|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <asm/perf_event.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/insn.h> | 
|  |  | 
|  | #include "../perf_event.h" | 
|  |  | 
|  | static const enum { | 
|  | LBR_EIP_FLAGS		= 1, | 
|  | LBR_TSX			= 2, | 
|  | } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { | 
|  | [LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS, | 
|  | [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Intel LBR_SELECT bits | 
|  | * Intel Vol3a, April 2011, Section 16.7 Table 16-10 | 
|  | * | 
|  | * Hardware branch filter (not available on all CPUs) | 
|  | */ | 
|  | #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */ | 
|  | #define LBR_USER_BIT		1 /* do not capture at ring > 0 */ | 
|  | #define LBR_JCC_BIT		2 /* do not capture conditional branches */ | 
|  | #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */ | 
|  | #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */ | 
|  | #define LBR_RETURN_BIT		5 /* do not capture near returns */ | 
|  | #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */ | 
|  | #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */ | 
|  | #define LBR_FAR_BIT		8 /* do not capture far branches */ | 
|  | #define LBR_CALL_STACK_BIT	9 /* enable call stack */ | 
|  |  | 
|  | /* | 
|  | * Following bit only exists in Linux; we mask it out before writing it to | 
|  | * the actual MSR. But it helps the constraint perf code to understand | 
|  | * that this is a separate configuration. | 
|  | */ | 
|  | #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */ | 
|  |  | 
|  | #define LBR_KERNEL	(1 << LBR_KERNEL_BIT) | 
|  | #define LBR_USER	(1 << LBR_USER_BIT) | 
|  | #define LBR_JCC		(1 << LBR_JCC_BIT) | 
|  | #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT) | 
|  | #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT) | 
|  | #define LBR_RETURN	(1 << LBR_RETURN_BIT) | 
|  | #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT) | 
|  | #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT) | 
|  | #define LBR_FAR		(1 << LBR_FAR_BIT) | 
|  | #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT) | 
|  | #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT) | 
|  |  | 
|  | #define LBR_PLM (LBR_KERNEL | LBR_USER) | 
|  |  | 
|  | #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */ | 
|  | #define LBR_NOT_SUPP	-1	/* LBR filter not supported */ | 
|  | #define LBR_IGN		0	/* ignored */ | 
|  |  | 
|  | #define LBR_ANY		 \ | 
|  | (LBR_JCC	|\ | 
|  | LBR_REL_CALL	|\ | 
|  | LBR_IND_CALL	|\ | 
|  | LBR_RETURN	|\ | 
|  | LBR_REL_JMP	|\ | 
|  | LBR_IND_JMP	|\ | 
|  | LBR_FAR) | 
|  |  | 
|  | #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63) | 
|  | #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62) | 
|  | #define LBR_FROM_FLAG_ABORT	BIT_ULL(61) | 
|  |  | 
|  | #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59)) | 
|  |  | 
|  | /* | 
|  | * x86control flow change classification | 
|  | * x86control flow changes include branches, interrupts, traps, faults | 
|  | */ | 
|  | enum { | 
|  | X86_BR_NONE		= 0,      /* unknown */ | 
|  |  | 
|  | X86_BR_USER		= 1 << 0, /* branch target is user */ | 
|  | X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */ | 
|  |  | 
|  | X86_BR_CALL		= 1 << 2, /* call */ | 
|  | X86_BR_RET		= 1 << 3, /* return */ | 
|  | X86_BR_SYSCALL		= 1 << 4, /* syscall */ | 
|  | X86_BR_SYSRET		= 1 << 5, /* syscall return */ | 
|  | X86_BR_INT		= 1 << 6, /* sw interrupt */ | 
|  | X86_BR_IRET		= 1 << 7, /* return from interrupt */ | 
|  | X86_BR_JCC		= 1 << 8, /* conditional */ | 
|  | X86_BR_JMP		= 1 << 9, /* jump */ | 
|  | X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */ | 
|  | X86_BR_IND_CALL		= 1 << 11,/* indirect calls */ | 
|  | X86_BR_ABORT		= 1 << 12,/* transaction abort */ | 
|  | X86_BR_IN_TX		= 1 << 13,/* in transaction */ | 
|  | X86_BR_NO_TX		= 1 << 14,/* not in transaction */ | 
|  | X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */ | 
|  | X86_BR_CALL_STACK	= 1 << 16,/* call stack */ | 
|  | X86_BR_IND_JMP		= 1 << 17,/* indirect jump */ | 
|  |  | 
|  | X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */ | 
|  |  | 
|  | }; | 
|  |  | 
|  | #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) | 
|  | #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) | 
|  |  | 
|  | #define X86_BR_ANY       \ | 
|  | (X86_BR_CALL    |\ | 
|  | X86_BR_RET     |\ | 
|  | X86_BR_SYSCALL |\ | 
|  | X86_BR_SYSRET  |\ | 
|  | X86_BR_INT     |\ | 
|  | X86_BR_IRET    |\ | 
|  | X86_BR_JCC     |\ | 
|  | X86_BR_JMP	 |\ | 
|  | X86_BR_IRQ	 |\ | 
|  | X86_BR_ABORT	 |\ | 
|  | X86_BR_IND_CALL |\ | 
|  | X86_BR_IND_JMP  |\ | 
|  | X86_BR_ZERO_CALL) | 
|  |  | 
|  | #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) | 
|  |  | 
|  | #define X86_BR_ANY_CALL		 \ | 
|  | (X86_BR_CALL		|\ | 
|  | X86_BR_IND_CALL	|\ | 
|  | X86_BR_ZERO_CALL	|\ | 
|  | X86_BR_SYSCALL		|\ | 
|  | X86_BR_IRQ		|\ | 
|  | X86_BR_INT) | 
|  |  | 
|  | /* | 
|  | * Intel LBR_CTL bits | 
|  | * | 
|  | * Hardware branch filter for Arch LBR | 
|  | */ | 
|  | #define ARCH_LBR_KERNEL_BIT		1  /* capture at ring0 */ | 
|  | #define ARCH_LBR_USER_BIT		2  /* capture at ring > 0 */ | 
|  | #define ARCH_LBR_CALL_STACK_BIT		3  /* enable call stack */ | 
|  | #define ARCH_LBR_JCC_BIT		16 /* capture conditional branches */ | 
|  | #define ARCH_LBR_REL_JMP_BIT		17 /* capture relative jumps */ | 
|  | #define ARCH_LBR_IND_JMP_BIT		18 /* capture indirect jumps */ | 
|  | #define ARCH_LBR_REL_CALL_BIT		19 /* capture relative calls */ | 
|  | #define ARCH_LBR_IND_CALL_BIT		20 /* capture indirect calls */ | 
|  | #define ARCH_LBR_RETURN_BIT		21 /* capture near returns */ | 
|  | #define ARCH_LBR_OTHER_BRANCH_BIT	22 /* capture other branches */ | 
|  |  | 
|  | #define ARCH_LBR_KERNEL			(1ULL << ARCH_LBR_KERNEL_BIT) | 
|  | #define ARCH_LBR_USER			(1ULL << ARCH_LBR_USER_BIT) | 
|  | #define ARCH_LBR_CALL_STACK		(1ULL << ARCH_LBR_CALL_STACK_BIT) | 
|  | #define ARCH_LBR_JCC			(1ULL << ARCH_LBR_JCC_BIT) | 
|  | #define ARCH_LBR_REL_JMP		(1ULL << ARCH_LBR_REL_JMP_BIT) | 
|  | #define ARCH_LBR_IND_JMP		(1ULL << ARCH_LBR_IND_JMP_BIT) | 
|  | #define ARCH_LBR_REL_CALL		(1ULL << ARCH_LBR_REL_CALL_BIT) | 
|  | #define ARCH_LBR_IND_CALL		(1ULL << ARCH_LBR_IND_CALL_BIT) | 
|  | #define ARCH_LBR_RETURN			(1ULL << ARCH_LBR_RETURN_BIT) | 
|  | #define ARCH_LBR_OTHER_BRANCH		(1ULL << ARCH_LBR_OTHER_BRANCH_BIT) | 
|  |  | 
|  | #define ARCH_LBR_ANY			 \ | 
|  | (ARCH_LBR_JCC			|\ | 
|  | ARCH_LBR_REL_JMP		|\ | 
|  | ARCH_LBR_IND_JMP		|\ | 
|  | ARCH_LBR_REL_CALL		|\ | 
|  | ARCH_LBR_IND_CALL		|\ | 
|  | ARCH_LBR_RETURN		|\ | 
|  | ARCH_LBR_OTHER_BRANCH) | 
|  |  | 
|  | #define ARCH_LBR_CTL_MASK			0x7f000e | 
|  |  | 
|  | static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); | 
|  |  | 
|  | static __always_inline bool is_lbr_call_stack_bit_set(u64 config) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR)) | 
|  | return !!(config & ARCH_LBR_CALL_STACK); | 
|  |  | 
|  | return !!(config & LBR_CALL_STACK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only support LBR implementations that have FREEZE_LBRS_ON_PMI | 
|  | * otherwise it becomes near impossible to get a reliable stack. | 
|  | */ | 
|  |  | 
