | 
|  | }; | 
|  | static struct cfi_fixup fixup_table[] = { | 
|  | /* The CFI vendor ids and the JEDEC vendor IDs appear | 
|  | * to be common.  It is like the devices id's are as | 
|  | * well.  This table is to pick all cases where | 
|  | * we know that is the case. | 
|  | */ | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, | 
|  | { 0, 0, NULL, NULL } | 
|  | }; | 
|  |  | 
|  | static inline struct cfi_pri_intelext * | 
|  | read_pri_intelext(struct map_info *map, __u16 adr) | 
|  | { | 
|  | struct cfi_pri_intelext *extp; | 
|  | unsigned int extp_size = sizeof(*extp); | 
|  |  | 
|  | again: | 
|  | extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); | 
|  | if (!extp) | 
|  | return NULL; | 
|  |  | 
|  | /* Do some byteswapping if necessary */ | 
|  | extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); | 
|  | extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); | 
|  | extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); | 
|  |  | 
|  | if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { | 
|  | unsigned int extra_size = 0; | 
|  | int nb_parts, i; | 
|  |  | 
|  | /* Protection Register info */ | 
|  | extra_size += (extp->NumProtectionFields - 1) * (4 + 6); | 
|  |  | 
|  | /* Burst Read info */ | 
|  | extra_size += 6; | 
|  |  | 
|  | /* Number of hardware-partitions */ | 
|  | extra_size += 1; | 
|  | if (extp_size < sizeof(*extp) + extra_size) | 
|  | goto need_more; | 
|  | nb_parts = extp->extra[extra_size - 1]; | 
|  |  | 
|  | for (i = 0; i < nb_parts; i++) { | 
|  | struct cfi_intelext_regioninfo *rinfo; | 
|  | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; | 
|  | extra_size += sizeof(*rinfo); | 
|  | if (extp_size < sizeof(*extp) + extra_size) | 
|  | goto need_more; | 
|  | rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); | 
|  | extra_size += (rinfo->NumBlockTypes - 1) | 
|  | * sizeof(struct cfi_intelext_blockinfo); | 
|  | } | 
|  |  | 
|  | if (extp_size < sizeof(*extp) + extra_size) { | 
|  | need_more: | 
|  | extp_size = sizeof(*extp) + extra_size; | 
|  | kfree(extp); | 
|  | if (extp_size > 4096) { | 
|  | printk(KERN_ERR | 
|  | "%s: cfi_pri_intelext is too fat\n", | 
|  | __FUNCTION__); | 
|  | return NULL; | 
|  | } | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | return extp; | 
|  | } | 
|  |  | 
|  | /* This routine is made available to other mtd code via | 
|  | * inter_module_register.  It must only be accessed through | 
|  | * inter_module_get which will bump the use count of this module.  The | 
|  | * addresses passed back in cfi are valid as long as the use count of | 
|  | * this module is non-zero, i.e. between inter_module_get and | 
|  | * inter_module_put.  Keith Owens <[email protected]> 29 Oct 2000. | 
|  | */ | 
|  | struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct mtd_info *mtd; | 
|  | int i; | 
|  |  | 
|  | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | 
|  | if (!mtd) { | 
|  | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); | 
|  | return NULL; | 
|  | } | 
|  | memset(mtd, 0, sizeof(*mtd)); | 
|  | mtd->priv = map; | 
|  | mtd->type = MTD_NORFLASH; | 
|  |  | 
|  | /* Fill in the default mtd operations */ | 
|  | mtd->erase   = cfi_intelext_erase_varsize; | 
|  | mtd->read    = cfi_intelext_read; | 
|  | mtd->write   = cfi_intelext_write_words; | 
|  | mtd->sync    = cfi_intelext_sync; | 
|  | mtd->lock    = cfi_intelext_lock; | 
|  | mtd->unlock  = cfi_intelext_unlock; | 
|  | mtd->suspend = cfi_intelext_suspend; | 
|  | mtd->resume  = cfi_intelext_resume; | 
|  | mtd->flags   = MTD_CAP_NORFLASH; | 
|  | mtd->name    = map->name; | 
|  |  | 
|  | if (cfi->cfi_mode == CFI_MODE_CFI) { | 
|  | /* | 
|  | * It's a real CFI chip, not one for which the probe | 
|  | * routine faked a CFI structure. So we read the feature | 
|  | * table from it. | 
|  | */ | 
|  | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | 
|  | struct cfi_pri_intelext *extp; | 
|  |  | 
|  | extp = read_pri_intelext(map, adr); | 
|  | if (!extp) { | 
|  | kfree(mtd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Install our own private info structure */ | 
|  | cfi->cmdset_priv = extp; | 
|  |  | 
|  | cfi_fixup(mtd, cfi_fixup_table); | 
|  |  | 
|  | #ifdef DEBUG_CFI_FEATURES | 
|  | /* Tell the user about it in lots of lovely detail */ | 
|  | cfi_tell_features(extp); | 
|  | #endif | 
|  |  | 
|  | if(extp->SuspendCmdSupport & 1) { | 
|  | printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); | 
|  | } | 
|  | } | 
|  | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | 
|  | /* Apply jedec specific fixups */ | 
|  | cfi_fixup(mtd, jedec_fixup_table); | 
|  | } | 
|  | /* Apply generic fixups */ | 
|  | cfi_fixup(mtd, fixup_table); | 
|  |  | 
|  | for (i=0; i< cfi->numchips; i++) { | 
|  | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | 
|  | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | 
|  | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | 
|  | cfi->chips[i].ref_point_counter = 0; | 
|  | } | 
|  |  | 
|  | map->fldrv = &cfi_intelext_chipdrv; | 
|  |  | 
|  | return cfi_intelext_setup(mtd); | 
|  | } | 
|  |  | 
|  | static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long offset = 0; | 
|  | int i,j; | 
|  | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | 
|  |  | 
|  | //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); | 
|  |  | 
|  | mtd->size = devsize * cfi->numchips; | 
|  |  | 
|  | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | 
|  | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | 
|  | * mtd->numeraseregions, GFP_KERNEL); | 
|  | if (!mtd->eraseregions) { | 
|  | printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); | 
|  | goto setup_err; | 
|  | } | 
|  |  | 
|  | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | 
|  | unsigned long ernum, ersize; | 
|  | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | 
|  | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | 
|  |  | 
|  | if (mtd->erasesize < ersize) { | 
|  | mtd->erasesize = ersize; | 
|  | } | 
|  | for (j=0; j<cfi->numchips; j++) { | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | 
|  | } | 
|  | offset += (ersize * ernum); | 
|  | } | 
|  |  | 
|  | if (offset != devsize) { | 
|  | /* Argh */ | 
|  | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | 
|  | goto setup_err; | 
|  | } | 
|  |  | 
|  | for (i=0; i<mtd->numeraseregions;i++){ | 
|  | printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", | 
|  | i,mtd->eraseregions[i].offset, | 
|  | mtd->eraseregions[i].erasesize, | 
|  | mtd->eraseregions[i].numblocks); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; | 
|  | mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; | 
