|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2008 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/iversion.h> | 
|  | #include "ctree.h" | 
|  | #include "tree-log.h" | 
|  | #include "disk-io.h" | 
|  | #include "locking.h" | 
|  | #include "print-tree.h" | 
|  | #include "backref.h" | 
|  | #include "compression.h" | 
|  | #include "qgroup.h" | 
|  | #include "inode-map.h" | 
|  |  | 
|  | /* magic values for the inode_only field in btrfs_log_inode: | 
|  | * | 
|  | * LOG_INODE_ALL means to log everything | 
|  | * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
|  | * during log replay | 
|  | */ | 
|  | #define LOG_INODE_ALL 0 | 
|  | #define LOG_INODE_EXISTS 1 | 
|  | #define LOG_OTHER_INODE 2 | 
|  |  | 
|  | /* | 
|  | * directory trouble cases | 
|  | * | 
|  | * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | 
|  | * log, we must force a full commit before doing an fsync of the directory | 
|  | * where the unlink was done. | 
|  | * ---> record transid of last unlink/rename per directory | 
|  | * | 
|  | * mkdir foo/some_dir | 
|  | * normal commit | 
|  | * rename foo/some_dir foo2/some_dir | 
|  | * mkdir foo/some_dir | 
|  | * fsync foo/some_dir/some_file | 
|  | * | 
|  | * The fsync above will unlink the original some_dir without recording | 
|  | * it in its new location (foo2).  After a crash, some_dir will be gone | 
|  | * unless the fsync of some_file forces a full commit | 
|  | * | 
|  | * 2) we must log any new names for any file or dir that is in the fsync | 
|  | * log. ---> check inode while renaming/linking. | 
|  | * | 
|  | * 2a) we must log any new names for any file or dir during rename | 
|  | * when the directory they are being removed from was logged. | 
|  | * ---> check inode and old parent dir during rename | 
|  | * | 
|  | *  2a is actually the more important variant.  With the extra logging | 
|  | *  a crash might unlink the old name without recreating the new one | 
|  | * | 
|  | * 3) after a crash, we must go through any directories with a link count | 
|  | * of zero and redo the rm -rf | 
|  | * | 
|  | * mkdir f1/foo | 
|  | * normal commit | 
|  | * rm -rf f1/foo | 
|  | * fsync(f1) | 
|  | * | 
|  | * The directory f1 was fully removed from the FS, but fsync was never | 
|  | * called on f1, only its parent dir.  After a crash the rm -rf must | 
|  | * be replayed.  This must be able to recurse down the entire | 
|  | * directory tree.  The inode link count fixup code takes care of the | 
|  | * ugly details. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * stages for the tree walking.  The first | 
|  | * stage (0) is to only pin down the blocks we find | 
|  | * the second stage (1) is to make sure that all the inodes | 
|  | * we find in the log are created in the subvolume. | 
|  | * | 
|  | * The last stage is to deal with directories and links and extents | 
|  | * and all the other fun semantics | 
|  | */ | 
|  | #define LOG_WALK_PIN_ONLY 0 | 
|  | #define LOG_WALK_REPLAY_INODES 1 | 
|  | #define LOG_WALK_REPLAY_DIR_INDEX 2 | 
|  | #define LOG_WALK_REPLAY_ALL 3 | 
|  |  | 
|  | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | int inode_only, | 
|  | const loff_t start, | 
|  | const loff_t end, | 
|  | struct btrfs_log_ctx *ctx); | 
|  | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 objectid); | 
|  | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int del_all); | 
|  |  | 
|  | /* | 
|  | * tree logging is a special write ahead log used to make sure that | 
|  | * fsyncs and O_SYNCs can happen without doing full tree commits. | 
|  | * | 
|  | * Full tree commits are expensive because they require commonly | 
|  | * modified blocks to be recowed, creating many dirty pages in the | 
|  | * extent tree an 4x-6x higher write load than ext3. | 
|  | * | 
|  | * Instead of doing a tree commit on every fsync, we use the | 
|  | * key ranges and transaction ids to find items for a given file or directory | 
|  | * that have changed in this transaction.  Those items are copied into | 
|  | * a special tree (one per subvolume root), that tree is written to disk | 
|  | * and then the fsync is considered complete. | 
|  | * | 
|  | * After a crash, items are copied out of the log-tree back into the | 
|  | * subvolume tree.  Any file data extents found are recorded in the extent | 
|  | * allocation tree, and the log-tree freed. | 
|  | * | 
|  | * The log tree is read three times, once to pin down all the extents it is | 
|  | * using in ram and once, once to create all the inodes logged in the tree | 
|  | * and once to do all the other items. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * start a sub transaction and setup the log tree | 
|  | * this increments the log tree writer count to make the people | 
|  | * syncing the tree wait for us to finish | 
|  | */ | 
|  | static int start_log_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  |  | 
|  | if (root->log_root) { | 
|  | if (btrfs_need_log_full_commit(fs_info, trans)) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!root->log_start_pid) { | 
|  | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | root->log_start_pid = current->pid; | 
|  | } else if (root->log_start_pid != current->pid) { | 
|  | set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | } | 
|  | } else { | 
|  | mutex_lock(&fs_info->tree_log_mutex); | 
|  | if (!fs_info->log_root_tree) | 
|  | ret = btrfs_init_log_root_tree(trans, fs_info); | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_add_log_tree(trans, root); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | root->log_start_pid = current->pid; | 
|  | } | 
|  |  | 
|  | atomic_inc(&root->log_batch); | 
|  | atomic_inc(&root->log_writers); | 
|  | if (ctx) { | 
|  | int index = root->log_transid % 2; | 
|  | list_add_tail(&ctx->list, &root->log_ctxs[index]); | 
|  | ctx->log_transid = root->log_transid; | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 0 if there was a log transaction running and we were able | 
|  | * to join, or returns -ENOENT if there were not transactions | 
|  | * in progress | 
|  | */ | 
|  | static int join_running_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | smp_mb(); | 
|  | if (!root->log_root) | 
|  | return -ENOENT; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | if (root->log_root) { | 
|  | ret = 0; | 
|  | atomic_inc(&root->log_writers); | 
|  | } | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This either makes the current running log transaction wait | 
|  | * until you call btrfs_end_log_trans() or it makes any future | 
|  | * log transactions wait until you call btrfs_end_log_trans() | 
|  | */ | 
|  | void btrfs_pin_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | mutex_lock(&root->log_mutex); | 
|  | atomic_inc(&root->log_writers); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indicate we're done making changes to the log tree | 
|  | * and wake up anyone waiting to do a sync | 
|  | */ | 
|  | void btrfs_end_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | if (atomic_dec_and_test(&root->log_writers)) { | 
|  | /* atomic_dec_and_test implies a barrier */ | 
|  | cond_wake_up_nomb(&root->log_writer_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * the walk control struct is used to pass state down the chain when | 
|  | * processing the log tree.  The stage field tells us which part | 
|  | * of the log tree processing we are currently doing.  The others | 
|  | * are state fields used for that specific part | 
|  | */ | 
|  | struct walk_control { | 
|  | /* should we free the extent on disk when done?  This is used | 
|  | * at transaction commit time while freeing a log tree | 
|  | */ | 
|  | int free; | 
|  |  | 
|  | /* should we write out the extent buffer?  This is used | 
|  | * while flushing the log tree to disk during a sync | 
|  | */ | 
|  | int write; | 
|  |  | 
|  | /* should we wait for the extent buffer io to finish?  Also used | 
|  | * while flushing the log tree to disk for a sync | 
|  | */ | 
|  | int wait; | 
|  |  | 
|  | /* pin only walk, we record which extents on disk belong to the | 
|  | * log trees | 
|  | */ | 