|  | static void __intel_pmu_lbr_enable(bool pmi) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  | u64 debugctl, lbr_select = 0, orig_debugctl; | 
|  |  | 
|  | /* | 
|  | * No need to unfreeze manually, as v4 can do that as part | 
|  | * of the GLOBAL_STATUS ack. | 
|  | */ | 
|  | if (pmi && x86_pmu.version >= 4) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * No need to reprogram LBR_SELECT in a PMI, as it | 
|  | * did not change. | 
|  | */ | 
|  | if (cpuc->lbr_sel) | 
|  | lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; | 
|  | if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel) | 
|  | wrmsrl(MSR_LBR_SELECT, lbr_select); | 
|  |  | 
|  | rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  | orig_debugctl = debugctl; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_ARCH_LBR)) | 
|  | debugctl |= DEBUGCTLMSR_LBR; | 
|  | /* | 
|  | * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. | 
|  | * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions | 
|  | * may cause superfluous increase/decrease of LBR_TOS. | 
|  | */ | 
|  | if (is_lbr_call_stack_bit_set(lbr_select)) | 
|  | debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; | 
|  | else | 
|  | debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; | 
|  |  | 
|  | if (orig_debugctl != debugctl) | 
|  | wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR)) | 
|  | wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN); | 
|  | } | 
|  |  | 
|  | static void __intel_pmu_lbr_disable(void) | 
|  | { | 
|  | u64 debugctl; | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR)) { | 
|  | wrmsrl(MSR_ARCH_LBR_CTL, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  | debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); | 
|  | wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_reset_32(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) | 
|  | wrmsrl(x86_pmu.lbr_from + i, 0); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_reset_64(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | wrmsrl(x86_pmu.lbr_from + i, 0); | 
|  | wrmsrl(x86_pmu.lbr_to   + i, 0); | 
|  | if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) | 
|  | wrmsrl(x86_pmu.lbr_info + i, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_pmu_arch_lbr_reset(void) | 
|  | { | 
|  | /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */ | 
|  | wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_reset(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!x86_pmu.lbr_nr) | 
|  | return; | 
|  |  | 
|  | x86_pmu.lbr_reset(); | 
|  |  | 
|  | cpuc->last_task_ctx = NULL; | 
|  | cpuc->last_log_id = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TOS = most recently recorded branch | 
|  | */ | 
|  | static inline u64 intel_pmu_lbr_tos(void) | 
|  | { | 
|  | u64 tos; | 
|  |  | 
|  | rdmsrl(x86_pmu.lbr_tos, tos); | 
|  | return tos; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | LBR_NONE, | 
|  | LBR_VALID, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in | 
|  | * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when | 
|  | * TSX is not supported they have no consistent behavior: | 
|  | * | 
|  | *   - For wrmsr(), bits 61:62 are considered part of the sign extension. | 
|  | *   - For HW updates (branch captures) bits 61:62 are always OFF and are not | 
|  | *     part of the sign extension. | 
|  | * | 
|  | * Therefore, if: | 
|  | * | 
|  | *   1) LBR has TSX format | 
|  | *   2) CPU has no TSX support enabled | 
|  | * | 
|  | * ... then any value passed to wrmsr() must be sign extended to 63 bits and any | 
|  | * value from rdmsr() must be converted to have a 61 bits sign extension, | 
|  | * ignoring the TSX flags. | 
|  | */ | 
|  | static inline bool lbr_from_signext_quirk_needed(void) | 
|  | { | 
|  | int lbr_format = x86_pmu.intel_cap.lbr_format; | 
|  | bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || | 
|  | boot_cpu_has(X86_FEATURE_RTM); | 
|  |  | 
|  | return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX); | 
|  | } | 
|  |  | 
|  | static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); | 
|  |  | 
|  | /* If quirk is enabled, ensure sign extension is 63 bits: */ | 
|  | inline u64 lbr_from_signext_quirk_wr(u64 val) | 
|  | { | 
|  | if (static_branch_unlikely(&lbr_from_quirk_key)) { | 
|  | /* | 
|  | * Sign extend into bits 61:62 while preserving bit 63. | 
|  | * | 
|  | * Quirk is enabled when TSX is disabled. Therefore TSX bits | 
|  | * in val are always OFF and must be changed to be sign | 
|  | * extension bits. Since bits 59:60 are guaranteed to be | 
|  | * part of the sign extension bits, we can just copy them | 
|  | * to 61:62. | 
|  | */ | 
|  | val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If quirk is needed, ensure sign extension is 61 bits: | 
|  | */ | 
|  | static u64 lbr_from_signext_quirk_rd(u64 val) | 
|  | { | 
|  | if (static_branch_unlikely(&lbr_from_quirk_key)) { | 
|  | /* | 
|  | * Quirk is on when TSX is not enabled. Therefore TSX | 
|  | * flags must be read as OFF. | 
|  | */ | 
|  | val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static __always_inline void wrlbr_from(unsigned int idx, u64 val) | 
|  | { | 
|  | val = lbr_from_signext_quirk_wr(val); | 
|  | wrmsrl(x86_pmu.lbr_from + idx, val); | 
|  | } | 
|  |  | 
|  | static __always_inline void wrlbr_to(unsigned int idx, u64 val) | 
|  | { | 
|  | wrmsrl(x86_pmu.lbr_to + idx, val); | 
|  | } | 
|  |  | 
|  | static __always_inline void wrlbr_info(unsigned int idx, u64 val) | 
|  | { | 
|  | wrmsrl(x86_pmu.lbr_info + idx, val); | 
|  | } | 
|  |  | 
|  | static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (lbr) | 
|  | return lbr->from; | 
|  |  | 
|  | rdmsrl(x86_pmu.lbr_from + idx, val); | 
|  |  | 
|  | return lbr_from_signext_quirk_rd(val); | 
|  | } | 
|  |  | 
|  | static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (lbr) | 
|  | return lbr->to; | 
|  |  | 
|  | rdmsrl(x86_pmu.lbr_to + idx, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (lbr) | 
|  | return lbr->info; | 
|  |  | 
|  | rdmsrl(x86_pmu.lbr_info + idx, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info) | 
|  | { | 
|  | wrlbr_from(idx, lbr->from); | 
|  | wrlbr_to(idx, lbr->to); | 
|  | if (need_info) | 
|  | wrlbr_info(idx, lbr->info); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info) | 
|  | { | 
|  | u64 from = rdlbr_from(idx, NULL); | 
|  |  | 
|  | /* Don't read invalid entry */ | 
|  | if (!from) | 
|  | return false; | 
|  |  | 
|  | lbr->from = from; | 
|  | lbr->to = rdlbr_to(idx, NULL); | 
|  | if (need_info) | 
|  | lbr->info = rdlbr_info(idx, NULL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_restore(void *ctx) | 
|  | { | 
|  | bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO; | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  | struct x86_perf_task_context *task_ctx = ctx; | 
|  | int i; | 
|  | unsigned lbr_idx, mask; | 
|  | u64 tos = task_ctx->tos; | 
|  |  | 
|  | mask = x86_pmu.lbr_nr - 1; | 
|  | for (i = 0; i < task_ctx->valid_lbrs; i++) { | 
|  | lbr_idx = (tos - i) & mask; | 
|  | wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info); | 
|  | } | 
|  |  | 
|  | for (; i < x86_pmu.lbr_nr; i++) { | 
|  | lbr_idx = (tos - i) & mask; | 
|  | wrlbr_from(lbr_idx, 0); | 
|  | wrlbr_to(lbr_idx, 0); | 