|  | #endif | 
|  |  | 
|  | /* This function has the potential to distort the reality | 
|  | a bit and therefore should be called last. */ | 
|  | if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) | 
|  | goto setup_err; | 
|  |  | 
|  | __module_get(THIS_MODULE); | 
|  | return mtd; | 
|  |  | 
|  | setup_err: | 
|  | if(mtd) { | 
|  | if(mtd->eraseregions) | 
|  | kfree(mtd->eraseregions); | 
|  | kfree(mtd); | 
|  | } | 
|  | kfree(cfi->cmdset_priv); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_partition_fixup(struct mtd_info *mtd, | 
|  | struct cfi_private **pcfi) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = *pcfi; | 
|  | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | 
|  |  | 
|  | /* | 
|  | * Probing of multi-partition flash ships. | 
|  | * | 
|  | * To support multiple partitions when available, we simply arrange | 
|  | * for each of them to have their own flchip structure even if they | 
|  | * are on the same physical chip.  This means completely recreating | 
|  | * a new cfi_private structure right here which is a blatent code | 
|  | * layering violation, but this is still the least intrusive | 
|  | * arrangement at this point. This can be rearranged in the future | 
|  | * if someone feels motivated enough.  --nico | 
|  | */ | 
|  | if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' | 
|  | && extp->FeatureSupport & (1 << 9)) { | 
|  | struct cfi_private *newcfi; | 
|  | struct flchip *chip; | 
|  | struct flchip_shared *shared; | 
|  | int offs, numregions, numparts, partshift, numvirtchips, i, j; | 
|  |  | 
|  | /* Protection Register info */ | 
|  | offs = (extp->NumProtectionFields - 1) * (4 + 6); | 
|  |  | 
|  | /* Burst Read info */ | 
|  | offs += 6; | 
|  |  | 
|  | /* Number of partition regions */ | 
|  | numregions = extp->extra[offs]; | 
|  | offs += 1; | 
|  |  | 
|  | /* Number of hardware partitions */ | 
|  | numparts = 0; | 
|  | for (i = 0; i < numregions; i++) { | 
|  | struct cfi_intelext_regioninfo *rinfo; | 
|  | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; | 
|  | numparts += rinfo->NumIdentPartitions; | 
|  | offs += sizeof(*rinfo) | 
|  | + (rinfo->NumBlockTypes - 1) * | 
|  | sizeof(struct cfi_intelext_blockinfo); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All functions below currently rely on all chips having | 
|  | * the same geometry so we'll just assume that all hardware | 
|  | * partitions are of the same size too. | 
|  | */ | 
|  | partshift = cfi->chipshift - __ffs(numparts); | 
|  |  | 
|  | if ((1 << partshift) < mtd->erasesize) { | 
|  | printk( KERN_ERR | 
|  | "%s: bad number of hw partitions (%d)\n", | 
|  | __FUNCTION__, numparts); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | numvirtchips = cfi->numchips * numparts; | 
|  | newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); | 
|  | if (!newcfi) | 
|  | return -ENOMEM; | 
|  | shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); | 
|  | if (!shared) { | 
|  | kfree(newcfi); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memcpy(newcfi, cfi, sizeof(struct cfi_private)); | 
|  | newcfi->numchips = numvirtchips; | 
|  | newcfi->chipshift = partshift; | 
|  |  | 
|  | chip = &newcfi->chips[0]; | 
|  | for (i = 0; i < cfi->numchips; i++) { | 
|  | shared[i].writing = shared[i].erasing = NULL; | 
|  | spin_lock_init(&shared[i].lock); | 
|  | for (j = 0; j < numparts; j++) { | 
|  | *chip = cfi->chips[i]; | 
|  | chip->start += j << partshift; | 
|  | chip->priv = &shared[i]; | 
|  | /* those should be reset too since | 
|  | they create memory references. */ | 
|  | init_waitqueue_head(&chip->wq); | 
|  | spin_lock_init(&chip->_spinlock); | 
|  | chip->mutex = &chip->_spinlock; | 
|  | chip++; | 
|  | } | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " | 
|  | "--> %d partitions of %d KiB\n", | 
|  | map->name, cfi->numchips, cfi->interleave, | 
|  | newcfi->numchips, 1<<(newcfi->chipshift-10)); | 
|  |  | 
|  | map->fldrv_priv = newcfi; | 
|  | *pcfi = newcfi; | 
|  | kfree(cfi); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  *********** CHIP ACCESS FUNCTIONS *********** | 
|  | */ | 
|  |  | 
|  | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); | 
|  | unsigned long timeo; | 
|  | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | 
|  |  | 
|  | resettime: | 
|  | timeo = jiffies + HZ; | 
|  | retry: | 
|  | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { | 
|  | /* | 
|  | * OK. We have possibility for contension on the write/erase | 
|  | * operations which are global to the real chip and not per | 
|  | * partition.  So let's fight it over in the partition which | 
|  | * currently has authority on the operation. | 
|  | * | 
|  | * The rules are as follows: | 
|  | * | 
|  | * - any write operation must own shared->writing. | 
|  | * | 
|  | * - any erase operation must own _both_ shared->writing and | 
|  | *   shared->erasing. | 
|  | * | 
|  | * - contension arbitration is handled in the owner's context. | 
|  | * | 
|  | * The 'shared' struct can be read when its lock is taken. | 
|  | * However any writes to it can only be made when the current | 
|  | * owner's lock is also held. | 
|  | */ | 
|  | struct flchip_shared *shared = chip->priv; | 
|  | struct flchip *contender; | 
|  | spin_lock(&shared->lock); | 
|  | contender = shared->writing; | 
|  | if (contender && contender != chip) { | 
|  | /* | 
|  | * The engine to perform desired operation on this | 
|  | * partition is already in use by someone else. | 
|  | * Let's fight over it in the context of the chip | 
|  | * currently using it.  If it is possible to suspend, | 
|  | * that other partition will do just that, otherwise | 
|  | * it'll happily send us to sleep.  In any case, when | 
|  | * get_chip returns success we're clear to go ahead. | 
|  | */ | 
|  | int ret = spin_trylock(contender->mutex); | 
|  | spin_unlock(&shared->lock); | 
|  | if (!ret) | 
|  | goto retry; | 
|  | spin_unlock(chip->mutex); | 
|  | ret = get_chip(map, contender, contender->start, mode); | 
|  | spin_lock(chip->mutex); | 
|  | if (ret) { | 
|  | spin_unlock(contender->mutex); | 
|  | return ret; | 
|  | } | 
|  | timeo = jiffies + HZ; | 
|  | spin_lock(&shared->lock); | 
|  | } | 
|  |  | 
|  | /* We now own it */ | 
|  | shared->writing = chip; | 
|  | if (mode == FL_ERASING) | 
|  | shared->erasing = chip; | 
|  | if (contender && contender != chip) | 
|  | spin_unlock(contender->mutex); | 
|  | spin_unlock(&shared->lock); | 
|  | } | 
|  |  | 
|  | switch (chip->state) { | 
|  |  | 
|  | case FL_STATUS: | 
|  | for (;;) { | 
|  | status = map_read(map, adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | /* At this point we're fine with write operations | 