|  | int pin; | 
|  |  | 
|  | /* what stage of the replay code we're currently in */ | 
|  | int stage; | 
|  |  | 
|  | /* | 
|  | * Ignore any items from the inode currently being processed. Needs | 
|  | * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in | 
|  | * the LOG_WALK_REPLAY_INODES stage. | 
|  | */ | 
|  | bool ignore_cur_inode; | 
|  |  | 
|  | /* the root we are currently replaying */ | 
|  | struct btrfs_root *replay_dest; | 
|  |  | 
|  | /* the trans handle for the current replay */ | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* the function that gets used to process blocks we find in the | 
|  | * tree.  Note the extent_buffer might not be up to date when it is | 
|  | * passed in, and it must be checked or read if you need the data | 
|  | * inside it | 
|  | */ | 
|  | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * process_func used to pin down extents, write them or wait on them | 
|  | */ | 
|  | static int process_one_buffer(struct btrfs_root *log, | 
|  | struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If this fs is mixed then we need to be able to process the leaves to | 
|  | * pin down any logged extents, so we have to read the block. | 
|  | */ | 
|  | if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
|  | ret = btrfs_read_buffer(eb, gen, level, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (wc->pin) | 
|  | ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, | 
|  | eb->len); | 
|  |  | 
|  | if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { | 
|  | if (wc->pin && btrfs_header_level(eb) == 0) | 
|  | ret = btrfs_exclude_logged_extents(fs_info, eb); | 
|  | if (wc->write) | 
|  | btrfs_write_tree_block(eb); | 
|  | if (wc->wait) | 
|  | btrfs_wait_tree_block_writeback(eb); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Item overwrite used by replay and tree logging.  eb, slot and key all refer | 
|  | * to the src data we are copying out. | 
|  | * | 
|  | * root is the tree we are copying into, and path is a scratch | 
|  | * path for use in this function (it should be released on entry and | 
|  | * will be released on exit). | 
|  | * | 
|  | * If the key is already in the destination tree the existing item is | 
|  | * overwritten.  If the existing item isn't big enough, it is extended. | 
|  | * If it is too large, it is truncated. | 
|  | * | 
|  | * If the key isn't in the destination yet, a new item is inserted. | 
|  | */ | 
|  | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | u32 item_size; | 
|  | u64 saved_i_size = 0; | 
|  | int save_old_i_size = 0; | 
|  | unsigned long src_ptr; | 
|  | unsigned long dst_ptr; | 
|  | int overwrite_root = 0; | 
|  | bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | overwrite_root = 1; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | src_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  |  | 
|  | /* look for the key in the destination tree */ | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) { | 
|  | char *src_copy; | 
|  | char *dst_copy; | 
|  | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (dst_size != item_size) | 
|  | goto insert; | 
|  |  | 
|  | if (item_size == 0) { | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  | dst_copy = kmalloc(item_size, GFP_NOFS); | 
|  | src_copy = kmalloc(item_size, GFP_NOFS); | 
|  | if (!dst_copy || !src_copy) { | 
|  | btrfs_release_path(path); | 
|  | kfree(dst_copy); | 
|  | kfree(src_copy); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
|  |  | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | 
|  | item_size); | 
|  | ret = memcmp(dst_copy, src_copy, item_size); | 
|  |  | 
|  | kfree(dst_copy); | 
|  | kfree(src_copy); | 
|  | /* | 
|  | * they have the same contents, just return, this saves | 
|  | * us from cowing blocks in the destination tree and doing | 
|  | * extra writes that may not have been done by a previous | 
|  | * sync | 
|  | */ | 
|  | if (ret == 0) { | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to load the old nbytes into the inode so when we | 
|  | * replay the extents we've logged we get the right nbytes. | 
|  | */ | 
|  | if (inode_item) { | 
|  | struct btrfs_inode_item *item; | 
|  | u64 nbytes; | 
|  | u32 mode; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | nbytes = btrfs_inode_nbytes(path->nodes[0], item); | 
|  | item = btrfs_item_ptr(eb, slot, | 
|  | struct btrfs_inode_item); | 
|  | btrfs_set_inode_nbytes(eb, item, nbytes); | 
|  |  | 
|  | /* | 
|  | * If this is a directory we need to reset the i_size to | 
|  | * 0 so that we can set it up properly when replaying | 
|  | * the rest of the items in this log. | 
|  | */ | 
|  | mode = btrfs_inode_mode(eb, item); | 
|  | if (S_ISDIR(mode)) | 
|  | btrfs_set_inode_size(eb, item, 0); | 
|  | } | 
|  | } else if (inode_item) { | 
|  | struct btrfs_inode_item *item; | 
|  | u32 mode; | 
|  |  | 
|  | /* | 
|  | * New inode, set nbytes to 0 so that the nbytes comes out | 
|  | * properly when we replay the extents. | 
|  | */ | 
|  | item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
|  | btrfs_set_inode_nbytes(eb, item, 0); | 
|  |  | 
|  | /* | 
|  | * If this is a directory we need to reset the i_size to 0 so | 
|  | * that we can set it up properly when replaying the rest of | 
|  | * the items in this log. | 
|  | */ | 
|  | mode = btrfs_inode_mode(eb, item); | 
|  | if (S_ISDIR(mode)) | 
|  | btrfs_set_inode_size(eb, item, 0); | 
|  | } | 
|  | insert: | 
|  | btrfs_release_path(path); | 
|  | /* try to insert the key into the destination tree */ | 
|  | path->skip_release_on_error = 1; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, | 
|  | key, item_size); | 
|  | path->skip_release_on_error = 0; | 
|  |  | 
|  | /* make sure any existing item is the correct size */ | 
|  | if (ret == -EEXIST || ret == -EOVERFLOW) { | 
|  | u32 found_size; | 
|  | found_size = btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (found_size > item_size) | 
|  | btrfs_truncate_item(fs_info, path, item_size, 1); | 
|  | else if (found_size < item_size) | 
|  | btrfs_extend_item(fs_info, path, | 
|  | item_size - found_size); | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  |  | 
|  | /* don't overwrite an existing inode if the generation number | 
|  | * was logged as zero.  This is done when the tree logging code | 
|  | * is just logging an inode to make sure it exists after recovery. | 
|  | * | 
|  | * Also, don't overwrite i_size on directories during replay. | 
|  | * log replay inserts and removes directory items based on the | 
|  | * state of the tree found in the subvolume, and i_size is modified | 
|  | * as it goes | 
|  | */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
|  | struct btrfs_inode_item *src_item; | 
|  | struct btrfs_inode_item *dst_item; | 
|  |  | 
|  | src_item = (struct btrfs_inode_item *)src_ptr; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  |  | 
|  | if (btrfs_inode_generation(eb, src_item) == 0) { | 
|  | struct extent_buffer *dst_eb = path->nodes[0]; | 
|  | const u64 ino_size = btrfs_inode_size(eb, src_item); | 
|  |  | 
|  | /* | 
|  | * For regular files an ino_size == 0 is used only when | 
|  | * logging that an inode exists, as part of a directory | 
|  | * fsync, and the inode wasn't fsynced before. In this | 
|  | * case don't set the size of the inode in the fs/subvol | 
|  | * tree, otherwise we would be throwing valid data away. | 
|  | */ | 
|  | if (S_ISREG(btrfs_inode_mode(eb, src_item)) && | 
|  | S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && | 
|  | ino_size != 0) { | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  | btrfs_set_token_inode_size(dst_eb, dst_item, | 
|  | ino_size, &token); | 
|  | } | 
|  | goto no_copy; | 
|  | } | 
|  |  | 
|  | if (overwrite_root && | 
|  | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
|  | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | 
|  | save_old_i_size = 1; | 
|  | saved_i_size = btrfs_inode_size(path->nodes[0], | 
|  | dst_item); | 
|  | } | 
|  | } | 
|  |  | 
|  | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | 
|  | src_ptr, item_size); | 
|  |  | 
