|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Xen SMP support | 
|  | * | 
|  | * This file implements the Xen versions of smp_ops.  SMP under Xen is | 
|  | * very straightforward.  Bringing a CPU up is simply a matter of | 
|  | * loading its initial context and setting it running. | 
|  | * | 
|  | * IPIs are handled through the Xen event mechanism. | 
|  | * | 
|  | * Because virtual CPUs can be scheduled onto any real CPU, there's no | 
|  | * useful topology information for the kernel to make use of.  As a | 
|  | * result, all CPUs are treated as if they're single-core and | 
|  | * single-threaded. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/irq_work.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/stackprotector.h> | 
|  | #include <linux/pgtable.h> | 
|  |  | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/idtentry.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/cpu.h> | 
|  |  | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/vcpu.h> | 
|  | #include <xen/interface/xenpmu.h> | 
|  |  | 
|  | #include <asm/spec-ctrl.h> | 
|  | #include <asm/xen/interface.h> | 
|  | #include <asm/xen/hypercall.h> | 
|  |  | 
|  | #include <xen/xen.h> | 
|  | #include <xen/page.h> | 
|  | #include <xen/events.h> | 
|  |  | 
|  | #include <xen/hvc-console.h> | 
|  | #include "xen-ops.h" | 
|  | #include "mmu.h" | 
|  | #include "smp.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | cpumask_var_t xen_cpu_initialized_map; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; | 
|  | static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; | 
|  |  | 
|  | static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); | 
|  | void asm_cpu_bringup_and_idle(void); | 
|  |  | 
|  | static void cpu_bringup(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | cr4_init(); | 
|  | cpu_init(); | 
|  | touch_softlockup_watchdog(); | 
|  | preempt_disable(); | 
|  |  | 
|  | /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ | 
|  | if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { | 
|  | xen_enable_sysenter(); | 
|  | xen_enable_syscall(); | 
|  | } | 
|  | cpu = smp_processor_id(); | 
|  | smp_store_cpu_info(cpu); | 
|  | cpu_data(cpu).x86_max_cores = 1; | 
|  | set_cpu_sibling_map(cpu); | 
|  |  | 
|  | speculative_store_bypass_ht_init(); | 
|  |  | 
|  | xen_setup_cpu_clockevents(); | 
|  |  | 
|  | notify_cpu_starting(cpu); | 
|  |  | 
|  | set_cpu_online(cpu, true); | 
|  |  | 
|  | cpu_set_state_online(cpu);  /* Implies full memory barrier. */ | 
|  |  | 
|  | /* We can take interrupts now: we're officially "up". */ | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | asmlinkage __visible void cpu_bringup_and_idle(void) | 
|  | { | 
|  | cpu_bringup(); | 
|  | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
|  | } | 
|  |  | 
|  | void xen_smp_intr_free_pv(unsigned int cpu) | 
|  | { | 
|  | if (per_cpu(xen_irq_work, cpu).irq >= 0) { | 
|  | unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); | 
|  | per_cpu(xen_irq_work, cpu).irq = -1; | 
|  | kfree(per_cpu(xen_irq_work, cpu).name); | 
|  | per_cpu(xen_irq_work, cpu).name = NULL; | 
|  | } | 
|  |  | 
|  | if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { | 
|  | unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); | 
|  | per_cpu(xen_pmu_irq, cpu).irq = -1; | 
|  | kfree(per_cpu(xen_pmu_irq, cpu).name); | 
|  | per_cpu(xen_pmu_irq, cpu).name = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int xen_smp_intr_init_pv(unsigned int cpu) | 
|  | { | 
|  | int rc; | 
|  | char *callfunc_name, *pmu_name; | 
|  |  | 
|  | callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); | 
|  | rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, | 
|  | cpu, | 