|  | in other partitions as they don't conflict. */ | 
|  | if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", | 
|  | status.x[0]); | 
|  | return -EIO; | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  | cfi_udelay(1); | 
|  | spin_lock(chip->mutex); | 
|  | /* Someone else might have been playing with it. */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | case FL_READY: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | return 0; | 
|  |  | 
|  | case FL_ERASING: | 
|  | if (!cfip || | 
|  | !(cfip->FeatureSupport & 2) || | 
|  | !(mode == FL_READY || mode == FL_POINT || | 
|  | (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) | 
|  | goto sleep; | 
|  |  | 
|  |  | 
|  | /* Erase suspend */ | 
|  | map_write(map, CMD(0xB0), adr); | 
|  |  | 
|  | /* If the flash has finished erasing, then 'erase suspend' | 
|  | * appears to make some (28F320) flash devices switch to | 
|  | * 'read' mode.  Make sure that we switch to 'read status' | 
|  | * mode so we get the right data. --rmk | 
|  | */ | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->oldstate = FL_ERASING; | 
|  | chip->state = FL_ERASE_SUSPENDING; | 
|  | chip->erase_suspended = 1; | 
|  | for (;;) { | 
|  | status = map_read(map, adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | /* Urgh. Resume and pretend we weren't here.  */ | 
|  | map_write(map, CMD(0xd0), adr); | 
|  | /* Make sure we're in 'read status' mode if it had finished */ | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->state = FL_ERASING; | 
|  | chip->oldstate = FL_READY; | 
|  | printk(KERN_ERR "Chip not ready after erase " | 
|  | "suspended: status = 0x%lx\n", status.x[0]); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | cfi_udelay(1); | 
|  | spin_lock(chip->mutex); | 
|  | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | 
|  | So we can just loop here. */ | 
|  | } | 
|  | chip->state = FL_STATUS; | 
|  | return 0; | 
|  |  | 
|  | case FL_XIP_WHILE_ERASING: | 
|  | if (mode != FL_READY && mode != FL_POINT && | 
|  | (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) | 
|  | goto sleep; | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_READY; | 
|  | return 0; | 
|  |  | 
|  | case FL_POINT: | 
|  | /* Only if there's no operation suspended... */ | 
|  | if (mode == FL_READY && chip->oldstate == FL_READY) | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | sleep: | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | spin_unlock(chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | spin_lock(chip->mutex); | 
|  | goto resettime; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | if (chip->priv) { | 
|  | struct flchip_shared *shared = chip->priv; | 
|  | spin_lock(&shared->lock); | 
|  | if (shared->writing == chip && chip->oldstate == FL_READY) { | 
|  | /* We own the ability to write, but we're done */ | 
|  | shared->writing = shared->erasing; | 
|  | if (shared->writing && shared->writing != chip) { | 
|  | /* give back ownership to who we loaned it from */ | 
|  | struct flchip *loaner = shared->writing; | 
|  | spin_lock(loaner->mutex); | 
|  | spin_unlock(&shared->lock); | 
|  | spin_unlock(chip->mutex); | 
|  | put_chip(map, loaner, loaner->start); | 
|  | spin_lock(chip->mutex); | 
|  | spin_unlock(loaner->mutex); | 
|  | wake_up(&chip->wq); | 
|  | return; | 
|  | } | 
|  | shared->erasing = NULL; | 
|  | shared->writing = NULL; | 
|  | } else if (shared->erasing == chip && shared->writing != chip) { | 
|  | /* | 
|  | * We own the ability to erase without the ability | 
|  | * to write, which means the erase was suspended | 
|  | * and some other partition is currently writing. | 
|  | * Don't let the switch below mess things up since | 
|  | * we don't have ownership to resume anything. | 
|  | */ | 
|  | spin_unlock(&shared->lock); | 
|  | wake_up(&chip->wq); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&shared->lock); | 
|  | } | 
|  |  | 
|  | switch(chip->oldstate) { | 
|  | case FL_ERASING: | 
|  | chip->state = chip->oldstate; | 
|  | /* What if one interleaved chip has finished and the | 
|  | other hasn't? The old code would leave the finished | 
|  | one in READY mode. That's bad, and caused -EROFS | 
|  | errors to be returned from do_erase_oneblock because | 
|  | that's the only bit it checked for at the time. | 
|  | As the state machine appears to explicitly allow | 
|  | sending the 0x70 (Read Status) command to an erasing | 
|  | chip and expecting it to be ignored, that's what we | 
|  | do. */ | 
|  | map_write(map, CMD(0xd0), adr); | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->oldstate = FL_READY; | 
|  | chip->state = FL_ERASING; | 
|  | break; | 
|  |  | 
|  | case FL_XIP_WHILE_ERASING: | 
|  | chip->state = chip->oldstate; | 
|  | chip->oldstate = FL_READY; | 
|  | break; | 
|  |  | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | case FL_JEDEC_QUERY: | 
|  | /* We should really make set_vpp() count, rather than doing this */ | 
|  | DISABLE_VPP(map); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); | 
|  | } | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_XIP | 
|  |  | 
|  | /* | 
|  | * No interrupt what so ever can be serviced while the flash isn't in array | 
|  | * mode.  This is ensured by the xip_disable() and xip_enable() functions | 
|  | * enclosing any code path where the flash is known not to be in array mode. | 
|  | * And within a XIP disabled code path, only functions marked with __xipram | 
|  | * may be called and nothing else (it's a good thing to inspect generated | 
|  | * assembly to make sure inline functions were actually inlined and that gcc | 
|  | * didn't emit calls to its own support functions). Also configuring MTD CFI | 
|  | * support to a single buswidth and a single interleave is also recommended. | 
|  | * Note that not only IRQs are disabled but the preemption count is also | 
|  | * increased to prevent other locking primitives (namely spin_unlock) from | 
|  | * decrementing the preempt count to zero and scheduling the CPU away while | 
|  | * not in array mode. | 
|  | */ | 
|  |  | 
|  | static void xip_disable(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr) | 
|  | { | 
|  | /* TODO: chips with no XIP use should ignore and return */ | 
|  | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ | 
|  | preempt_disable(); | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | if (chip->state != FL_POINT && chip->state != FL_READY) { | 
|  | map_write(map, CMD(0xff), adr); | 
|  | chip->state = FL_READY; | 
|  | } | 
|  | (void) map_read(map, adr); | 
|  | asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a delay is required for the flash operation to complete, the | 