|  | if (save_old_i_size) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | 
|  | } | 
|  |  | 
|  | /* make sure the generation is filled in */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | 
|  | btrfs_set_inode_generation(path->nodes[0], dst_item, | 
|  | trans->transid); | 
|  | } | 
|  | } | 
|  | no_copy: | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple helper to read an inode off the disk from a given root | 
|  | * This can only be called for subvolume roots and not for the log | 
|  | */ | 
|  | static noinline struct inode *read_one_inode(struct btrfs_root *root, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); | 
|  | if (IS_ERR(inode)) | 
|  | inode = NULL; | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
|  | * subvolume 'root'.  path is released on entry and should be released | 
|  | * on exit. | 
|  | * | 
|  | * extents in the log tree have not been allocated out of the extent | 
|  | * tree yet.  So, this completes the allocation, taking a reference | 
|  | * as required if the extent already exists or creating a new extent | 
|  | * if it isn't in the extent allocation tree yet. | 
|  | * | 
|  | * The extent is inserted into the file, dropping any existing extents | 
|  | * from the file that overlap the new one. | 
|  | */ | 
|  | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int found_type; | 
|  | u64 extent_end; | 
|  | u64 start = key->offset; | 
|  | u64 nbytes = 0; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct inode *inode = NULL; | 
|  | unsigned long size; | 
|  | int ret = 0; | 
|  |  | 
|  | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(eb, item); | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | nbytes = btrfs_file_extent_num_bytes(eb, item); | 
|  | extent_end = start + nbytes; | 
|  |  | 
|  | /* | 
|  | * We don't add to the inodes nbytes if we are prealloc or a | 
|  | * hole. | 
|  | */ | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
|  | nbytes = 0; | 
|  | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | size = btrfs_file_extent_ram_bytes(eb, item); | 
|  | nbytes = btrfs_file_extent_ram_bytes(eb, item); | 
|  | extent_end = ALIGN(start + size, | 
|  | fs_info->sectorsize); | 
|  | } else { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = read_one_inode(root, key->objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * first check to see if we already have this extent in the | 
|  | * file.  This must be done before the btrfs_drop_extents run | 
|  | * so we don't try to drop this extent. | 
|  | */ | 
|  | ret = btrfs_lookup_file_extent(trans, root, path, | 
|  | btrfs_ino(BTRFS_I(inode)), start, 0); | 
|  |  | 
|  | if (ret == 0 && | 
|  | (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
|  | struct btrfs_file_extent_item cmp1; | 
|  | struct btrfs_file_extent_item cmp2; | 
|  | struct btrfs_file_extent_item *existing; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | existing = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | read_extent_buffer(eb, &cmp1, (unsigned long)item, | 
|  | sizeof(cmp1)); | 
|  | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | 
|  | sizeof(cmp2)); | 
|  |  | 
|  | /* | 
|  | * we already have a pointer to this exact extent, | 
|  | * we don't have to do anything | 
|  | */ | 
|  | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | 
|  | btrfs_release_path(path); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* drop any overlapping extents */ | 
|  | ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 offset; | 
|  | unsigned long dest_offset; | 
|  | struct btrfs_key ins; | 
|  |  | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && | 
|  | btrfs_fs_incompat(fs_info, NO_HOLES)) | 
|  | goto update_inode; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, key, | 
|  | sizeof(*item)); | 
|  | if (ret) | 
|  | goto out; | 
|  | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
|  | (unsigned long)item,  sizeof(*item)); | 
|  |  | 
|  | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
|  | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | offset = key->offset - btrfs_file_extent_offset(eb, item); | 
|  |  | 
|  | /* | 
|  | * Manually record dirty extent, as here we did a shallow | 
|  | * file extent item copy and skip normal backref update, | 
|  | * but modifying extent tree all by ourselves. | 
|  | * So need to manually record dirty extent for qgroup, | 
|  | * as the owner of the file extent changed from log tree | 
|  | * (doesn't affect qgroup) to fs/file tree(affects qgroup) | 
|  | */ | 
|  | ret = btrfs_qgroup_trace_extent(trans, | 
|  | btrfs_file_extent_disk_bytenr(eb, item), | 
|  | btrfs_file_extent_disk_num_bytes(eb, item), | 
|  | GFP_NOFS); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ins.objectid > 0) { | 
|  | u64 csum_start; | 
|  | u64 csum_end; | 
|  | LIST_HEAD(ordered_sums); | 
|  | /* | 
|  | * is this extent already allocated in the extent | 
|  | * allocation tree?  If so, just add a reference | 
|  | */ | 
|  | ret = btrfs_lookup_data_extent(fs_info, ins.objectid, | 
|  | ins.offset); | 
|  | if (ret == 0) { | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | ins.objectid, ins.offset, | 
|  | 0, root->root_key.objectid, | 
|  | key->objectid, offset); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * insert the extent pointer in the extent | 
|  | * allocation tree | 
|  | */ | 
|  | ret = btrfs_alloc_logged_file_extent(trans, | 
|  | root->root_key.objectid, | 
|  | key->objectid, offset, &ins); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (btrfs_file_extent_compression(eb, item)) { | 
|  | csum_start = ins.objectid; | 
|  | csum_end = csum_start + ins.offset; | 
|  | } else { | 
|  | csum_start = ins.objectid + | 
|  | btrfs_file_extent_offset(eb, item); | 
|  | csum_end = csum_start + | 
|  | btrfs_file_extent_num_bytes(eb, item); | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(root->log_root, | 
|  | csum_start, csum_end - 1, | 
|  | &ordered_sums, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * Now delete all existing cums in the csum root that | 
|  | * cover our range. We do this because we can have an | 
|  | * extent that is completely referenced by one file | 
|  | * extent item and partially referenced by another | 
|  | * file extent item (like after using the clone or | 
|  | * extent_same ioctls). In this case if we end up doing | 
|  | * the replay of the one that partially references the | 
|  | * extent first, and we do not do the csum deletion | 
|  | * below, we can get 2 csum items in the csum tree that | 
|  | * overlap each other. For example, imagine our log has | 
|  | * the two following file extent items: | 
|  | * | 
|  | * key (257 EXTENT_DATA 409600) | 
|  | *     extent data disk byte 12845056 nr 102400 | 
|  | *     extent data offset 20480 nr 20480 ram 102400 | 
|  | * | 
|  | * key (257 EXTENT_DATA 819200) | 
|  | *     extent data disk byte 12845056 nr 102400 | 
|  | *     extent data offset 0 nr 102400 ram 102400 | 
|  | * | 
|  | * Where the second one fully references the 100K extent | 
|  | * that starts at disk byte 12845056, and the log tree | 
|  | * has a single csum item that covers the entire range | 
|  | * of the extent: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
|  | * | 
|  | * After the first file extent item is replayed, the | 
|  | * csum tree gets the following csum item: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
|  | * | 
|  | * Which covers the 20K sub-range starting at offset 20K | 
|  | * of our extent. Now when we replay the second file | 
|  | * extent item, if we do not delete existing csum items | 
|  | * that cover any of its blocks, we end up getting two | 
|  | * csum items in our csum tree that overlap each other: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
|  | * | 
|  | * Which is a problem, because after this anyone trying | 
|  | * to lookup up for the checksum of any block of our | 
|  | * extent starting at an offset of 40K or higher, will | 
|  | * end up looking at the second csum item only, which | 
|  | * does not contain the checksum for any block starting | 
|  | * at offset 40K or higher of our extent. | 