|  | xen_irq_work_interrupt, | 
|  | IRQF_PERCPU|IRQF_NOBALANCING, | 
|  | callfunc_name, | 
|  | NULL); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | per_cpu(xen_irq_work, cpu).irq = rc; | 
|  | per_cpu(xen_irq_work, cpu).name = callfunc_name; | 
|  |  | 
|  | if (is_xen_pmu(cpu)) { | 
|  | pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); | 
|  | rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, | 
|  | xen_pmu_irq_handler, | 
|  | IRQF_PERCPU|IRQF_NOBALANCING, | 
|  | pmu_name, NULL); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | per_cpu(xen_pmu_irq, cpu).irq = rc; | 
|  | per_cpu(xen_pmu_irq, cpu).name = pmu_name; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | xen_smp_intr_free_pv(cpu); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __init xen_fill_possible_map(void) | 
|  | { | 
|  | int i, rc; | 
|  |  | 
|  | if (xen_initial_domain()) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); | 
|  | if (rc >= 0) { | 
|  | num_processors++; | 
|  | set_cpu_possible(i, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init xen_filter_cpu_maps(void) | 
|  | { | 
|  | int i, rc; | 
|  | unsigned int subtract = 0; | 
|  |  | 
|  | if (!xen_initial_domain()) | 
|  | return; | 
|  |  | 
|  | num_processors = 0; | 
|  | disabled_cpus = 0; | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); | 
|  | if (rc >= 0) { | 
|  | num_processors++; | 
|  | set_cpu_possible(i, true); | 
|  | } else { | 
|  | set_cpu_possible(i, false); | 
|  | set_cpu_present(i, false); | 
|  | subtract++; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* This is akin to using 'nr_cpus' on the Linux command line. | 
|  | * Which is OK as when we use 'dom0_max_vcpus=X' we can only | 
|  | * have up to X, while nr_cpu_ids is greater than X. This | 
|  | * normally is not a problem, except when CPU hotplugging | 
|  | * is involved and then there might be more than X CPUs | 
|  | * in the guest - which will not work as there is no | 
|  | * hypercall to expand the max number of VCPUs an already | 
|  | * running guest has. So cap it up to X. */ | 
|  | if (subtract) | 
|  | nr_cpu_ids = nr_cpu_ids - subtract; | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | static void __init xen_pv_smp_prepare_boot_cpu(void) | 
|  | { | 
|  | BUG_ON(smp_processor_id() != 0); | 
|  | native_smp_prepare_boot_cpu(); | 
|  |  | 
|  | if (!xen_feature(XENFEAT_writable_page_tables)) | 
|  | /* We've switched to the "real" per-cpu gdt, so make | 
|  | * sure the old memory can be recycled. */ | 
|  | make_lowmem_page_readwrite(xen_initial_gdt); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Xen starts us with XEN_FLAT_RING1_DS, but linux code | 
|  | * expects __USER_DS | 
|  | */ | 
|  | loadsegment(ds, __USER_DS); | 
|  | loadsegment(es, __USER_DS); | 
|  | #endif | 
|  |  | 
|  | xen_filter_cpu_maps(); | 
|  | xen_setup_vcpu_info_placement(); | 
|  |  | 
|  | /* | 
|  | * The alternative logic (which patches the unlock/lock) runs before | 
|  | * the smp bootup up code is activated. Hence we need to set this up | 
|  | * the core kernel is being patched. Otherwise we will have only | 
|  | * modules patched but not core code. | 
|  | */ | 
|  | xen_init_spinlocks(); | 
|  | } | 
|  |  | 
|  | static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | unsigned cpu; | 
|  | unsigned int i; | 
|  |  | 
|  | if (skip_ioapic_setup) { | 
|  | char *m = (max_cpus == 0) ? | 
|  | "The nosmp parameter is incompatible with Xen; " \ | 
|  | "use Xen dom0_max_vcpus=1 parameter" : | 
|  | "The noapic parameter is incompatible with Xen"; | 
|  |  | 
|  | xen_raw_printk(m); | 
|  | panic(m); | 
|  | } | 
|  | xen_init_lock_cpu(0); | 
|  |  | 
|  | smp_store_boot_cpu_info(); | 