|  | * xip_udelay() function is polling for both the given timeout and pending | 
|  | * (but still masked) hardware interrupts.  Whenever there is an interrupt | 
|  | * pending then the flash erase or write operation is suspended, array mode | 
|  | * restored and interrupts unmasked.  Task scheduling might also happen at that | 
|  | * point.  The CPU eventually returns from the interrupt or the call to | 
|  | * schedule() and the suspended flash operation is resumed for the remaining | 
|  | * of the delay period. | 
|  | * | 
|  | * Warning: this function _will_ fool interrupt latency tracing tools. | 
|  | */ | 
|  |  | 
|  | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int usec) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | 
|  | map_word status, OK = CMD(0x80); | 
|  | unsigned long suspended, start = xip_currtime(); | 
|  | flstate_t oldstate, newstate; | 
|  |  | 
|  | do { | 
|  | cpu_relax(); | 
|  | if (xip_irqpending() && cfip && | 
|  | ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || | 
|  | (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && | 
|  | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { | 
|  | /* | 
|  | * Let's suspend the erase or write operation when | 
|  | * supported.  Note that we currently don't try to | 
|  | * suspend interleaved chips if there is already | 
|  | * another operation suspended (imagine what happens | 
|  | * when one chip was already done with the current | 
|  | * operation while another chip suspended it, then | 
|  | * we resume the whole thing at once).  Yes, it | 
|  | * can happen! | 
|  | */ | 
|  | map_write(map, CMD(0xb0), adr); | 
|  | map_write(map, CMD(0x70), adr); | 
|  | usec -= xip_elapsed_since(start); | 
|  | suspended = xip_currtime(); | 
|  | do { | 
|  | if (xip_elapsed_since(suspended) > 100000) { | 
|  | /* | 
|  | * The chip doesn't want to suspend | 
|  | * after waiting for 100 msecs. | 
|  | * This is a critical error but there | 
|  | * is not much we can do here. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | status = map_read(map, adr); | 
|  | } while (!map_word_andequal(map, status, OK, OK)); | 
|  |  | 
|  | /* Suspend succeeded */ | 
|  | oldstate = chip->state; | 
|  | if (oldstate == FL_ERASING) { | 
|  | if (!map_word_bitsset(map, status, CMD(0x40))) | 
|  | break; | 
|  | newstate = FL_XIP_WHILE_ERASING; | 
|  | chip->erase_suspended = 1; | 
|  | } else { | 
|  | if (!map_word_bitsset(map, status, CMD(0x04))) | 
|  | break; | 
|  | newstate = FL_XIP_WHILE_WRITING; | 
|  | chip->write_suspended = 1; | 
|  | } | 
|  | chip->state = newstate; | 
|  | map_write(map, CMD(0xff), adr); | 
|  | (void) map_read(map, adr); | 
|  | asm volatile (".rep 8; nop; .endr"); | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | asm volatile (".rep 8; nop; .endr"); | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * We're back.  However someone else might have | 
|  | * decided to go write to the chip if we are in | 
|  | * a suspended erase state.  If so let's wait | 
|  | * until it's done. | 
|  | */ | 
|  | preempt_disable(); | 
|  | while (chip->state != newstate) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | preempt_enable(); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | preempt_disable(); | 
|  | } | 
|  | /* Disallow XIP again */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | /* Resume the write or erase operation */ | 
|  | map_write(map, CMD(0xd0), adr); | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->state = oldstate; | 
|  | start = xip_currtime(); | 
|  | } else if (usec >= 1000000/HZ) { | 
|  | /* | 
|  | * Try to save on CPU power when waiting delay | 
|  | * is at least a system timer tick period. | 
|  | * No need to be extremely accurate here. | 
|  | */ | 
|  | xip_cpu_idle(); | 
|  | } | 
|  | status = map_read(map, adr); | 
|  | } while (!map_word_andequal(map, status, OK, OK) | 
|  | && xip_elapsed_since(start) < usec); | 
|  | } | 
|  |  | 
|  | #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec) | 
|  |  | 
|  | /* | 
|  | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while | 
|  | * the flash is actively programming or erasing since we have to poll for | 
|  | * the operation to complete anyway.  We can't do that in a generic way with | 
|  | * a XIP setup so do it before the actual flash operation in this case. | 
|  | */ | 
|  | #undef INVALIDATE_CACHED_RANGE | 
|  | #define INVALIDATE_CACHED_RANGE(x...) | 
|  | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ | 
|  | do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) | 
|  |  | 
|  | /* | 
|  | * Extra notes: | 
|  | * | 
|  | * Activating this XIP support changes the way the code works a bit.  For | 
|  | * example the code to suspend the current process when concurrent access | 
|  | * happens is never executed because xip_udelay() will always return with the | 
|  | * same chip state as it was entered with.  This is why there is no care for | 
|  | * the presence of add_wait_queue() or schedule() calls from within a couple | 
|  | * xip_disable()'d  areas of code, like in do_erase_oneblock for example. | 
|  | * The queueing and scheduling are always happening within xip_udelay(). | 
|  | * | 
|  | * Similarly, get_chip() and put_chip() just happen to always be executed | 
|  | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state | 
|  | * is in array mode, therefore never executing many cases therein and not | 
|  | * causing any problem with XIP. | 
|  | */ | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define xip_disable(map, chip, adr) | 
|  | #define xip_enable(map, chip, adr) | 
|  |  | 
|  | #define UDELAY(map, chip, adr, usec)  cfi_udelay(usec) | 
|  |  | 
|  | #define XIP_INVAL_CACHED_RANGE(x...) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) | 
|  | { | 
|  | unsigned long cmd_addr; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret = 0; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Ensure cmd read/writes are aligned. */ | 
|  | cmd_addr = adr & ~(map_bankwidth(map)-1); | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | ret = get_chip(map, chip, cmd_addr, FL_POINT); | 
|  |  | 
|  | if (!ret) { | 
|  | if (chip->state != FL_POINT && chip->state != FL_READY) | 
|  | map_write(map, CMD(0xff), cmd_addr); | 
|  |  | 
|  | chip->state = FL_POINT; | 
|  | chip->ref_point_counter++; | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!map->virt || (from + len > mtd->size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *mtdbuf = (void *)map->virt + from; | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Now lock the chip(s) to POINT state */ | 
|  |  | 
|  | /* ofs: offset within the first chip that the first read should start */ | 