|  | */ | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums; | 
|  | sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | if (!ret) | 
|  | ret = btrfs_del_csums(trans, fs_info, | 
|  | sums->bytenr, | 
|  | sums->len); | 
|  | if (!ret) | 
|  | ret = btrfs_csum_file_blocks(trans, | 
|  | fs_info->csum_root, sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | /* inline extents are easy, we just overwrite them */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode_add_bytes(inode, nbytes); | 
|  | update_inode: | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | out: | 
|  | if (inode) | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when cleaning up conflicts between the directory names in the | 
|  | * subvolume, directory names in the log and directory names in the | 
|  | * inode back references, we may have to unlink inodes from directories. | 
|  | * | 
|  | * This is a helper function to do the unlink of a specific directory | 
|  | * item | 
|  | */ | 
|  | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_dir_item *di) | 
|  | { | 
|  | struct inode *inode; | 
|  | char *name; | 
|  | int name_len; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key location; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
|  | name_len = btrfs_dir_name_len(leaf, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, | 
|  | name_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | else | 
|  | ret = btrfs_run_delayed_items(trans); | 
|  | out: | 
|  | kfree(name); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to see if a given name and sequence number found | 
|  | * in an inode back reference are already in a directory and correctly | 
|  | * point to this inode | 
|  | */ | 
|  | static noinline int inode_in_dir(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, u64 objectid, u64 index, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key location; | 
|  | int match = 0; | 
|  |  | 
|  | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
|  | index, name, name_len, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid != objectid) | 
|  | goto out; | 
|  | } else | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid != objectid) | 
|  | goto out; | 
|  | } else | 
|  | goto out; | 
|  | match = 1; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to check a log tree for a named back reference in | 
|  | * an inode.  This is used to decide if a back reference that is | 
|  | * found in the subvolume conflicts with what we find in the log. | 
|  | * | 
|  | * inode backreferences may have multiple refs in a single item, | 
|  | * during replay we process one reference at a time, and we don't | 
|  | * want to delete valid links to a file from the subvolume if that | 
|  | * link is also in the log. | 
|  | */ | 
|  | static noinline int backref_in_log(struct btrfs_root *log, | 
|  | struct btrfs_key *key, | 
|  | u64 ref_objectid, | 
|  | const char *name, int namelen) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_inode_ref *ref; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | unsigned long name_ptr; | 
|  | int found_name_len; | 
|  | int item_size; | 
|  | int ret; | 
|  | int match = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
|  | if (ret != 0) | 
|  | goto out; | 
|  |  | 
|  | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | if (btrfs_find_name_in_ext_backref(path->nodes[0], | 
|  | path->slots[0], | 
|  | ref_objectid, | 
|  | name, namelen, NULL)) | 
|  | match = 1; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | 
|  | if (found_name_len == namelen) { | 
|  | name_ptr = (unsigned long)(ref + 1); | 
|  | ret = memcmp_extent_buffer(path->nodes[0], name, | 
|  | name_ptr, namelen); | 
|  | if (ret == 0) { | 
|  | match = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ptr = (unsigned long)(ref + 1) + found_name_len; | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | static inline int __add_inode_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *log_root, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_inode *inode, | 
|  | u64 inode_objectid, u64 parent_objectid, | 
|  | u64 ref_index, char *name, int namelen, | 
|  | int *search_done) | 
|  | { | 
|  | int ret; | 
|  | char *victim_name; | 
|  | int victim_name_len; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key search_key; | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | again: | 
|  | /* Search old style refs */ | 
|  | search_key.objectid = inode_objectid; | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | search_key.offset = parent_objectid; | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret == 0) { | 
|  | struct btrfs_inode_ref *victim_ref; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | /* are we trying to overwrite a back ref for the root directory | 
|  | * if so, just jump out, we're done | 
|  | */ | 
|  | if (search_key.objectid == search_key.offset) | 
|  | return 1; | 
|  |  | 
|  | /* check all the names in this back reference to see | 
|  | * if they are in the log.  if so, we allow them to stay | 
|  | * otherwise they must be unlinked as a conflict | 
|  | */ | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | victim_ref = (struct btrfs_inode_ref *)ptr; | 
|  | victim_name_len = btrfs_inode_ref_name_len(leaf, | 
|  | victim_ref); | 
|  | victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
|  | if (!victim_name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(leaf, victim_name, | 
|  | (unsigned long)(victim_ref + 1), | 
|  | victim_name_len); | 
|  |  | 
|  | if (!backref_in_log(log_root, &search_key, | 
|  | parent_objectid, | 
|  | victim_name, | 
|  | victim_name_len)) { | 
|  | inc_nlink(&inode->vfs_inode); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_unlink_inode(trans, root, dir, inode, | 
|  | victim_name, victim_name_len); | 
|  | kfree(victim_name); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_run_delayed_items(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  | *search_done = 1; | 
|  | goto again; | 
|  | } | 
|  | kfree(victim_name); | 
|  |  | 
|  | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: we have searched root tree and checked the | 
|  | * corresponding ref, it does not need to check again. | 
|  | */ | 
|  | *search_done = 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* Same search but for extended refs */ | 
|  | extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, | 
|  | inode_objectid, parent_objectid, 0, | 
|  | 0); | 
|  | if (!IS_ERR_OR_NULL(extref)) { | 
|  | u32 item_size; | 
|  | u32 cur_offset = 0; | 
|  | unsigned long base; | 
|  | struct inode *victim_parent; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | base = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | extref = (struct btrfs_inode_extref *)(base + cur_offset); | 
|  |  | 
|  | victim_name_len = btrfs_inode_extref_name_len(leaf, extref); | 
|  |  | 
|  | if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) | 
|  | goto next; | 
|  |  | 
|  | victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
|  | if (!victim_name) | 
|  | return -ENOMEM; | 
|  | read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, | 
|  | victim_name_len); | 
|  |  | 
|  | search_key.objectid = inode_objectid; | 
|  | search_key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | search_key.offset = btrfs_extref_hash(parent_objectid, | 
|  | victim_name, | 
|  | victim_name_len); | 
|  | ret = 0; | 
|  | if (!backref_in_log(log_root, &search_key, | 
|  | parent_objectid, victim_name, | 
|  | victim_name_len)) { | 
|  | ret = -ENOENT; | 
|  | victim_parent = read_one_inode(root, | 
|  | parent_objectid); | 
|  | if (victim_parent) { | 
|  | inc_nlink(&inode->vfs_inode); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_unlink_inode(trans, root, | 
|  | BTRFS_I(victim_parent), | 
|  | inode, | 
|  | victim_name, | 
|  | victim_name_len); | 
|  | if (!ret) | 
|  | ret = btrfs_run_delayed_items( | 
|  | trans); | 
|  | } | 
|  | iput(victim_parent); | 
|  | kfree(victim_name); | 
|  | if (ret) | 
|  | return ret; | 
|  | *search_done = 1; | 
|  | goto again; | 
|  | } | 
|  | kfree(victim_name); | 