|  | if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) | 
|  | wrlbr_info(lbr_idx, 0); | 
|  | } | 
|  |  | 
|  | wrmsrl(x86_pmu.lbr_tos, tos); | 
|  |  | 
|  | if (cpuc->lbr_select) | 
|  | wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel); | 
|  | } | 
|  |  | 
|  | static void intel_pmu_arch_lbr_restore(void *ctx) | 
|  | { | 
|  | struct x86_perf_task_context_arch_lbr *task_ctx = ctx; | 
|  | struct lbr_entry *entries = task_ctx->entries; | 
|  | int i; | 
|  |  | 
|  | /* Fast reset the LBRs before restore if the call stack is not full. */ | 
|  | if (!entries[x86_pmu.lbr_nr - 1].from) | 
|  | intel_pmu_arch_lbr_reset(); | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | if (!entries[i].from) | 
|  | break; | 
|  | wrlbr_all(&entries[i], i, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore the Architecture LBR state from the xsave area in the perf | 
|  | * context data for the task via the XRSTORS instruction. | 
|  | */ | 
|  | static void intel_pmu_arch_lbr_xrstors(void *ctx) | 
|  | { | 
|  | struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx; | 
|  |  | 
|  | copy_kernel_to_dynamic_supervisor(&task_ctx->xsave, XFEATURE_MASK_LBR); | 
|  | } | 
|  |  | 
|  | static __always_inline bool lbr_is_reset_in_cstate(void *ctx) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR)) | 
|  | return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL); | 
|  |  | 
|  | return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL); | 
|  | } | 
|  |  | 
|  | static void __intel_pmu_lbr_restore(void *ctx) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (task_context_opt(ctx)->lbr_callstack_users == 0 || | 
|  | task_context_opt(ctx)->lbr_stack_state == LBR_NONE) { | 
|  | intel_pmu_lbr_reset(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does not restore the LBR registers, if | 
|  | * - No one else touched them, and | 
|  | * - Was not cleared in Cstate | 
|  | */ | 
|  | if ((ctx == cpuc->last_task_ctx) && | 
|  | (task_context_opt(ctx)->log_id == cpuc->last_log_id) && | 
|  | !lbr_is_reset_in_cstate(ctx)) { | 
|  | task_context_opt(ctx)->lbr_stack_state = LBR_NONE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | x86_pmu.lbr_restore(ctx); | 
|  |  | 
|  | task_context_opt(ctx)->lbr_stack_state = LBR_NONE; | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_save(void *ctx) | 
|  | { | 
|  | bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO; | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  | struct x86_perf_task_context *task_ctx = ctx; | 
|  | unsigned lbr_idx, mask; | 
|  | u64 tos; | 
|  | int i; | 
|  |  | 
|  | mask = x86_pmu.lbr_nr - 1; | 
|  | tos = intel_pmu_lbr_tos(); | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | lbr_idx = (tos - i) & mask; | 
|  | if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info)) | 
|  | break; | 
|  | } | 
|  | task_ctx->valid_lbrs = i; | 
|  | task_ctx->tos = tos; | 
|  |  | 
|  | if (cpuc->lbr_select) | 
|  | rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel); | 
|  | } | 
|  |  | 
|  | static void intel_pmu_arch_lbr_save(void *ctx) | 
|  | { | 
|  | struct x86_perf_task_context_arch_lbr *task_ctx = ctx; | 
|  | struct lbr_entry *entries = task_ctx->entries; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | if (!rdlbr_all(&entries[i], i, true)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* LBR call stack is not full. Reset is required in restore. */ | 
|  | if (i < x86_pmu.lbr_nr) | 
|  | entries[x86_pmu.lbr_nr - 1].from = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the Architecture LBR state to the xsave area in the perf | 
|  | * context data for the task via the XSAVES instruction. | 
|  | */ | 
|  | static void intel_pmu_arch_lbr_xsaves(void *ctx) | 
|  | { | 
|  | struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx; | 
|  |  | 
|  | copy_dynamic_supervisor_to_kernel(&task_ctx->xsave, XFEATURE_MASK_LBR); | 
|  | } | 
|  |  | 
|  | static void __intel_pmu_lbr_save(void *ctx) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (task_context_opt(ctx)->lbr_callstack_users == 0) { | 
|  | task_context_opt(ctx)->lbr_stack_state = LBR_NONE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | x86_pmu.lbr_save(ctx); | 
|  |  | 
|  | task_context_opt(ctx)->lbr_stack_state = LBR_VALID; | 
|  |  | 
|  | cpuc->last_task_ctx = ctx; | 
|  | cpuc->last_log_id = ++task_context_opt(ctx)->log_id; | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev, | 
|  | struct perf_event_context *next) | 
|  | { | 
|  | void *prev_ctx_data, *next_ctx_data; | 
|  |  | 
|  | swap(prev->task_ctx_data, next->task_ctx_data); | 
|  |  | 
|  | /* | 
|  | * Architecture specific synchronization makes sense in | 
|  | * case both prev->task_ctx_data and next->task_ctx_data | 
|  | * pointers are allocated. | 
|  | */ | 
|  |  | 
|  | prev_ctx_data = next->task_ctx_data; | 
|  | next_ctx_data = prev->task_ctx_data; | 
|  |  | 
|  | if (!prev_ctx_data || !next_ctx_data) | 
|  | return; | 
|  |  | 
|  | swap(task_context_opt(prev_ctx_data)->lbr_callstack_users, | 
|  | task_context_opt(next_ctx_data)->lbr_callstack_users); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  | void *task_ctx; | 
|  |  | 
|  | if (!cpuc->lbr_users) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If LBR callstack feature is enabled and the stack was saved when | 
|  | * the task was scheduled out, restore the stack. Otherwise flush | 
|  | * the LBR stack. | 
|  | */ | 
|  | task_ctx = ctx ? ctx->task_ctx_data : NULL; | 
|  | if (task_ctx) { | 
|  | if (sched_in) | 
|  | __intel_pmu_lbr_restore(task_ctx); | 
|  | else | 
|  | __intel_pmu_lbr_save(task_ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since a context switch can flip the address space and LBR entries | 
|  | * are not tagged with an identifier, we need to wipe the LBR, even for | 
|  | * per-cpu events. You simply cannot resolve the branches from the old | 
|  | * address space. | 
|  | */ | 
|  | if (sched_in) | 
|  | intel_pmu_lbr_reset(); | 
|  | } | 
|  |  | 
|  | static inline bool branch_user_callstack(unsigned br_sel) | 
|  | { | 
|  | return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_add(struct perf_event *event) | 
|  | { | 
|  | struct kmem_cache *kmem_cache = event->pmu->task_ctx_cache; | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!x86_pmu.lbr_nr) | 
|  | return; | 
|  |  | 
|  | if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT) | 
|  | cpuc->lbr_select = 1; | 
|  |  | 
|  | cpuc->br_sel = event->hw.branch_reg.reg; | 
|  |  | 
|  | if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) | 
|  | task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++; | 
|  |  | 
|  | /* | 
|  | * Request pmu::sched_task() callback, which will fire inside the | 
|  | * regular perf event scheduling, so that call will: | 
|  | * | 
|  | *  - restore or wipe; when LBR-callstack, | 
|  | *  - wipe; otherwise, | 
|  | * | 
|  | * when this is from __perf_event_task_sched_in(). | 
|  | * | 
|  | * However, if this is from perf_install_in_context(), no such callback | 
|  | * will follow and we'll need to reset the LBR here if this is the | 
|  | * first LBR event. | 
|  | * | 
|  | * The problem is, we cannot tell these cases apart... but we can | 
|  | * exclude the biggest chunk of cases by looking at | 