|  | chipnum = (from >> cfi->chipshift); | 
|  | ofs = from - (chipnum << cfi->chipshift); | 
|  |  | 
|  | while (len) { | 
|  | unsigned long thislen; | 
|  |  | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  |  | 
|  | if ((len + ofs -1) >> cfi->chipshift) | 
|  | thislen = (1<<cfi->chipshift) - ofs; | 
|  | else | 
|  | thislen = len; | 
|  |  | 
|  | ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | *retlen += thislen; | 
|  | len -= thislen; | 
|  |  | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  |  | 
|  | /* Now unlock the chip(s) POINT state */ | 
|  |  | 
|  | /* ofs: offset within the first chip that the first read should start */ | 
|  | chipnum = (from >> cfi->chipshift); | 
|  | ofs = from - (chipnum <<  cfi->chipshift); | 
|  |  | 
|  | while (len) { | 
|  | unsigned long thislen; | 
|  | struct flchip *chip; | 
|  |  | 
|  | chip = &cfi->chips[chipnum]; | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  |  | 
|  | if ((len + ofs -1) >> cfi->chipshift) | 
|  | thislen = (1<<cfi->chipshift) - ofs; | 
|  | else | 
|  | thislen = len; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | if (chip->state == FL_POINT) { | 
|  | chip->ref_point_counter--; | 
|  | if(chip->ref_point_counter == 0) | 
|  | chip->state = FL_READY; | 
|  | } else | 
|  | printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ | 
|  |  | 
|  | put_chip(map, chip, chip->start); | 
|  | spin_unlock(chip->mutex); | 
|  |  | 
|  | len -= thislen; | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | 
|  | { | 
|  | unsigned long cmd_addr; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Ensure cmd read/writes are aligned. */ | 
|  | cmd_addr = adr & ~(map_bankwidth(map)-1); | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, cmd_addr, FL_READY); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (chip->state != FL_POINT && chip->state != FL_READY) { | 
|  | map_write(map, CMD(0xff), cmd_addr); | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | } | 
|  |  | 
|  | map_copy_from(map, buf, adr, len); | 
|  |  | 
|  | put_chip(map, chip, cmd_addr); | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  |  | 
|  | /* ofs: offset within the first chip that the first read should start */ | 
|  | chipnum = (from >> cfi->chipshift); | 
|  | ofs = from - (chipnum <<  cfi->chipshift); | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | while (len) { | 
|  | unsigned long thislen; | 
|  |  | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  |  | 
|  | if ((len + ofs -1) >> cfi->chipshift) | 
|  | thislen = (1<<cfi->chipshift) - ofs; | 
|  | else | 
|  | thislen = len; | 
|  |  | 
|  | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | *retlen += thislen; | 
|  | len -= thislen; | 
|  | buf += thislen; | 
|  |  | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, | 
|  | loff_t from, size_t len, | 
|  | size_t *retlen, | 
|  | u_char *buf, | 
|  | int base_offst, int reg_sz) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | 
|  | struct flchip *chip; | 
|  | int ofs_factor = cfi->interleave * cfi->device_type; | 
|  | int count = len; | 
|  | int chip_num, offst; | 
|  | int ret; | 
|  |  | 
|  | chip_num = ((unsigned int)from/reg_sz); | 
|  | offst = from - (reg_sz*chip_num)+base_offst; | 
|  |  | 
|  | while (count) { | 
|  | /* Calculate which chip & protection register offset we need */ | 
|  |  | 
|  | if (chip_num >= cfi->numchips) | 
|  | goto out; | 
|  |  | 
|  | chip = &cfi->chips[chip_num]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return (len-count)?:ret; | 
|  | } | 
|  |  | 
|  | xip_disable(map, chip, chip->start); | 
|  |  | 
|  | if (chip->state != FL_JEDEC_QUERY) { | 
|  | map_write(map, CMD(0x90), chip->start); | 
|  | chip->state = FL_JEDEC_QUERY; | 
|  | } | 
|  |  | 
|  | while (count && ((offst-base_offst) < reg_sz)) { | 
|  | *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); | 
|  | buf++; | 
|  | offst++; | 
|  | count--; | 
|  | } | 
|  |  | 
|  | xip_enable(map, chip, chip->start); | 
|  | put_chip(map, chip, chip->start); | 
|  | spin_unlock(chip->mutex); | 
|  |  | 
|  | /* Move on to the next chip */ | 
|  | chip_num++; | 
|  | offst = base_offst; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return len-count; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | 
|  | int base_offst,reg_sz; | 
|  |  | 
|  | /* Check that we actually have some protection registers */ | 
|  | if(!extp || !(extp->FeatureSupport&64)){ | 
|  | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | base_offst=(1<<extp->FactProtRegSize); | 
|  | reg_sz=(1<<extp->UserProtRegSize); | 
|  |  | 
|  | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | 
|  | int base_offst,reg_sz; | 
|  |  | 
|  | /* Check that we actually have some protection registers */ | 
|  | if(!extp || !(extp->FeatureSupport&64)){ | 
|  | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | base_offst=0; | 
|  | reg_sz=(1<<extp->FactProtRegSize); | 
|  |  | 
|  | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, map_word datum) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | map_word status, status_OK; | 
|  | unsigned long timeo; | 
|  | int z, ret=0; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Let's determine this according to the interleave only once */ | 
|  | status_OK = CMD(0x80); | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_WRITING); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  | map_write(map, CMD(0x40), adr); | 
|  | map_write(map, datum, adr); | 
|  | chip->state = FL_WRITING; | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); | 
|  | UDELAY(map, chip, adr, chip->word_write_time); | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | timeo = jiffies + (HZ/2); | 
|  | z = 0; | 
|  | for (;;) { | 
|  | if (chip->state != FL_WRITING) { | 
|  | /* Someone's suspended the write. Sleep */ | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | spin_unlock(chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | timeo = jiffies + (HZ / 2); /* FIXME */ | 
|  | spin_lock(chip->mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | status = map_read(map, adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | /* OK Still waiting */ | 
|  | if (time_after(jiffies, timeo)) { | 
|  | chip->state = FL_STATUS; | 
|  | xip_enable(map, chip, adr); | 
|  | printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | spin_unlock(chip->mutex); | 
|  | z++; | 
|  | UDELAY(map, chip, adr, 1); | 
|  | spin_lock(chip->mutex); | 
|  | } | 
|  | if (!z) { | 
|  | chip->word_write_time--; | 
|  | if (!chip->word_write_time) | 
|  | chip->word_write_time++; | 
|  | } | 
|  | if (z > 1) | 
|  | chip->word_write_time++; | 
|  |  | 