|  | next: | 
|  | cur_offset += victim_name_len + sizeof(*extref); | 
|  | } | 
|  | *search_done = 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* look for a conflicting sequence number */ | 
|  | di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), | 
|  | ref_index, name, namelen, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = drop_one_dir_item(trans, root, path, dir, di); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* look for a conflicing name */ | 
|  | di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), | 
|  | name, namelen, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = drop_one_dir_item(trans, root, path, dir, di); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
|  | u32 *namelen, char **name, u64 *index, | 
|  | u64 *parent_objectid) | 
|  | { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)ref_ptr; | 
|  |  | 
|  | *namelen = btrfs_inode_extref_name_len(eb, extref); | 
|  | *name = kmalloc(*namelen, GFP_NOFS); | 
|  | if (*name == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(eb, *name, (unsigned long)&extref->name, | 
|  | *namelen); | 
|  |  | 
|  | if (index) | 
|  | *index = btrfs_inode_extref_index(eb, extref); | 
|  | if (parent_objectid) | 
|  | *parent_objectid = btrfs_inode_extref_parent(eb, extref); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
|  | u32 *namelen, char **name, u64 *index) | 
|  | { | 
|  | struct btrfs_inode_ref *ref; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ref_ptr; | 
|  |  | 
|  | *namelen = btrfs_inode_ref_name_len(eb, ref); | 
|  | *name = kmalloc(*namelen, GFP_NOFS); | 
|  | if (*name == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); | 
|  |  | 
|  | if (index) | 
|  | *index = btrfs_inode_ref_index(eb, ref); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take an inode reference item from the log tree and iterate all names from the | 
|  | * inode reference item in the subvolume tree with the same key (if it exists). | 
|  | * For any name that is not in the inode reference item from the log tree, do a | 
|  | * proper unlink of that name (that is, remove its entry from the inode | 
|  | * reference item and both dir index keys). | 
|  | */ | 
|  | static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_inode *inode, | 
|  | struct extent_buffer *log_eb, | 
|  | int log_slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | unsigned long ref_ptr; | 
|  | unsigned long ref_end; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | again: | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); | 
|  | ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); | 
|  | while (ref_ptr < ref_end) { | 
|  | char *name = NULL; | 
|  | int namelen; | 
|  | u64 parent_id; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = extref_get_fields(eb, ref_ptr, &namelen, &name, | 
|  | NULL, &parent_id); | 
|  | } else { | 
|  | parent_id = key->offset; | 
|  | ret = ref_get_fields(eb, ref_ptr, &namelen, &name, | 
|  | NULL); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ret = btrfs_find_name_in_ext_backref(log_eb, log_slot, | 
|  | parent_id, name, | 
|  | namelen, NULL); | 
|  | else | 
|  | ret = btrfs_find_name_in_backref(log_eb, log_slot, name, | 
|  | namelen, NULL); | 
|  |  | 
|  | if (!ret) { | 
|  | struct inode *dir; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | dir = read_one_inode(root, parent_id); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | kfree(name); | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), | 
|  | inode, name, namelen); | 
|  | kfree(name); | 
|  | iput(dir); | 
|  | if (ret) | 
|  | goto out; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | kfree(name); | 
|  | ref_ptr += namelen; | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ref_ptr += sizeof(struct btrfs_inode_extref); | 
|  | else | 
|  | ref_ptr += sizeof(struct btrfs_inode_ref); | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, | 
|  | const u8 ref_type, const char *name, | 
|  | const int namelen) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | const u64 parent_id = btrfs_ino(BTRFS_I(dir)); | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = btrfs_ino(BTRFS_I(inode)); | 
|  | key.type = ref_type; | 
|  | if (key.type == BTRFS_INODE_REF_KEY) | 
|  | key.offset = parent_id; | 
|  | else | 
|  | key.offset = btrfs_extref_hash(parent_id, name, namelen); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | if (key.type == BTRFS_INODE_EXTREF_KEY) | 
|  | ret = btrfs_find_name_in_ext_backref(path->nodes[0], | 
|  | path->slots[0], parent_id, | 
|  | name, namelen, NULL); | 
|  | else | 
|  | ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0], | 
|  | name, namelen, NULL); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * replay one inode back reference item found in the log tree. | 
|  | * eb, slot and key refer to the buffer and key found in the log tree. | 
|  | * root is the destination we are replaying into, and path is for temp | 
|  | * use by this function.  (it should be released on return). | 
|  | */ | 
|  | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct inode *dir = NULL; | 
|  | struct inode *inode = NULL; | 
|  | unsigned long ref_ptr; | 
|  | unsigned long ref_end; | 
|  | char *name = NULL; | 
|  | int namelen; | 
|  | int ret; | 
|  | int search_done = 0; | 
|  | int log_ref_ver = 0; | 
|  | u64 parent_objectid; | 
|  | u64 inode_objectid; | 
|  | u64 ref_index = 0; | 
|  | int ref_struct_size; | 
|  |  | 
|  | ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | struct btrfs_inode_extref *r; | 
|  |  | 
|  | ref_struct_size = sizeof(struct btrfs_inode_extref); | 
|  | log_ref_ver = 1; | 
|  | r = (struct btrfs_inode_extref *)ref_ptr; | 
|  | parent_objectid = btrfs_inode_extref_parent(eb, r); | 
|  | } else { | 
|  | ref_struct_size = sizeof(struct btrfs_inode_ref); | 
|  | parent_objectid = key->offset; | 
|  | } | 
|  | inode_objectid = key->objectid; | 
|  |  | 
|  | /* | 
|  | * it is possible that we didn't log all the parent directories | 
|  | * for a given inode.  If we don't find the dir, just don't | 
|  | * copy the back ref in.  The link count fixup code will take | 
|  | * care of the rest | 
|  | */ | 
|  | dir = read_one_inode(root, parent_objectid); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = read_one_inode(root, inode_objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (ref_ptr < ref_end) { | 
|  | if (log_ref_ver) { | 
|  | ret = extref_get_fields(eb, ref_ptr, &namelen, &name, | 
|  | &ref_index, &parent_objectid); | 
|  | /* | 
|  | * parent object can change from one array | 
|  | * item to another. | 
|  | */ | 
|  | if (!dir) | 
|  | dir = read_one_inode(root, parent_objectid); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | ret = ref_get_fields(eb, ref_ptr, &namelen, &name, | 
|  | &ref_index); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* if we already have a perfect match, we're done */ | 
|  | if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), | 
|  | btrfs_ino(BTRFS_I(inode)), ref_index, | 
|  | name, namelen)) { | 
|  | /* | 
|  | * look for a conflicting back reference in the | 
|  | * metadata. if we find one we have to unlink that name | 
|  | * of the file before we add our new link.  Later on, we | 
|  | * overwrite any existing back reference, and we don't | 
|  | * want to create dangling pointers in the directory. | 
|  | */ | 
|  |  | 
|  | if (!search_done) { | 
|  | ret = __add_inode_ref(trans, root, path, log, | 
|  | BTRFS_I(dir), | 
|  | BTRFS_I(inode), | 
|  | inode_objectid, | 
|  | parent_objectid, | 
|  | ref_index, name, namelen, | 
|  | &search_done); | 
|  | if (ret) { | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a reference item already exists for this inode | 
|  | * with the same parent and name, but different index, | 
|  | * drop it and the corresponding directory index entries | 
|  | * from the parent before adding the new reference item | 
|  | * and dir index entries, otherwise we would fail with | 
|  | * -EEXIST returned from btrfs_add_link() below. | 
|  | */ | 
|  | ret = btrfs_inode_ref_exists(inode, dir, key->type, | 
|  | name, namelen); | 