|  | * event->total_time_running. An event that has accrued runtime cannot | 
|  | * be 'new'. Conversely, a new event can get installed through the | 
|  | * context switch path for the first time. | 
|  | */ | 
|  | if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) | 
|  | cpuc->lbr_pebs_users++; | 
|  | perf_sched_cb_inc(event->ctx->pmu); | 
|  | if (!cpuc->lbr_users++ && !event->total_time_running) | 
|  | intel_pmu_lbr_reset(); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) && | 
|  | kmem_cache && !cpuc->lbr_xsave && | 
|  | (cpuc->lbr_users != cpuc->lbr_pebs_users)) | 
|  | cpuc->lbr_xsave = kmem_cache_alloc(kmem_cache, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void release_lbr_buffers(void) | 
|  | { | 
|  | struct kmem_cache *kmem_cache = x86_get_pmu()->task_ctx_cache; | 
|  | struct cpu_hw_events *cpuc; | 
|  | int cpu; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_ARCH_LBR)) | 
|  | return; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | cpuc = per_cpu_ptr(&cpu_hw_events, cpu); | 
|  | if (kmem_cache && cpuc->lbr_xsave) { | 
|  | kmem_cache_free(kmem_cache, cpuc->lbr_xsave); | 
|  | cpuc->lbr_xsave = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_del(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!x86_pmu.lbr_nr) | 
|  | return; | 
|  |  | 
|  | if (branch_user_callstack(cpuc->br_sel) && | 
|  | event->ctx->task_ctx_data) | 
|  | task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--; | 
|  |  | 
|  | if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT) | 
|  | cpuc->lbr_select = 0; | 
|  |  | 
|  | if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) | 
|  | cpuc->lbr_pebs_users--; | 
|  | cpuc->lbr_users--; | 
|  | WARN_ON_ONCE(cpuc->lbr_users < 0); | 
|  | WARN_ON_ONCE(cpuc->lbr_pebs_users < 0); | 
|  | perf_sched_cb_dec(event->ctx->pmu); | 
|  | } | 
|  |  | 
|  | static inline bool vlbr_exclude_host(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | return test_bit(INTEL_PMC_IDX_FIXED_VLBR, | 
|  | (unsigned long *)&cpuc->intel_ctrl_guest_mask); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_enable_all(bool pmi) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (cpuc->lbr_users && !vlbr_exclude_host()) | 
|  | __intel_pmu_lbr_enable(pmi); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_disable_all(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (cpuc->lbr_users && !vlbr_exclude_host()) | 
|  | __intel_pmu_lbr_disable(); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | unsigned long mask = x86_pmu.lbr_nr - 1; | 
|  | u64 tos = intel_pmu_lbr_tos(); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | unsigned long lbr_idx = (tos - i) & mask; | 
|  | union { | 
|  | struct { | 
|  | u32 from; | 
|  | u32 to; | 
|  | }; | 
|  | u64     lbr; | 
|  | } msr_lastbranch; | 
|  |  | 
|  | rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); | 
|  |  | 
|  | cpuc->lbr_entries[i].from	= msr_lastbranch.from; | 
|  | cpuc->lbr_entries[i].to		= msr_lastbranch.to; | 
|  | cpuc->lbr_entries[i].mispred	= 0; | 
|  | cpuc->lbr_entries[i].predicted	= 0; | 
|  | cpuc->lbr_entries[i].in_tx	= 0; | 
|  | cpuc->lbr_entries[i].abort	= 0; | 
|  | cpuc->lbr_entries[i].cycles	= 0; | 
|  | cpuc->lbr_entries[i].type	= 0; | 
|  | cpuc->lbr_entries[i].reserved	= 0; | 
|  | } | 
|  | cpuc->lbr_stack.nr = i; | 
|  | cpuc->lbr_stack.hw_idx = tos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Due to lack of segmentation in Linux the effective address (offset) | 
|  | * is the same as the linear address, allowing us to merge the LIP and EIP | 
|  | * LBR formats. | 
|  | */ | 
|  | void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | bool need_info = false, call_stack = false; | 
|  | unsigned long mask = x86_pmu.lbr_nr - 1; | 
|  | int lbr_format = x86_pmu.intel_cap.lbr_format; | 
|  | u64 tos = intel_pmu_lbr_tos(); | 
|  | int i; | 
|  | int out = 0; | 
|  | int num = x86_pmu.lbr_nr; | 
|  |  | 
|  | if (cpuc->lbr_sel) { | 
|  | need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); | 
|  | if (cpuc->lbr_sel->config & LBR_CALL_STACK) | 
|  | call_stack = true; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | unsigned long lbr_idx = (tos - i) & mask; | 
|  | u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; | 
|  | int skip = 0; | 
|  | u16 cycles = 0; | 
|  | int lbr_flags = lbr_desc[lbr_format]; | 
|  |  | 
|  | from = rdlbr_from(lbr_idx, NULL); | 
|  | to   = rdlbr_to(lbr_idx, NULL); | 
|  |  | 
|  | /* | 
|  | * Read LBR call stack entries | 
|  | * until invalid entry (0s) is detected. | 
|  | */ | 
|  | if (call_stack && !from) | 
|  | break; | 
|  |  | 
|  | if (lbr_format == LBR_FORMAT_INFO && need_info) { | 
|  | u64 info; | 
|  |  | 
|  | info = rdlbr_info(lbr_idx, NULL); | 
|  | mis = !!(info & LBR_INFO_MISPRED); | 
|  | pred = !mis; | 
|  | in_tx = !!(info & LBR_INFO_IN_TX); | 
|  | abort = !!(info & LBR_INFO_ABORT); | 
|  | cycles = (info & LBR_INFO_CYCLES); | 
|  | } | 
|  |  | 
|  | if (lbr_format == LBR_FORMAT_TIME) { | 
|  | mis = !!(from & LBR_FROM_FLAG_MISPRED); | 
|  | pred = !mis; | 
|  | skip = 1; | 
|  | cycles = ((to >> 48) & LBR_INFO_CYCLES); | 
|  |  | 
|  | to = (u64)((((s64)to) << 16) >> 16); | 
|  | } | 
|  |  | 
|  | if (lbr_flags & LBR_EIP_FLAGS) { | 
|  | mis = !!(from & LBR_FROM_FLAG_MISPRED); | 
|  | pred = !mis; | 
|  | skip = 1; | 
|  | } | 
|  | if (lbr_flags & LBR_TSX) { | 
|  | in_tx = !!(from & LBR_FROM_FLAG_IN_TX); | 
|  | abort = !!(from & LBR_FROM_FLAG_ABORT); | 
|  | skip = 3; | 
|  | } | 
|  | from = (u64)((((s64)from) << skip) >> skip); | 
|  |  | 
|  | /* | 
|  | * Some CPUs report duplicated abort records, | 
|  | * with the second entry not having an abort bit set. | 
|  | * Skip them here. This loop runs backwards, | 
|  | * so we need to undo the previous record. | 
|  | * If the abort just happened outside the window | 
|  | * the extra entry cannot be removed. | 
|  | */ | 
|  | if (abort && x86_pmu.lbr_double_abort && out > 0) | 
|  | out--; | 
|  |  | 
|  | cpuc->lbr_entries[out].from	 = from; | 
|  | cpuc->lbr_entries[out].to	 = to; | 
|  | cpuc->lbr_entries[out].mispred	 = mis; | 
|  | cpuc->lbr_entries[out].predicted = pred; | 
|  | cpuc->lbr_entries[out].in_tx	 = in_tx; | 
|  | cpuc->lbr_entries[out].abort	 = abort; | 
|  | cpuc->lbr_entries[out].cycles	 = cycles; | 
|  | cpuc->lbr_entries[out].type	 = 0; | 
|  | cpuc->lbr_entries[out].reserved	 = 0; | 
|  | out++; | 
|  | } | 
|  | cpuc->lbr_stack.nr = out; | 
|  | cpuc->lbr_stack.hw_idx = tos; | 
|  | } | 
|  |  | 
|  | static __always_inline int get_lbr_br_type(u64 info) | 
|  | { | 
|  | if (!static_cpu_has(X86_FEATURE_ARCH_LBR) || !x86_pmu.lbr_br_type) | 
|  | return 0; | 
|  |  | 
|  | return (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET; | 
|  | } | 
|  |  | 
|  | static __always_inline bool get_lbr_mispred(u64 info) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred) | 
|  | return 0; | 
|  |  | 
|  | return !!(info & LBR_INFO_MISPRED); | 
|  | } | 
|  |  | 
|  | static __always_inline bool get_lbr_predicted(u64 info) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred) | 
|  | return 0; | 
|  |  | 
|  | return !(info & LBR_INFO_MISPRED); | 
|  | } | 
|  |  | 
|  | static __always_inline bool get_lbr_cycles(u64 info) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) && | 