|  | /* Done and happy. */ | 
|  | chip->state = FL_STATUS; | 
|  |  | 
|  | /* check for lock bit */ | 
|  | if (map_word_bitsset(map, status, CMD(0x02))) { | 
|  | /* clear status */ | 
|  | map_write(map, CMD(0x50), adr); | 
|  | /* put back into read status register mode */ | 
|  | map_write(map, CMD(0x70), adr); | 
|  | ret = -EROFS; | 
|  | } | 
|  |  | 
|  | xip_enable(map, chip, adr); | 
|  | out:	put_chip(map, chip, adr); | 
|  | spin_unlock(chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  | unsigned long ofs; | 
|  |  | 
|  | *retlen = 0; | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | chipnum = to >> cfi->chipshift; | 
|  | ofs = to  - (chipnum << cfi->chipshift); | 
|  |  | 
|  | /* If it's not bus-aligned, do the first byte write */ | 
|  | if (ofs & (map_bankwidth(map)-1)) { | 
|  | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | 
|  | int gap = ofs - bus_ofs; | 
|  | int n; | 
|  | map_word datum; | 
|  |  | 
|  | n = min_t(int, len, map_bankwidth(map)-gap); | 
|  | datum = map_word_ff(map); | 
|  | datum = map_word_load_partial(map, datum, buf, gap, n); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | bus_ofs, datum); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | len -= n; | 
|  | ofs += n; | 
|  | buf += n; | 
|  | (*retlen) += n; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | while(len >= map_bankwidth(map)) { | 
|  | map_word datum = map_word_load(map, buf); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, datum); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += map_bankwidth(map); | 
|  | buf += map_bankwidth(map); | 
|  | (*retlen) += map_bankwidth(map); | 
|  | len -= map_bankwidth(map); | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len & (map_bankwidth(map)-1)) { | 
|  | map_word datum; | 
|  |  | 
|  | datum = map_word_ff(map); | 
|  | datum = map_word_load_partial(map, datum, buf, 0, len); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, datum); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | (*retlen) += len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, const u_char *buf, int len) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | map_word status, status_OK; | 
|  | unsigned long cmd_adr, timeo; | 
|  | int wbufsize, z, ret=0, bytes, words; | 
|  |  | 
|  | wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 
|  | adr += chip->start; | 
|  | cmd_adr = adr & ~(wbufsize-1); | 
|  |  | 
|  | /* Let's determine this according to the interleave only once */ | 
|  | status_OK = CMD(0x80); | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, cmd_adr, FL_WRITING); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, len); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, cmd_adr); | 
|  |  | 
|  | /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set | 
|  | [...], the device will not accept any more Write to Buffer commands". | 
|  | So we must check here and reset those bits if they're set. Otherwise | 
|  | we're just pissing in the wind */ | 
|  | if (chip->state != FL_STATUS) | 
|  | map_write(map, CMD(0x70), cmd_adr); | 
|  | status = map_read(map, cmd_adr); | 
|  | if (map_word_bitsset(map, status, CMD(0x30))) { | 
|  | xip_enable(map, chip, cmd_adr); | 
|  | printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); | 
|  | xip_disable(map, chip, cmd_adr); | 
|  | map_write(map, CMD(0x50), cmd_adr); | 
|  | map_write(map, CMD(0x70), cmd_adr); | 
|  | } | 
|  |  | 
|  | chip->state = FL_WRITING_TO_BUFFER; | 
|  |  | 
|  | z = 0; | 
|  | for (;;) { | 
|  | map_write(map, CMD(0xe8), cmd_adr); | 
|  |  | 
|  | status = map_read(map, cmd_adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | UDELAY(map, chip, cmd_adr, 1); | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | if (++z > 20) { | 
|  | /* Argh. Not ready for write to buffer */ | 
|  | map_word Xstatus; | 
|  | map_write(map, CMD(0x70), cmd_adr); | 
|  | chip->state = FL_STATUS; | 
|  | Xstatus = map_read(map, cmd_adr); | 
|  | /* Odd. Clear status bits */ | 
|  | map_write(map, CMD(0x50), cmd_adr); | 
|  | map_write(map, CMD(0x70), cmd_adr); | 
|  | xip_enable(map, chip, cmd_adr); | 
|  | printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", | 
|  | status.x[0], Xstatus.x[0]); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write length of data to come */ | 
|  | bytes = len & (map_bankwidth(map)-1); | 
|  | words = len / map_bankwidth(map); | 
|  | map_write(map, CMD(words - !bytes), cmd_adr ); | 
|  |  | 
|  | /* Write data */ | 
|  | z = 0; | 
|  | while(z < words * map_bankwidth(map)) { | 
|  | map_word datum = map_word_load(map, buf); | 
|  | map_write(map, datum, adr+z); | 
|  |  | 
|  | z += map_bankwidth(map); | 
|  | buf += map_bankwidth(map); | 
|  | } | 
|  |  | 
|  | if (bytes) { | 
|  | map_word datum; | 
|  |  | 
|  | datum = map_word_ff(map); | 
|  | datum = map_word_load_partial(map, datum, buf, 0, bytes); | 
|  | map_write(map, datum, adr+z); | 
|  | } | 
|  |  | 
|  | /* GO GO GO */ | 
|  | map_write(map, CMD(0xd0), cmd_adr); | 
|  | chip->state = FL_WRITING; | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | INVALIDATE_CACHED_RANGE(map, adr, len); | 
|  | UDELAY(map, chip, cmd_adr, chip->buffer_write_time); | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | timeo = jiffies + (HZ/2); | 
|  | z = 0; | 
|  | for (;;) { | 
|  | if (chip->state != FL_WRITING) { | 
|  | /* Someone's suspended the write. Sleep */ | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | spin_unlock(chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | timeo = jiffies + (HZ / 2); /* FIXME */ | 
|  | spin_lock(chip->mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | status = map_read(map, cmd_adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | /* OK Still waiting */ | 
|  | if (time_after(jiffies, timeo)) { | 
|  | chip->state = FL_STATUS; | 
|  | xip_enable(map, chip, cmd_adr); | 
|  | printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | spin_unlock(chip->mutex); | 
|  | UDELAY(map, chip, cmd_adr, 1); | 
|  | z++; | 
|  | spin_lock(chip->mutex); | 
|  | } | 
|  | if (!z) { | 
|  | chip->buffer_write_time--; | 
|  | if (!chip->buffer_write_time) | 
|  | chip->buffer_write_time++; | 
|  | } | 
|  | if (z > 1) | 
|  | chip->buffer_write_time++; | 
|  |  | 
|  | /* Done and happy. */ | 
|  | chip->state = FL_STATUS; | 
|  |  | 
|  | /* check for lock bit */ | 
|  | if (map_word_bitsset(map, status, CMD(0x02))) { | 
|  | /* clear status */ | 
|  | map_write(map, CMD(0x50), cmd_adr); | 
|  | /* put back into read status register mode */ | 
|  | map_write(map, CMD(0x70), adr); | 
|  | ret = -EROFS; | 
|  | } | 
|  |  | 
|  | xip_enable(map, chip, cmd_adr); | 
|  | out:	put_chip(map, chip, cmd_adr); | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, | 