|  | if (ret > 0) { | 
|  | ret = btrfs_unlink_inode(trans, root, | 
|  | BTRFS_I(dir), | 
|  | BTRFS_I(inode), | 
|  | name, namelen); | 
|  | /* | 
|  | * If we dropped the link count to 0, bump it so | 
|  | * that later the iput() on the inode will not | 
|  | * free it. We will fixup the link count later. | 
|  | */ | 
|  | if (!ret && inode->i_nlink == 0) | 
|  | inc_nlink(inode); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* insert our name */ | 
|  | ret = btrfs_add_link(trans, BTRFS_I(dir), | 
|  | BTRFS_I(inode), | 
|  | name, namelen, 0, ref_index); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | } | 
|  |  | 
|  | ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; | 
|  | kfree(name); | 
|  | name = NULL; | 
|  | if (log_ref_ver) { | 
|  | iput(dir); | 
|  | dir = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before we overwrite the inode reference item in the subvolume tree | 
|  | * with the item from the log tree, we must unlink all names from the | 
|  | * parent directory that are in the subvolume's tree inode reference | 
|  | * item, otherwise we end up with an inconsistent subvolume tree where | 
|  | * dir index entries exist for a name but there is no inode reference | 
|  | * item with the same name. | 
|  | */ | 
|  | ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, | 
|  | key); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* finally write the back reference in the inode */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | kfree(name); | 
|  | iput(dir); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int insert_orphan_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 ino) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_orphan_item(trans, root, ino); | 
|  | if (ret == -EEXIST) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int count_inode_extrefs(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, struct btrfs_path *path) | 
|  | { | 
|  | int ret = 0; | 
|  | int name_len; | 
|  | unsigned int nlink = 0; | 
|  | u32 item_size; | 
|  | u32 cur_offset = 0; | 
|  | u64 inode_objectid = btrfs_ino(inode); | 
|  | u64 offset = 0; | 
|  | unsigned long ptr; | 
|  | struct btrfs_inode_extref *extref; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_find_one_extref(root, inode_objectid, offset, path, | 
|  | &extref, &offset); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | extref = (struct btrfs_inode_extref *) (ptr + cur_offset); | 
|  | name_len = btrfs_inode_extref_name_len(leaf, extref); | 
|  |  | 
|  | nlink++; | 
|  |  | 
|  | cur_offset += name_len + sizeof(*extref); | 
|  | } | 
|  |  | 
|  | offset++; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | return ret; | 
|  | return nlink; | 
|  | } | 
|  |  | 
|  | static int count_inode_refs(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | unsigned int nlink = 0; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | int name_len; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | process_slot: | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid != ino || | 
|  | key.type != BTRFS_INODE_REF_KEY) | 
|  | break; | 
|  | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | struct btrfs_inode_ref *ref; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
|  | ref); | 
|  | ptr = (unsigned long)(ref + 1) + name_len; | 
|  | nlink++; | 
|  | } | 
|  |  | 
|  | if (key.offset == 0) | 
|  | break; | 
|  | if (path->slots[0] > 0) { | 
|  | path->slots[0]--; | 
|  | goto process_slot; | 
|  | } | 
|  | key.offset--; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return nlink; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a few corners where the link count of the file can't | 
|  | * be properly maintained during replay.  So, instead of adding | 
|  | * lots of complexity to the log code, we just scan the backrefs | 
|  | * for any file that has been through replay. | 
|  | * | 
|  | * The scan will update the link count on the inode to reflect the | 
|  | * number of back refs found.  If it goes down to zero, the iput | 
|  | * will free the inode. | 
|  | */ | 
|  | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | u64 nlink = 0; | 
|  | u64 ino = btrfs_ino(BTRFS_I(inode)); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = count_inode_refs(root, BTRFS_I(inode), path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nlink = ret; | 
|  |  | 
|  | ret = count_inode_extrefs(root, BTRFS_I(inode), path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nlink += ret; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | if (nlink != inode->i_nlink) { | 
|  | set_nlink(inode, nlink); | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | } | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  |  | 
|  | if (inode->i_nlink == 0) { | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | ret = replay_dir_deletes(trans, root, NULL, path, | 
|  | ino, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ret = insert_orphan_item(trans, root, ino); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (ret == 1) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
|  | key.type != BTRFS_ORPHAN_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | inode = read_one_inode(root, key.offset); | 
|  | if (!inode) | 
|  | return -EIO; | 
|  |  | 
|  | ret = fixup_inode_link_count(trans, root, inode); | 
|  | iput(inode); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * fixup on a directory may create new entries, | 
|  | * make sure we always look for the highset possible | 
|  | * offset | 
|  | */ | 
|  | key.offset = (u64)-1; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * record a given inode in the fixup dir so we can check its link | 
|  | * count when replay is done.  The link count is incremented here | 
|  | * so the inode won't go away until we check it | 
|  | */ | 
|  | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = read_one_inode(root, objectid); | 
|  | if (!inode) | 
|  | return -EIO; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = objectid; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | if (ret == 0) { | 
|  | if (!inode->i_nlink) | 
|  | set_nlink(inode, 1); | 
|  | else | 
|  | inc_nlink(inode); | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | } else if (ret == -EEXIST) { | 
|  | ret = 0; | 
|  | } else { | 
|  | BUG(); /* Logic Error */ | 
|  | } | 
|  | iput(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when replaying the log for a directory, we only insert names | 
|  | * for inodes that actually exist.  This means an fsync on a directory | 
|  | * does not implicitly fsync all the new files in it | 
|  | */ | 
|  | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 dirid, u64 index, | 
|  | char *name, int name_len, | 
|  | struct btrfs_key *location) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct inode *dir; | 
|  | int ret; | 
|  |  | 
|  | inode = read_one_inode(root, location->objectid); | 
|  | if (!inode) | 
|  | return -ENOENT; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | if (!dir) { | 
|  | iput(inode); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, | 
|  | name_len, 1, index); | 
|  |  | 
|  | /* FIXME, put inode into FIXUP list */ | 
|  |  | 
|  | iput(inode); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if an inode reference exists in the log for the given name, | 
|  | * inode and parent inode. | 
|  | */ | 
|  | static bool name_in_log_ref(struct btrfs_root *log_root, | 
|  | const char *name, const int name_len, | 
|  | const u64 dirid, const u64 ino) | 
|  | { | 
|  | struct btrfs_key search_key; | 
|  |  | 
|  | search_key.objectid = ino; | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | search_key.offset = dirid; | 
|  | if (backref_in_log(log_root, &search_key, dirid, name, name_len)) | 
|  | return true; | 
|  |  | 
|  | search_key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | search_key.offset = btrfs_extref_hash(dirid, name, name_len); | 
|  | if (backref_in_log(log_root, &search_key, dirid, name, name_len)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * take a single entry in a log directory item and replay it into | 
|  | * the subvolume. | 