|  | !(x86_pmu.lbr_timed_lbr && info & LBR_INFO_CYC_CNT_VALID)) | 
|  | return 0; | 
|  |  | 
|  | return info & LBR_INFO_CYCLES; | 
|  | } | 
|  |  | 
|  | static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc, | 
|  | struct lbr_entry *entries) | 
|  | { | 
|  | struct perf_branch_entry *e; | 
|  | struct lbr_entry *lbr; | 
|  | u64 from, to, info; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
|  | lbr = entries ? &entries[i] : NULL; | 
|  | e = &cpuc->lbr_entries[i]; | 
|  |  | 
|  | from = rdlbr_from(i, lbr); | 
|  | /* | 
|  | * Read LBR entries until invalid entry (0s) is detected. | 
|  | */ | 
|  | if (!from) | 
|  | break; | 
|  |  | 
|  | to = rdlbr_to(i, lbr); | 
|  | info = rdlbr_info(i, lbr); | 
|  |  | 
|  | e->from		= from; | 
|  | e->to		= to; | 
|  | e->mispred	= get_lbr_mispred(info); | 
|  | e->predicted	= get_lbr_predicted(info); | 
|  | e->in_tx	= !!(info & LBR_INFO_IN_TX); | 
|  | e->abort	= !!(info & LBR_INFO_ABORT); | 
|  | e->cycles	= get_lbr_cycles(info); | 
|  | e->type		= get_lbr_br_type(info); | 
|  | e->reserved	= 0; | 
|  | } | 
|  |  | 
|  | cpuc->lbr_stack.nr = i; | 
|  | } | 
|  |  | 
|  | static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | intel_pmu_store_lbr(cpuc, NULL); | 
|  | } | 
|  |  | 
|  | static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave; | 
|  |  | 
|  | if (!xsave) { | 
|  | intel_pmu_store_lbr(cpuc, NULL); | 
|  | return; | 
|  | } | 
|  | copy_dynamic_supervisor_to_kernel(&xsave->xsave, XFEATURE_MASK_LBR); | 
|  |  | 
|  | intel_pmu_store_lbr(cpuc, xsave->lbr.entries); | 
|  | } | 
|  |  | 
|  | void intel_pmu_lbr_read(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | /* | 
|  | * Don't read when all LBRs users are using adaptive PEBS. | 
|  | * | 
|  | * This could be smarter and actually check the event, | 
|  | * but this simple approach seems to work for now. | 
|  | */ | 
|  | if (!cpuc->lbr_users || vlbr_exclude_host() || | 
|  | cpuc->lbr_users == cpuc->lbr_pebs_users) | 
|  | return; | 
|  |  | 
|  | x86_pmu.lbr_read(cpuc); | 
|  |  | 
|  | intel_pmu_lbr_filter(cpuc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SW filter is used: | 
|  | * - in case there is no HW filter | 
|  | * - in case the HW filter has errata or limitations | 
|  | */ | 
|  | static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) | 
|  | { | 
|  | u64 br_type = event->attr.branch_sample_type; | 
|  | int mask = 0; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_USER) | 
|  | mask |= X86_BR_USER; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_KERNEL) | 
|  | mask |= X86_BR_KERNEL; | 
|  |  | 
|  | /* we ignore BRANCH_HV here */ | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_ANY) | 
|  | mask |= X86_BR_ANY; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) | 
|  | mask |= X86_BR_ANY_CALL; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) | 
|  | mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) | 
|  | mask |= X86_BR_IND_CALL; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) | 
|  | mask |= X86_BR_ABORT; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_IN_TX) | 
|  | mask |= X86_BR_IN_TX; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_NO_TX) | 
|  | mask |= X86_BR_NO_TX; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_COND) | 
|  | mask |= X86_BR_JCC; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { | 
|  | if (!x86_pmu_has_lbr_callstack()) | 
|  | return -EOPNOTSUPP; | 
|  | if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) | 
|  | return -EINVAL; | 
|  | mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | | 
|  | X86_BR_CALL_STACK; | 
|  | } | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) | 
|  | mask |= X86_BR_IND_JMP; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_CALL) | 
|  | mask |= X86_BR_CALL | X86_BR_ZERO_CALL; | 
|  |  | 
|  | if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE) | 
|  | mask |= X86_BR_TYPE_SAVE; | 
|  |  | 
|  | /* | 
|  | * stash actual user request into reg, it may | 
|  | * be used by fixup code for some CPU | 
|  | */ | 
|  | event->hw.branch_reg.reg = mask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup the HW LBR filter | 
|  | * Used only when available, may not be enough to disambiguate | 
|  | * all branches, may need the help of the SW filter | 
|  | */ | 
|  | static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event_extra *reg; | 
|  | u64 br_type = event->attr.branch_sample_type; | 
|  | u64 mask = 0, v; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { | 
|  | if (!(br_type & (1ULL << i))) | 
|  | continue; | 
|  |  | 
|  | v = x86_pmu.lbr_sel_map[i]; | 
|  | if (v == LBR_NOT_SUPP) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (v != LBR_IGN) | 
|  | mask |= v; | 
|  | } | 
|  |  | 
|  | reg = &event->hw.branch_reg; | 
|  | reg->idx = EXTRA_REG_LBR; | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR)) { | 
|  | reg->config = mask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate | 
|  | * in suppress mode. So LBR_SELECT should be set to | 
|  | * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) | 
|  | * But the 10th bit LBR_CALL_STACK does not operate | 
|  | * in suppress mode. | 
|  | */ | 
|  | reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); | 
|  |  | 
|  | if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && | 
|  | (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && | 
|  | (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) | 
|  | reg->config |= LBR_NO_INFO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int intel_pmu_setup_lbr_filter(struct perf_event *event) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * no LBR on this PMU | 
|  | */ | 
|  | if (!x86_pmu.lbr_nr) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * setup SW LBR filter | 
|  | */ | 
|  | ret = intel_pmu_setup_sw_lbr_filter(event); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * setup HW LBR filter, if any | 
|  | */ | 
|  | if (x86_pmu.lbr_sel_map) | 
|  | ret = intel_pmu_setup_hw_lbr_filter(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the type of control flow change at address "from" | 
|  | * instruction is not necessarily a branch (in case of interrupt). | 
|  | * | 
|  | * The branch type returned also includes the priv level of the | 
|  | * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). | 
|  | * | 
|  | * If a branch type is unknown OR the instruction cannot be | 
|  | * decoded (e.g., text page not present), then X86_BR_NONE is | 
|  | * returned. | 
|  | */ | 
|  | static int branch_type(unsigned long from, unsigned long to, int abort) | 
|  | { | 
|  | struct insn insn; | 
|  | void *addr; | 
|  | int bytes_read, bytes_left; | 
|  | int ret = X86_BR_NONE; | 
|  | int ext, to_plm, from_plm; | 
|  | u8 buf[MAX_INSN_SIZE]; | 
|  | int is64 = 0; | 
|  |  | 
|  | to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; | 
|  | from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; | 
|  |  | 
|  | /* | 
|  | * maybe zero if lbr did not fill up after a reset by the time | 
|  | * we get a PMU interrupt | 
|  | */ | 
|  | if (from == 0 || to == 0) | 
|  | return X86_BR_NONE; | 
|  |  | 
|  | if (abort) | 
|  | return X86_BR_ABORT | to_plm; | 
|  |  | 
|  | if (from_plm == X86_BR_USER) { | 
|  | /* | 