|  | size_t len, size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  | unsigned long ofs; | 
|  |  | 
|  | *retlen = 0; | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | chipnum = to >> cfi->chipshift; | 
|  | ofs = to  - (chipnum << cfi->chipshift); | 
|  |  | 
|  | /* If it's not bus-aligned, do the first word write */ | 
|  | if (ofs & (map_bankwidth(map)-1)) { | 
|  | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | 
|  | if (local_len > len) | 
|  | local_len = len; | 
|  | ret = cfi_intelext_write_words(mtd, to, local_len, | 
|  | retlen, buf); | 
|  | if (ret) | 
|  | return ret; | 
|  | ofs += local_len; | 
|  | buf += local_len; | 
|  | len -= local_len; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | while(len) { | 
|  | /* We must not cross write block boundaries */ | 
|  | int size = wbufsize - (ofs & (wbufsize-1)); | 
|  |  | 
|  | if (size > len) | 
|  | size = len; | 
|  | ret = do_write_buffer(map, &cfi->chips[chipnum], | 
|  | ofs, buf, size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += size; | 
|  | buf += size; | 
|  | (*retlen) += size; | 
|  | len -= size; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | map_word status, status_OK; | 
|  | unsigned long timeo; | 
|  | int retries = 3; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | int ret = 0; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Let's determine this according to the interleave only once */ | 
|  | status_OK = CMD(0x80); | 
|  |  | 
|  | retry: | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_ERASING); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, len); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  |  | 
|  | /* Clear the status register first */ | 
|  | map_write(map, CMD(0x50), adr); | 
|  |  | 
|  | /* Now erase */ | 
|  | map_write(map, CMD(0x20), adr); | 
|  | map_write(map, CMD(0xD0), adr); | 
|  | chip->state = FL_ERASING; | 
|  | chip->erase_suspended = 0; | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | INVALIDATE_CACHED_RANGE(map, adr, len); | 
|  | UDELAY(map, chip, adr, chip->erase_time*1000/2); | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | /* FIXME. Use a timer to check this, and return immediately. */ | 
|  | /* Once the state machine's known to be working I'll do that */ | 
|  |  | 
|  | timeo = jiffies + (HZ*20); | 
|  | for (;;) { | 
|  | if (chip->state != FL_ERASING) { | 
|  | /* Someone's suspended the erase. Sleep */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | spin_unlock(chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | spin_lock(chip->mutex); | 
|  | continue; | 
|  | } | 
|  | if (chip->erase_suspended) { | 
|  | /* This erase was suspended and resumed. | 
|  | Adjust the timeout */ | 
|  | timeo = jiffies + (HZ*20); /* FIXME */ | 
|  | chip->erase_suspended = 0; | 
|  | } | 
|  |  | 
|  | status = map_read(map, adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | /* OK Still waiting */ | 
|  | if (time_after(jiffies, timeo)) { | 
|  | map_word Xstatus; | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->state = FL_STATUS; | 
|  | Xstatus = map_read(map, adr); | 
|  | /* Clear status bits */ | 
|  | map_write(map, CMD(0x50), adr); | 
|  | map_write(map, CMD(0x70), adr); | 
|  | xip_enable(map, chip, adr); | 
|  | printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", | 
|  | adr, status.x[0], Xstatus.x[0]); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | spin_unlock(chip->mutex); | 
|  | UDELAY(map, chip, adr, 1000000/HZ); | 
|  | spin_lock(chip->mutex); | 
|  | } | 
|  |  | 
|  | /* We've broken this before. It doesn't hurt to be safe */ | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->state = FL_STATUS; | 
|  | status = map_read(map, adr); | 
|  |  | 
|  | /* check for lock bit */ | 
|  | if (map_word_bitsset(map, status, CMD(0x3a))) { | 
|  | unsigned char chipstatus; | 
|  |  | 
|  | /* Reset the error bits */ | 
|  | map_write(map, CMD(0x50), adr); | 
|  | map_write(map, CMD(0x70), adr); | 
|  | xip_enable(map, chip, adr); | 
|  |  | 
|  | chipstatus = status.x[0]; | 
|  | if (!map_word_equal(map, status, CMD(chipstatus))) { | 
|  | int i, w; | 
|  | for (w=0; w<map_words(map); w++) { | 
|  | for (i = 0; i<cfi_interleave(cfi); i++) { | 
|  | chipstatus |= status.x[w] >> (cfi->device_type * 8); | 
|  | } | 
|  | } | 
|  | printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", | 
|  | status.x[0], chipstatus); | 
|  | } | 
|  |  | 
|  | if ((chipstatus & 0x30) == 0x30) { | 
|  | printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); | 
|  | ret = -EIO; | 
|  | } else if (chipstatus & 0x02) { | 
|  | /* Protection bit set */ | 
|  | ret = -EROFS; | 
|  | } else if (chipstatus & 0x8) { | 
|  | /* Voltage */ | 
|  | printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); | 
|  | ret = -EIO; | 
|  | } else if (chipstatus & 0x20) { | 
|  | if (retries--) { | 
|  | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); | 
|  | timeo = jiffies + HZ; | 
|  | put_chip(map, chip, adr); | 
|  | spin_unlock(chip->mutex); | 
|  | goto retry; | 
|  | } | 
|  | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); | 
|  | ret = -EIO; | 
|  | } | 
|  | } else { | 
|  | xip_enable(map, chip, adr); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | out:	put_chip(map, chip, adr); | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | unsigned long ofs, len; | 
|  | int ret; | 
|  |  | 
|  | ofs = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cfi_intelext_sync (struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i=0; !ret && i<cfi->numchips; i++) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, chip->start, FL_SYNCING); | 
|  |  | 
|  | if (!ret) { | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_SYNCING; | 
|  | /* No need to wake_up() on this state change - | 
|  | * as the whole point is that nobody can do anything | 
|  | * with the chip now anyway. | 
|  | */ | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  | } | 
|  |  | 
|  | /* Unlock the chips again */ | 
|  |  | 
|  | for (i--; i >=0; i--) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_SYNCING) { | 
|  | chip->state = chip->oldstate; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_LOCK_BITS | 
|  | static int __xipram do_printlockstatus_oneblock(struct map_info *map, | 
|  | struct flchip *chip, | 
|  | unsigned long adr, | 
|  | int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int status, ofs_factor = cfi->interleave * cfi->device_type; | 
|  |  | 
|  | xip_disable(map, chip, adr+(2*ofs_factor)); | 
|  | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | 
|  | chip->state = FL_JEDEC_QUERY; | 
|  | status = cfi_read_query(map, adr+(2*ofs_factor)); | 