|  | * | 
|  | * if a conflicting item exists in the subdirectory already, | 
|  | * the inode it points to is unlinked and put into the link count | 
|  | * fix up tree. | 
|  | * | 
|  | * If a name from the log points to a file or directory that does | 
|  | * not exist in the FS, it is skipped.  fsyncs on directories | 
|  | * do not force down inodes inside that directory, just changes to the | 
|  | * names or unlinks in a directory. | 
|  | * | 
|  | * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a | 
|  | * non-existing inode) and 1 if the name was replayed. | 
|  | */ | 
|  | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, | 
|  | struct btrfs_dir_item *di, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | char *name; | 
|  | int name_len; | 
|  | struct btrfs_dir_item *dst_di; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key log_key; | 
|  | struct inode *dir; | 
|  | u8 log_type; | 
|  | int exists; | 
|  | int ret = 0; | 
|  | bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); | 
|  | bool name_added = false; | 
|  |  | 
|  | dir = read_one_inode(root, key->objectid); | 
|  | if (!dir) | 
|  | return -EIO; | 
|  |  | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | log_type = btrfs_dir_type(eb, di); | 
|  | read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
|  | name_len); | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
|  | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
|  | if (exists == 0) | 
|  | exists = 1; | 
|  | else | 
|  | exists = 0; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (key->type == BTRFS_DIR_ITEM_KEY) { | 
|  | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
|  | name, name_len, 1); | 
|  | } else if (key->type == BTRFS_DIR_INDEX_KEY) { | 
|  | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
|  | key->objectid, | 
|  | key->offset, name, | 
|  | name_len, 1); | 
|  | } else { | 
|  | /* Corruption */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (IS_ERR_OR_NULL(dst_di)) { | 
|  | /* we need a sequence number to insert, so we only | 
|  | * do inserts for the BTRFS_DIR_INDEX_KEY types | 
|  | */ | 
|  | if (key->type != BTRFS_DIR_INDEX_KEY) | 
|  | goto out; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
|  | /* the existing item matches the logged item */ | 
|  | if (found_key.objectid == log_key.objectid && | 
|  | found_key.type == log_key.type && | 
|  | found_key.offset == log_key.offset && | 
|  | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | 
|  | update_size = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * don't drop the conflicting directory entry if the inode | 
|  | * for the new entry doesn't exist | 
|  | */ | 
|  | if (!exists) | 
|  | goto out; | 
|  |  | 
|  | ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (key->type == BTRFS_DIR_INDEX_KEY) | 
|  | goto insert; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | if (!ret && update_size) { | 
|  | btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); | 
|  | ret = btrfs_update_inode(trans, root, dir); | 
|  | } | 
|  | kfree(name); | 
|  | iput(dir); | 
|  | if (!ret && name_added) | 
|  | ret = 1; | 
|  | return ret; | 
|  |  | 
|  | insert: | 
|  | if (name_in_log_ref(root->log_root, name, name_len, | 
|  | key->objectid, log_key.objectid)) { | 
|  | /* The dentry will be added later. */ | 
|  | ret = 0; | 
|  | update_size = false; | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | ret = insert_one_name(trans, root, key->objectid, key->offset, | 
|  | name, name_len, &log_key); | 
|  | if (ret && ret != -ENOENT && ret != -EEXIST) | 
|  | goto out; | 
|  | if (!ret) | 
|  | name_added = true; | 
|  | update_size = false; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find all the names in a directory item and reconcile them into | 
|  | * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than | 
|  | * one name in a directory item, but the same code gets used for | 
|  | * both directory index types | 
|  | */ | 
|  | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret = 0; | 
|  | u32 item_size = btrfs_item_size_nr(eb, slot); | 
|  | struct btrfs_dir_item *di; | 
|  | int name_len; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | struct btrfs_path *fixup_path = NULL; | 
|  |  | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | di = (struct btrfs_dir_item *)ptr; | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | ret = replay_one_name(trans, root, path, eb, di, key); | 
|  | if (ret < 0) | 
|  | break; | 
|  | ptr = (unsigned long)(di + 1); | 
|  | ptr += name_len; | 
|  |  | 
|  | /* | 
|  | * If this entry refers to a non-directory (directories can not | 
|  | * have a link count > 1) and it was added in the transaction | 
|  | * that was not committed, make sure we fixup the link count of | 
|  | * the inode it the entry points to. Otherwise something like | 
|  | * the following would result in a directory pointing to an | 
|  | * inode with a wrong link that does not account for this dir | 
|  | * entry: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch testdir/foo | 
|  | * touch testdir/bar | 
|  | * sync | 
|  | * | 
|  | * ln testdir/bar testdir/bar_link | 
|  | * ln testdir/foo testdir/foo_link | 
|  | * xfs_io -c "fsync" testdir/bar | 
|  | * | 
|  | * <power failure> | 
|  | * | 
|  | * mount fs, log replay happens | 
|  | * | 
|  | * File foo would remain with a link count of 1 when it has two | 
|  | * entries pointing to it in the directory testdir. This would | 
|  | * make it impossible to ever delete the parent directory has | 
|  | * it would result in stale dentries that can never be deleted. | 
|  | */ | 
|  | if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { | 
|  | struct btrfs_key di_key; | 
|  |  | 
|  | if (!fixup_path) { | 
|  | fixup_path = btrfs_alloc_path(); | 
|  | if (!fixup_path) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
|  | ret = link_to_fixup_dir(trans, root, fixup_path, | 
|  | di_key.objectid); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | ret = 0; | 
|  | } | 
|  | btrfs_free_path(fixup_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * directory replay has two parts.  There are the standard directory | 
|  | * items in the log copied from the subvolume, and range items | 
|  | * created in the log while the subvolume was logged. | 
|  | * | 
|  | * The range items tell us which parts of the key space the log | 
|  | * is authoritative for.  During replay, if a key in the subvolume | 
|  | * directory is in a logged range item, but not actually in the log | 
|  | * that means it was deleted from the directory before the fsync | 
|  | * and should be removed. | 
|  | */ | 
|  | static noinline int find_dir_range(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int key_type, | 
|  | u64 *start_ret, u64 *end_ret) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | u64 found_end; | 
|  | struct btrfs_dir_log_item *item; | 
|  | int ret; | 
|  | int nritems; | 
|  |  | 
|  | if (*start_ret == (u64)-1) | 
|  | return 1; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.type = key_type; | 
|  | key.offset = *start_ret; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  | path->slots[0]--; | 
|  | } | 
|  | if (ret != 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != key_type || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto next; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  |  | 
|  | if (*start_ret >= key.offset && *start_ret <= found_end) { | 
|  | ret = 0; | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | goto out; | 
|  | } | 
|  | ret = 1; | 
|  | next: | 
|  | /* check the next slot in the tree to see if it is a valid item */ | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != key_type || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this looks for a given directory item in the log.  If the directory | 
|  | * item is not in the log, the item is removed and the inode it points | 
|  | * to is unlinked | 
|  | */ | 
|  | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *log_path, | 
|  | struct inode *dir, | 