|  | * can happen if measuring at the user level only | 
|  | * and we interrupt in a kernel thread, e.g., idle. | 
|  | */ | 
|  | if (!current->mm) | 
|  | return X86_BR_NONE; | 
|  |  | 
|  | /* may fail if text not present */ | 
|  | bytes_left = copy_from_user_nmi(buf, (void __user *)from, | 
|  | MAX_INSN_SIZE); | 
|  | bytes_read = MAX_INSN_SIZE - bytes_left; | 
|  | if (!bytes_read) | 
|  | return X86_BR_NONE; | 
|  |  | 
|  | addr = buf; | 
|  | } else { | 
|  | /* | 
|  | * The LBR logs any address in the IP, even if the IP just | 
|  | * faulted. This means userspace can control the from address. | 
|  | * Ensure we don't blindy read any address by validating it is | 
|  | * a known text address. | 
|  | */ | 
|  | if (kernel_text_address(from)) { | 
|  | addr = (void *)from; | 
|  | /* | 
|  | * Assume we can get the maximum possible size | 
|  | * when grabbing kernel data.  This is not | 
|  | * _strictly_ true since we could possibly be | 
|  | * executing up next to a memory hole, but | 
|  | * it is very unlikely to be a problem. | 
|  | */ | 
|  | bytes_read = MAX_INSN_SIZE; | 
|  | } else { | 
|  | return X86_BR_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decoder needs to know the ABI especially | 
|  | * on 64-bit systems running 32-bit apps | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); | 
|  | #endif | 
|  | insn_init(&insn, addr, bytes_read, is64); | 
|  | insn_get_opcode(&insn); | 
|  | if (!insn.opcode.got) | 
|  | return X86_BR_ABORT; | 
|  |  | 
|  | switch (insn.opcode.bytes[0]) { | 
|  | case 0xf: | 
|  | switch (insn.opcode.bytes[1]) { | 
|  | case 0x05: /* syscall */ | 
|  | case 0x34: /* sysenter */ | 
|  | ret = X86_BR_SYSCALL; | 
|  | break; | 
|  | case 0x07: /* sysret */ | 
|  | case 0x35: /* sysexit */ | 
|  | ret = X86_BR_SYSRET; | 
|  | break; | 
|  | case 0x80 ... 0x8f: /* conditional */ | 
|  | ret = X86_BR_JCC; | 
|  | break; | 
|  | default: | 
|  | ret = X86_BR_NONE; | 
|  | } | 
|  | break; | 
|  | case 0x70 ... 0x7f: /* conditional */ | 
|  | ret = X86_BR_JCC; | 
|  | break; | 
|  | case 0xc2: /* near ret */ | 
|  | case 0xc3: /* near ret */ | 
|  | case 0xca: /* far ret */ | 
|  | case 0xcb: /* far ret */ | 
|  | ret = X86_BR_RET; | 
|  | break; | 
|  | case 0xcf: /* iret */ | 
|  | ret = X86_BR_IRET; | 
|  | break; | 
|  | case 0xcc ... 0xce: /* int */ | 
|  | ret = X86_BR_INT; | 
|  | break; | 
|  | case 0xe8: /* call near rel */ | 
|  | insn_get_immediate(&insn); | 
|  | if (insn.immediate1.value == 0) { | 
|  | /* zero length call */ | 
|  | ret = X86_BR_ZERO_CALL; | 
|  | break; | 
|  | } | 
|  | /* fall through */ | 
|  | case 0x9a: /* call far absolute */ | 
|  | ret = X86_BR_CALL; | 
|  | break; | 
|  | case 0xe0 ... 0xe3: /* loop jmp */ | 
|  | ret = X86_BR_JCC; | 
|  | break; | 
|  | case 0xe9 ... 0xeb: /* jmp */ | 
|  | ret = X86_BR_JMP; | 
|  | break; | 
|  | case 0xff: /* call near absolute, call far absolute ind */ | 
|  | insn_get_modrm(&insn); | 
|  | ext = (insn.modrm.bytes[0] >> 3) & 0x7; | 
|  | switch (ext) { | 
|  | case 2: /* near ind call */ | 
|  | case 3: /* far ind call */ | 
|  | ret = X86_BR_IND_CALL; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | ret = X86_BR_IND_JMP; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | ret = X86_BR_NONE; | 
|  | } | 
|  | /* | 
|  | * interrupts, traps, faults (and thus ring transition) may | 
|  | * occur on any instructions. Thus, to classify them correctly, | 
|  | * we need to first look at the from and to priv levels. If they | 
|  | * are different and to is in the kernel, then it indicates | 
|  | * a ring transition. If the from instruction is not a ring | 
|  | * transition instr (syscall, systenter, int), then it means | 
|  | * it was a irq, trap or fault. | 
|  | * | 
|  | * we have no way of detecting kernel to kernel faults. | 
|  | */ | 
|  | if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL | 
|  | && ret != X86_BR_SYSCALL && ret != X86_BR_INT) | 
|  | ret = X86_BR_IRQ; | 
|  |  | 
|  | /* | 
|  | * branch priv level determined by target as | 
|  | * is done by HW when LBR_SELECT is implemented | 
|  | */ | 
|  | if (ret != X86_BR_NONE) | 
|  | ret |= to_plm; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define X86_BR_TYPE_MAP_MAX	16 | 
|  |  | 
|  | static int branch_map[X86_BR_TYPE_MAP_MAX] = { | 
|  | PERF_BR_CALL,		/* X86_BR_CALL */ | 
|  | PERF_BR_RET,		/* X86_BR_RET */ | 
|  | PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */ | 
|  | PERF_BR_SYSRET,		/* X86_BR_SYSRET */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_INT */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_IRET */ | 
|  | PERF_BR_COND,		/* X86_BR_JCC */ | 
|  | PERF_BR_UNCOND,		/* X86_BR_JMP */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_IRQ */ | 
|  | PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_ABORT */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */ | 
|  | PERF_BR_CALL,		/* X86_BR_ZERO_CALL */ | 
|  | PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */ | 
|  | PERF_BR_IND,		/* X86_BR_IND_JMP */ | 
|  | }; | 
|  |  | 
|  | static int | 
|  | common_branch_type(int type) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */ | 
|  |  | 
|  | if (type) { | 
|  | i = __ffs(type); | 
|  | if (i < X86_BR_TYPE_MAP_MAX) | 
|  | return branch_map[i]; | 
|  | } | 
|  |  | 
|  | return PERF_BR_UNKNOWN; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | ARCH_LBR_BR_TYPE_JCC			= 0, | 
|  | ARCH_LBR_BR_TYPE_NEAR_IND_JMP		= 1, | 
|  | ARCH_LBR_BR_TYPE_NEAR_REL_JMP		= 2, | 
|  | ARCH_LBR_BR_TYPE_NEAR_IND_CALL		= 3, | 
|  | ARCH_LBR_BR_TYPE_NEAR_REL_CALL		= 4, | 
|  | ARCH_LBR_BR_TYPE_NEAR_RET		= 5, | 
|  | ARCH_LBR_BR_TYPE_KNOWN_MAX		= ARCH_LBR_BR_TYPE_NEAR_RET, | 
|  |  | 
|  | ARCH_LBR_BR_TYPE_MAP_MAX		= 16, | 
|  | }; | 
|  |  | 
|  | static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = { | 
|  | [ARCH_LBR_BR_TYPE_JCC]			= X86_BR_JCC, | 
|  | [ARCH_LBR_BR_TYPE_NEAR_IND_JMP]		= X86_BR_IND_JMP, | 
|  | [ARCH_LBR_BR_TYPE_NEAR_REL_JMP]		= X86_BR_JMP, | 
|  | [ARCH_LBR_BR_TYPE_NEAR_IND_CALL]	= X86_BR_IND_CALL, | 
|  | [ARCH_LBR_BR_TYPE_NEAR_REL_CALL]	= X86_BR_CALL, | 
|  | [ARCH_LBR_BR_TYPE_NEAR_RET]		= X86_BR_RET, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * implement actual branch filter based on user demand. | 
|  | * Hardware may not exactly satisfy that request, thus | 
|  | * we need to inspect opcodes. Mismatched branches are | 
|  | * discarded. Therefore, the number of branches returned | 
|  | * in PERF_SAMPLE_BRANCH_STACK sample may vary. | 
|  | */ | 
|  | static void | 
|  | intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | u64 from, to; | 
|  | int br_sel = cpuc->br_sel; | 
|  | int i, j, type, to_plm; | 
|  | bool compress = false; | 
|  |  | 
|  | /* if sampling all branches, then nothing to filter */ | 
|  | if (((br_sel & X86_BR_ALL) == X86_BR_ALL) && | 
|  | ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < cpuc->lbr_stack.nr; i++) { | 
|  |  | 
|  | from = cpuc->lbr_entries[i].from; | 
|  | to = cpuc->lbr_entries[i].to; | 
|  | type = cpuc->lbr_entries[i].type; | 
|  |  | 
|  | /* | 
|  | * Parse the branch type recorded in LBR_x_INFO MSR. | 
|  | * Doesn't support OTHER_BRANCH decoding for now. | 
|  | * OTHER_BRANCH branch type still rely on software decoding. | 