|  | cpu_data(0).x86_max_cores = 1; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); | 
|  | } | 
|  | set_cpu_sibling_map(0); | 
|  |  | 
|  | speculative_store_bypass_ht_init(); | 
|  |  | 
|  | xen_pmu_init(0); | 
|  |  | 
|  | if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0)) | 
|  | BUG(); | 
|  |  | 
|  | if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) | 
|  | panic("could not allocate xen_cpu_initialized_map\n"); | 
|  |  | 
|  | cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); | 
|  |  | 
|  | /* Restrict the possible_map according to max_cpus. */ | 
|  | while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { | 
|  | for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) | 
|  | continue; | 
|  | set_cpu_possible(cpu, false); | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | set_cpu_present(cpu, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | cpu_initialize_context(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | struct vcpu_guest_context *ctxt; | 
|  | struct desc_struct *gdt; | 
|  | unsigned long gdt_mfn; | 
|  |  | 
|  | /* used to tell cpu_init() that it can proceed with initialization */ | 
|  | cpumask_set_cpu(cpu, cpu_callout_mask); | 
|  | if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) | 
|  | return 0; | 
|  |  | 
|  | ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); | 
|  | if (ctxt == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | gdt = get_cpu_gdt_rw(cpu); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | ctxt->user_regs.fs = __KERNEL_PERCPU; | 
|  | ctxt->user_regs.gs = __KERNEL_STACK_CANARY; | 
|  | #endif | 
|  | memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); | 
|  |  | 
|  | /* | 
|  | * Bring up the CPU in cpu_bringup_and_idle() with the stack | 
|  | * pointing just below where pt_regs would be if it were a normal | 
|  | * kernel entry. | 
|  | */ | 
|  | ctxt->user_regs.eip = (unsigned long)asm_cpu_bringup_and_idle; | 
|  | ctxt->flags = VGCF_IN_KERNEL; | 
|  | ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ | 
|  | ctxt->user_regs.ds = __USER_DS; | 
|  | ctxt->user_regs.es = __USER_DS; | 
|  | ctxt->user_regs.ss = __KERNEL_DS; | 
|  | ctxt->user_regs.cs = __KERNEL_CS; | 
|  | ctxt->user_regs.esp = (unsigned long)task_pt_regs(idle); | 
|  |  | 
|  | xen_copy_trap_info(ctxt->trap_ctxt); | 
|  |  | 
|  | ctxt->ldt_ents = 0; | 
|  |  | 
|  | BUG_ON((unsigned long)gdt & ~PAGE_MASK); | 
|  |  | 
|  | gdt_mfn = arbitrary_virt_to_mfn(gdt); | 
|  | make_lowmem_page_readonly(gdt); | 
|  | make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); | 
|  |  | 
|  | ctxt->gdt_frames[0] = gdt_mfn; | 
|  | ctxt->gdt_ents      = GDT_ENTRIES; | 
|  |  | 
|  | /* | 
|  | * Set SS:SP that Xen will use when entering guest kernel mode | 
|  | * from guest user mode.  Subsequent calls to load_sp0() can | 
|  | * change this value. | 
|  | */ | 
|  | ctxt->kernel_ss = __KERNEL_DS; | 
|  | ctxt->kernel_sp = task_top_of_stack(idle); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | ctxt->event_callback_cs     = __KERNEL_CS; | 
|  | ctxt->failsafe_callback_cs  = __KERNEL_CS; | 
|  | #else | 
|  | ctxt->gs_base_kernel = per_cpu_offset(cpu); | 
|  | #endif | 
|  | ctxt->event_callback_eip    = | 
|  | (unsigned long)xen_asm_exc_xen_hypervisor_callback; | 
|  | ctxt->failsafe_callback_eip = | 
|  | (unsigned long)xen_failsafe_callback; | 
|  | per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); | 
|  |  | 
|  | ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir)); | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt)) | 
|  | BUG(); | 
|  |  | 
|  | kfree(ctxt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = common_cpu_up(cpu, idle); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | xen_setup_runstate_info(cpu); | 