|  | xip_enable(map, chip, 0); | 
|  | printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", | 
|  | adr, status); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1) | 
|  | #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2) | 
|  |  | 
|  | static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | map_word status, status_OK; | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | int ret; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Let's determine this according to the interleave only once */ | 
|  | status_OK = CMD(0x80); | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_LOCKING); | 
|  | if (ret) { | 
|  | spin_unlock(chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  |  | 
|  | map_write(map, CMD(0x60), adr); | 
|  | if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { | 
|  | map_write(map, CMD(0x01), adr); | 
|  | chip->state = FL_LOCKING; | 
|  | } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { | 
|  | map_write(map, CMD(0xD0), adr); | 
|  | chip->state = FL_UNLOCKING; | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | UDELAY(map, chip, adr, 1000000/HZ); | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | /* FIXME. Use a timer to check this, and return immediately. */ | 
|  | /* Once the state machine's known to be working I'll do that */ | 
|  |  | 
|  | timeo = jiffies + (HZ*20); | 
|  | for (;;) { | 
|  |  | 
|  | status = map_read(map, adr); | 
|  | if (map_word_andequal(map, status, status_OK, status_OK)) | 
|  | break; | 
|  |  | 
|  | /* OK Still waiting */ | 
|  | if (time_after(jiffies, timeo)) { | 
|  | map_word Xstatus; | 
|  | map_write(map, CMD(0x70), adr); | 
|  | chip->state = FL_STATUS; | 
|  | Xstatus = map_read(map, adr); | 
|  | xip_enable(map, chip, adr); | 
|  | printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", | 
|  | status.x[0], Xstatus.x[0]); | 
|  | put_chip(map, chip, adr); | 
|  | spin_unlock(chip->mutex); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | spin_unlock(chip->mutex); | 
|  | UDELAY(map, chip, adr, 1); | 
|  | spin_lock(chip->mutex); | 
|  | } | 
|  |  | 
|  | /* Done and happy. */ | 
|  | chip->state = FL_STATUS; | 
|  | xip_enable(map, chip, adr); | 
|  | put_chip(map, chip, adr); | 
|  | spin_unlock(chip->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | #ifdef DEBUG_LOCK_BITS | 
|  | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | 
|  | __FUNCTION__, ofs, len); | 
|  | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | 
|  | ofs, len, 0); | 
|  | #endif | 
|  |  | 
|  | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | 
|  | ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); | 
|  |  | 
|  | #ifdef DEBUG_LOCK_BITS | 
|  | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | 
|  | __FUNCTION__, ret); | 
|  | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | 
|  | ofs, len, 0); | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | #ifdef DEBUG_LOCK_BITS | 
|  | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | 
|  | __FUNCTION__, ofs, len); | 
|  | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | 
|  | ofs, len, 0); | 
|  | #endif | 
|  |  | 
|  | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | 
|  | ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); | 
|  |  | 
|  | #ifdef DEBUG_LOCK_BITS | 
|  | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | 
|  | __FUNCTION__, ret); | 
|  | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | 
|  | ofs, len, 0); | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_intelext_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i=0; !ret && i<cfi->numchips; i++) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | switch (chip->state) { | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | if (chip->oldstate == FL_READY) { | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_PM_SUSPENDED; | 
|  | /* No need to wake_up() on this state change - | 
|  | * as the whole point is that nobody can do anything | 
|  | * with the chip now anyway. | 
|  | */ | 
|  | } else { | 
|  | /* There seems to be an operation pending. We must wait for it. */ | 
|  | printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); | 
|  | ret = -EAGAIN; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* Should we actually wait? Once upon a time these routines weren't | 
|  | allowed to. Or should we return -EAGAIN, because the upper layers | 
|  | ought to have already shut down anything which was using the device | 
|  | anyway? The latter for now. */ | 
|  | printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); | 
|  | ret = -EAGAIN; | 
|  | case FL_PM_SUSPENDED: | 
|  | break; | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  | } | 
|  |  | 
|  | /* Unlock the chips again */ | 
|  |  | 
|  | if (ret) { | 
|  | for (i--; i >=0; i--) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_PM_SUSPENDED) { | 
|  | /* No need to force it into a known state here, | 
|  | because we're returning failure, and it didn't | 
|  | get power cycled */ | 
|  | chip->state = chip->oldstate; | 
|  | chip->oldstate = FL_READY; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | spin_unlock(chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cfi_intelext_resume(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  |  | 
|  | for (i=0; i<cfi->numchips; i++) { | 
|  |  | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | spin_lock(chip->mutex); | 
|  |  | 
|  | /* Go to known state. Chip may have been power cycled */ | 
|  | if (chip->state == FL_PM_SUSPENDED) { | 
|  | map_write(map, CMD(0xFF), cfi->chips[i].start); | 
|  | chip->oldstate = chip->state = FL_READY; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  |  | 
|  | spin_unlock(chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfi_intelext_destroy(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | kfree(cfi->cmdset_priv); | 
|  | kfree(cfi->cfiq); | 
|  | kfree(cfi->chips[0].priv); | 
|  | kfree(cfi); | 
|  | kfree(mtd->eraseregions); | 
|  | } | 
|  |  | 
|  | static char im_name_1[]="cfi_cmdset_0001"; | 
|  | static char im_name_3[]="cfi_cmdset_0003"; | 
|  |  | 
|  | static int __init cfi_intelext_init(void) | 
|  | { | 
|  | inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); | 
|  | inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit cfi_intelext_exit(void) | 
|  | { | 
|  | inter_module_unregister(im_name_1); | 
|  | inter_module_unregister(im_name_3); | 
|  | } | 
|  |  | 
|  | module_init(cfi_intelext_init); | 
|  | module_exit(cfi_intelext_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("David Woodhouse <[email protected]> et al."); | 
|  | MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); |