|  | */ | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) && | 
|  | type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) { | 
|  | to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; | 
|  | type = arch_lbr_br_type_map[type] | to_plm; | 
|  | } else | 
|  | type = branch_type(from, to, cpuc->lbr_entries[i].abort); | 
|  | if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { | 
|  | if (cpuc->lbr_entries[i].in_tx) | 
|  | type |= X86_BR_IN_TX; | 
|  | else | 
|  | type |= X86_BR_NO_TX; | 
|  | } | 
|  |  | 
|  | /* if type does not correspond, then discard */ | 
|  | if (type == X86_BR_NONE || (br_sel & type) != type) { | 
|  | cpuc->lbr_entries[i].from = 0; | 
|  | compress = true; | 
|  | } | 
|  |  | 
|  | if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE) | 
|  | cpuc->lbr_entries[i].type = common_branch_type(type); | 
|  | } | 
|  |  | 
|  | if (!compress) | 
|  | return; | 
|  |  | 
|  | /* remove all entries with from=0 */ | 
|  | for (i = 0; i < cpuc->lbr_stack.nr; ) { | 
|  | if (!cpuc->lbr_entries[i].from) { | 
|  | j = i; | 
|  | while (++j < cpuc->lbr_stack.nr) | 
|  | cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; | 
|  | cpuc->lbr_stack.nr--; | 
|  | if (!cpuc->lbr_entries[i].from) | 
|  | continue; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | /* Cannot get TOS for large PEBS and Arch LBR */ | 
|  | if (static_cpu_has(X86_FEATURE_ARCH_LBR) || | 
|  | (cpuc->n_pebs == cpuc->n_large_pebs)) | 
|  | cpuc->lbr_stack.hw_idx = -1ULL; | 
|  | else | 
|  | cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos(); | 
|  |  | 
|  | intel_pmu_store_lbr(cpuc, lbr); | 
|  | intel_pmu_lbr_filter(cpuc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map interface branch filters onto LBR filters | 
|  | */ | 
|  | static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
|  | [PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
|  | [PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
|  | [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
|  | [PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
|  | [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP | 
|  | | LBR_IND_JMP | LBR_FAR, | 
|  | /* | 
|  | * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches | 
|  | */ | 
|  | [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = | 
|  | LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, | 
|  | /* | 
|  | * NHM/WSM erratum: must include IND_JMP to capture IND_CALL | 
|  | */ | 
|  | [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, | 
|  | [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC, | 
|  | [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, | 
|  | }; | 
|  |  | 
|  | static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
|  | [PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
|  | [PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
|  | [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
|  | [PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
|  | [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR, | 
|  | [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
|  | | LBR_FAR, | 
|  | [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL, | 
|  | [PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC, | 
|  | [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP, | 
|  | [PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL, | 
|  | }; | 
|  |  | 
|  | static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
|  | [PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
|  | [PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
|  | [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
|  | [PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
|  | [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR, | 
|  | [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
|  | | LBR_FAR, | 
|  | [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL, | 
|  | [PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC, | 
|  | [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
|  | | LBR_RETURN | LBR_CALL_STACK, | 
|  | [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP, | 
|  | [PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL, | 
|  | }; | 
|  |  | 
|  | static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
|  | [PERF_SAMPLE_BRANCH_ANY_SHIFT]		= ARCH_LBR_ANY, | 
|  | [PERF_SAMPLE_BRANCH_USER_SHIFT]		= ARCH_LBR_USER, | 
|  | [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= ARCH_LBR_KERNEL, | 
|  | [PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
|  | [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= ARCH_LBR_RETURN | | 
|  | ARCH_LBR_OTHER_BRANCH, | 
|  | [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL | | 
|  | ARCH_LBR_IND_CALL | | 
|  | ARCH_LBR_OTHER_BRANCH, | 
|  | [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL, | 
|  | [PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC, | 
|  | [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL | | 
|  | ARCH_LBR_IND_CALL | | 
|  | ARCH_LBR_RETURN | | 
|  | ARCH_LBR_CALL_STACK, | 
|  | [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= ARCH_LBR_IND_JMP, | 
|  | [PERF_SAMPLE_BRANCH_CALL_SHIFT]		= ARCH_LBR_REL_CALL, | 
|  | }; | 
|  |  | 
|  | /* core */ | 
|  | void __init intel_pmu_lbr_init_core(void) | 
|  | { | 
|  | x86_pmu.lbr_nr     = 4; | 
|  | x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
|  | x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - compensate for lack of HW filter | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* nehalem/westmere */ | 
|  | void __init intel_pmu_lbr_init_nhm(void) | 
|  | { | 
|  | x86_pmu.lbr_nr     = 16; | 
|  | x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from   = MSR_LBR_NHM_FROM; | 
|  | x86_pmu.lbr_to     = MSR_LBR_NHM_TO; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = nhm_lbr_sel_map; | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - workaround LBR_SEL errata (see above) | 
|  | * - support syscall, sysret capture. | 
|  | *   That requires LBR_FAR but that means far | 
|  | *   jmp need to be filtered out | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* sandy bridge */ | 
|  | void __init intel_pmu_lbr_init_snb(void) | 
|  | { | 
|  | x86_pmu.lbr_nr	 = 16; | 
|  | x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
|  | x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = snb_lbr_sel_map; | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - support syscall, sysret capture. | 
|  | *   That requires LBR_FAR but that means far | 
|  | *   jmp need to be filtered out | 
|  | */ | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache * | 
|  | create_lbr_kmem_cache(size_t size, size_t align) | 
|  | { | 
|  | return kmem_cache_create("x86_lbr", size, align, 0, NULL); | 
|  | } | 
|  |  | 
|  | /* haswell */ | 
|  | void intel_pmu_lbr_init_hsw(void) | 
|  | { | 
|  | size_t size = sizeof(struct x86_perf_task_context); | 
|  |  | 
|  | x86_pmu.lbr_nr	 = 16; | 
|  | x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
|  | x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = hsw_lbr_sel_map; | 
|  |  | 
|  | x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0); | 
|  |  | 
|  | if (lbr_from_signext_quirk_needed()) | 
|  | static_branch_enable(&lbr_from_quirk_key); | 