|  |  | 
|  | /* | 
|  | * PV VCPUs are always successfully taken down (see 'while' loop | 
|  | * in xen_cpu_die()), so -EBUSY is an error. | 
|  | */ | 
|  | rc = cpu_check_up_prepare(cpu); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* make sure interrupts start blocked */ | 
|  | per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; | 
|  |  | 
|  | rc = cpu_initialize_context(cpu, idle); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | xen_pmu_init(cpu); | 
|  |  | 
|  | rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL); | 
|  | BUG_ON(rc); | 
|  |  | 
|  | while (cpu_report_state(cpu) != CPU_ONLINE) | 
|  | HYPERVISOR_sched_op(SCHEDOP_yield, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static int xen_pv_cpu_disable(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | if (cpu == 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | cpu_disable_common(); | 
|  |  | 
|  | load_cr3(swapper_pg_dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xen_pv_cpu_die(unsigned int cpu) | 
|  | { | 
|  | while (HYPERVISOR_vcpu_op(VCPUOP_is_up, | 
|  | xen_vcpu_nr(cpu), NULL)) { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(HZ/10); | 
|  | } | 
|  |  | 
|  | if (common_cpu_die(cpu) == 0) { | 
|  | xen_smp_intr_free(cpu); | 
|  | xen_uninit_lock_cpu(cpu); | 
|  | xen_teardown_timer(cpu); | 
|  | xen_pmu_finish(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */ | 
|  | { | 
|  | play_dead_common(); | 
|  | HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL); | 
|  | cpu_bringup(); | 
|  | /* | 
|  | * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) | 
|  | * clears certain data that the cpu_idle loop (which called us | 
|  | * and that we return from) expects. The only way to get that | 
|  | * data back is to call: | 
|  | */ | 
|  | tick_nohz_idle_enter(); | 
|  | tick_nohz_idle_stop_tick_protected(); | 
|  |  | 
|  | cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_HOTPLUG_CPU */ | 
|  | static int xen_pv_cpu_disable(void) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static void xen_pv_cpu_die(unsigned int cpu) | 
|  | { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void xen_pv_play_dead(void) | 
|  | { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | static void stop_self(void *v) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* make sure we're not pinning something down */ | 
|  | load_cr3(swapper_pg_dir); | 
|  | /* should set up a minimal gdt */ | 
|  |  | 
|  | set_cpu_online(cpu, false); | 
|  |  | 
|  | HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void xen_pv_stop_other_cpus(int wait) | 
|  | { | 
|  | smp_call_function(stop_self, NULL, wait); | 
|  | } | 
|  |  | 
|  | static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | irq_enter(); | 
|  | irq_work_run(); | 
|  | inc_irq_stat(apic_irq_work_irqs); | 
|  | irq_exit(); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static const struct smp_ops xen_smp_ops __initconst = { | 
|  | .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu, | 
|  | .smp_prepare_cpus = xen_pv_smp_prepare_cpus, | 
|  | .smp_cpus_done = xen_smp_cpus_done, | 
|  |  | 
|  | .cpu_up = xen_pv_cpu_up, | 
|  | .cpu_die = xen_pv_cpu_die, | 
|  | .cpu_disable = xen_pv_cpu_disable, | 
|  | .play_dead = xen_pv_play_dead, | 
|  |  | 
|  | .stop_other_cpus = xen_pv_stop_other_cpus, | 
|  | .smp_send_reschedule = xen_smp_send_reschedule, | 
|  |  | 
|  | .send_call_func_ipi = xen_smp_send_call_function_ipi, | 
|  | .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, | 
|  | }; | 
|  |  | 
|  | void __init xen_smp_init(void) | 
|  | { | 
|  | smp_ops = xen_smp_ops; | 
|  | xen_fill_possible_map(); | 
|  | } |