|  | } | 
|  |  | 
|  | /* skylake */ | 
|  | __init void intel_pmu_lbr_init_skl(void) | 
|  | { | 
|  | size_t size = sizeof(struct x86_perf_task_context); | 
|  |  | 
|  | x86_pmu.lbr_nr	 = 32; | 
|  | x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
|  | x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
|  | x86_pmu.lbr_info = MSR_LBR_INFO_0; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = hsw_lbr_sel_map; | 
|  |  | 
|  | x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0); | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - support syscall, sysret capture. | 
|  | *   That requires LBR_FAR but that means far | 
|  | *   jmp need to be filtered out | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* atom */ | 
|  | void __init intel_pmu_lbr_init_atom(void) | 
|  | { | 
|  | /* | 
|  | * only models starting at stepping 10 seems | 
|  | * to have an operational LBR which can freeze | 
|  | * on PMU interrupt | 
|  | */ | 
|  | if (boot_cpu_data.x86_model == 28 | 
|  | && boot_cpu_data.x86_stepping < 10) { | 
|  | pr_cont("LBR disabled due to erratum"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | x86_pmu.lbr_nr	   = 8; | 
|  | x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
|  | x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - compensate for lack of HW filter | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* slm */ | 
|  | void __init intel_pmu_lbr_init_slm(void) | 
|  | { | 
|  | x86_pmu.lbr_nr	   = 8; | 
|  | x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
|  | x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = nhm_lbr_sel_map; | 
|  |  | 
|  | /* | 
|  | * SW branch filter usage: | 
|  | * - compensate for lack of HW filter | 
|  | */ | 
|  | pr_cont("8-deep LBR, "); | 
|  | } | 
|  |  | 
|  | /* Knights Landing */ | 
|  | void intel_pmu_lbr_init_knl(void) | 
|  | { | 
|  | x86_pmu.lbr_nr	   = 8; | 
|  | x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
|  | x86_pmu.lbr_from   = MSR_LBR_NHM_FROM; | 
|  | x86_pmu.lbr_to     = MSR_LBR_NHM_TO; | 
|  |  | 
|  | x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
|  | x86_pmu.lbr_sel_map  = snb_lbr_sel_map; | 
|  |  | 
|  | /* Knights Landing does have MISPREDICT bit */ | 
|  | if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP) | 
|  | x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LBR state size is variable based on the max number of registers. | 
|  | * This calculates the expected state size, which should match | 
|  | * what the hardware enumerates for the size of XFEATURE_LBR. | 
|  | */ | 
|  | static inline unsigned int get_lbr_state_size(void) | 
|  | { | 
|  | return sizeof(struct arch_lbr_state) + | 
|  | x86_pmu.lbr_nr * sizeof(struct lbr_entry); | 
|  | } | 
|  |  | 
|  | static bool is_arch_lbr_xsave_available(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_XSAVES)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Check the LBR state with the corresponding software structure. | 
|  | * Disable LBR XSAVES support if the size doesn't match. | 
|  | */ | 
|  | if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __init intel_pmu_arch_lbr_init(void) | 
|  | { | 
|  | struct pmu *pmu = x86_get_pmu(); | 
|  | union cpuid28_eax eax; | 
|  | union cpuid28_ebx ebx; | 
|  | union cpuid28_ecx ecx; | 
|  | unsigned int unused_edx; | 
|  | bool arch_lbr_xsave; | 
|  | size_t size; | 
|  | u64 lbr_nr; | 
|  |  | 
|  | /* Arch LBR Capabilities */ | 
|  | cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx); | 
|  |  | 
|  | lbr_nr = fls(eax.split.lbr_depth_mask) * 8; | 
|  | if (!lbr_nr) | 
|  | goto clear_arch_lbr; | 
|  |  | 
|  | /* Apply the max depth of Arch LBR */ | 
|  | if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr)) | 
|  | goto clear_arch_lbr; | 
|  |  | 
|  | x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask; | 
|  | x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset; | 
|  | x86_pmu.lbr_lip = eax.split.lbr_lip; | 
|  | x86_pmu.lbr_cpl = ebx.split.lbr_cpl; | 
|  | x86_pmu.lbr_filter = ebx.split.lbr_filter; | 
|  | x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack; | 
|  | x86_pmu.lbr_mispred = ecx.split.lbr_mispred; | 
|  | x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr; | 
|  | x86_pmu.lbr_br_type = ecx.split.lbr_br_type; | 
|  | x86_pmu.lbr_nr = lbr_nr; | 
|  |  | 
|  |  | 
|  | arch_lbr_xsave = is_arch_lbr_xsave_available(); | 
|  | if (arch_lbr_xsave) { | 
|  | size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) + | 
|  | get_lbr_state_size(); | 
|  | pmu->task_ctx_cache = create_lbr_kmem_cache(size, | 
|  | XSAVE_ALIGNMENT); | 
|  | } | 
|  |  | 
|  | if (!pmu->task_ctx_cache) { | 
|  | arch_lbr_xsave = false; | 
|  |  | 
|  | size = sizeof(struct x86_perf_task_context_arch_lbr) + | 
|  | lbr_nr * sizeof(struct lbr_entry); | 
|  | pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0); | 
|  | } | 
|  |  | 
|  | x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0; | 
|  | x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0; | 
|  | x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0; | 
|  |  | 
|  | /* LBR callstack requires both CPL and Branch Filtering support */ | 
|  | if (!x86_pmu.lbr_cpl || | 
|  | !x86_pmu.lbr_filter || | 
|  | !x86_pmu.lbr_call_stack) | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP; | 
|  |  | 
|  | if (!x86_pmu.lbr_cpl) { | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP; | 
|  | } else if (!x86_pmu.lbr_filter) { | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP; | 
|  | arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP; | 
|  | } | 
|  |  | 
|  | x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK; | 
|  | x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map; | 
|  |  | 
|  | if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter) | 
|  | x86_pmu.lbr_ctl_map = NULL; | 
|  |  | 
|  | x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset; | 
|  | if (arch_lbr_xsave) { | 
|  | x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves; | 
|  | x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors; | 
|  | x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave; | 
|  | pr_cont("XSAVE "); | 
|  | } else { | 
|  | x86_pmu.lbr_save = intel_pmu_arch_lbr_save; | 
|  | x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore; | 
|  | x86_pmu.lbr_read = intel_pmu_arch_lbr_read; | 
|  | } | 
|  |  | 
|  | pr_cont("Architectural LBR, "); | 
|  |  | 
|  | return; | 
|  |  | 
|  | clear_arch_lbr: | 
|  | clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * x86_perf_get_lbr - get the LBR records information | 
|  | * | 
|  | * @lbr: the caller's memory to store the LBR records information | 
|  | * | 
|  | * Returns: 0 indicates the LBR info has been successfully obtained | 
|  | */ | 
|  | int x86_perf_get_lbr(struct x86_pmu_lbr *lbr) | 
|  | { | 
|  | int lbr_fmt = x86_pmu.intel_cap.lbr_format; | 
|  |  | 
|  | lbr->nr = x86_pmu.lbr_nr; | 
|  | lbr->from = x86_pmu.lbr_from; | 
|  | lbr->to = x86_pmu.lbr_to; | 
|  | lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(x86_perf_get_lbr); | 
|  |  | 
|  | struct event_constraint vlbr_constraint = | 
|  | __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR), | 
|  | FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT); |