|  | struct btrfs_key *dir_key) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  | u32 item_size; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_dir_item *log_di; | 
|  | int name_len; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | char *name; | 
|  | struct inode *inode; | 
|  | struct btrfs_key location; | 
|  |  | 
|  | again: | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | di = (struct btrfs_dir_item *)ptr; | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
|  | name_len); | 
|  | log_di = NULL; | 
|  | if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { | 
|  | log_di = btrfs_lookup_dir_item(trans, log, log_path, | 
|  | dir_key->objectid, | 
|  | name, name_len, 0); | 
|  | } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { | 
|  | log_di = btrfs_lookup_dir_index_item(trans, log, | 
|  | log_path, | 
|  | dir_key->objectid, | 
|  | dir_key->offset, | 
|  | name, name_len, 0); | 
|  | } | 
|  | if (!log_di || log_di == ERR_PTR(-ENOENT)) { | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &location); | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(log_path); | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | if (!inode) { | 
|  | kfree(name); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, | 
|  | path, location.objectid); | 
|  | if (ret) { | 
|  | kfree(name); | 
|  | iput(inode); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inc_nlink(inode); | 
|  | ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), | 
|  | BTRFS_I(inode), name, name_len); | 
|  | if (!ret) | 
|  | ret = btrfs_run_delayed_items(trans); | 
|  | kfree(name); | 
|  | iput(inode); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* there might still be more names under this key | 
|  | * check and repeat if required | 
|  | */ | 
|  | ret = btrfs_search_slot(NULL, root, dir_key, path, | 
|  | 0, 0); | 
|  | if (ret == 0) | 
|  | goto again; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } else if (IS_ERR(log_di)) { | 
|  | kfree(name); | 
|  | return PTR_ERR(log_di); | 
|  | } | 
|  | btrfs_release_path(log_path); | 
|  | kfree(name); | 
|  |  | 
|  | ptr = (unsigned long)(di + 1); | 
|  | ptr += name_len; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(log_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int replay_xattr_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | const u64 ino) | 
|  | { | 
|  | struct btrfs_key search_key; | 
|  | struct btrfs_path *log_path; | 
|  | int i; | 
|  | int nritems; | 
|  | int ret; | 
|  |  | 
|  | log_path = btrfs_alloc_path(); | 
|  | if (!log_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | search_key.objectid = ino; | 
|  | search_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | search_key.offset = 0; | 
|  | again: | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | process_leaf: | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | for (i = path->slots[0]; i < nritems; i++) { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_dir_item *log_di; | 
|  | u32 total_size; | 
|  | u32 cur; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, i); | 
|  | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); | 
|  | total_size = btrfs_item_size_nr(path->nodes[0], i); | 
|  | cur = 0; | 
|  | while (cur < total_size) { | 
|  | u16 name_len = btrfs_dir_name_len(path->nodes[0], di); | 
|  | u16 data_len = btrfs_dir_data_len(path->nodes[0], di); | 
|  | u32 this_len = sizeof(*di) + name_len + data_len; | 
|  | char *name; | 
|  |  | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | read_extent_buffer(path->nodes[0], name, | 
|  | (unsigned long)(di + 1), name_len); | 
|  |  | 
|  | log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, | 
|  | name, name_len, 0); | 
|  | btrfs_release_path(log_path); | 
|  | if (!log_di) { | 
|  | /* Doesn't exist in log tree, so delete it. */ | 
|  | btrfs_release_path(path); | 
|  | di = btrfs_lookup_xattr(trans, root, path, ino, | 
|  | name, name_len, -1); | 
|  | kfree(name); | 
|  | if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } | 
|  | ASSERT(di); | 
|  | ret = btrfs_delete_one_dir_name(trans, root, | 
|  | path, di); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  | search_key = key; | 
|  | goto again; | 
|  | } | 
|  | kfree(name); | 
|  | if (IS_ERR(log_di)) { | 
|  | ret = PTR_ERR(log_di); | 
|  | goto out; | 
|  | } | 
|  | cur += this_len; | 
|  | di = (struct btrfs_dir_item *)((char *)di + this_len); | 
|  | } | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | else if (ret == 0) | 
|  | goto process_leaf; | 
|  | out: | 
|  | btrfs_free_path(log_path); | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * deletion replay happens before we copy any new directory items | 
|  | * out of the log or out of backreferences from inodes.  It | 
|  | * scans the log to find ranges of keys that log is authoritative for, | 
|  | * and then scans the directory to find items in those ranges that are | 
|  | * not present in the log. | 
|  | * | 
|  | * Anything we don't find in the log is unlinked and removed from the | 
|  | * directory. | 
|  | */ | 
|  | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int del_all) | 
|  | { | 
|  | u64 range_start; | 
|  | u64 range_end; | 
|  | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | 
|  | int ret = 0; | 
|  | struct btrfs_key dir_key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *log_path; | 
|  | struct inode *dir; | 
|  |  | 
|  | dir_key.objectid = dirid; | 
|  | dir_key.type = BTRFS_DIR_ITEM_KEY; | 
|  | log_path = btrfs_alloc_path(); | 
|  | if (!log_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | /* it isn't an error if the inode isn't there, that can happen | 
|  | * because we replay the deletes before we copy in the inode item | 
|  | * from the log | 
|  | */ | 
|  | if (!dir) { | 
|  | btrfs_free_path(log_path); | 
|  | return 0; | 
|  | } | 
|  | again: | 
|  | range_start = 0; | 
|  | range_end = 0; | 
|  | while (1) { | 
|  | if (del_all) | 
|  | range_end = (u64)-1; | 
|  | else { | 
|  | ret = find_dir_range(log, path, dirid, key_type, | 
|  | &range_start, &range_end); | 
|  | if (ret != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | dir_key.offset = range_start; | 
|  | while (1) { | 
|  | int nritems; | 
|  | ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
|  | 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 1) | 
|  | break; | 
|  | else if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (found_key.objectid != dirid || | 
|  | found_key.type != dir_key.type) | 
|  | goto next_type; | 
|  |  | 
|  | if (found_key.offset > range_end) | 
|  | break; | 
|  |  | 
|  | ret = check_item_in_log(trans, root, log, path, | 
|  | log_path, dir, | 
|  | &found_key); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (found_key.offset == (u64)-1) | 
|  | break; | 
|  | dir_key.offset = found_key.offset + 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (range_end == (u64)-1) | 
|  | break; | 
|  | range_start = range_end + 1; | 
|  | } | 
|  |  | 
|  | next_type: | 
|  | ret = 0; | 
|  | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | 
|  | key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | dir_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_free_path(log_path); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the process_func used to replay items from the log tree.  This | 
|  | * gets called in two different stages.  The first stage just looks | 
|  | * for inodes and makes sure they are all copied into the subvolume. | 
|  | * | 
|  | * The second stage copies all the other item types from the log into | 
|  | * the subvolume.  The two stage approach is slower, but gets rid of | 
|  | * lots of complexity around inodes referencing other inodes that exist | 
|  | * only in the log (references come from either directory items or inode | 
|  | * back refs). | 
|  | */ | 
|  | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level) | 
|  | { | 
|  | int nritems; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = wc->replay_dest; | 
|  | struct btrfs_key key; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_read_buffer(eb, gen, level, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | level = btrfs_header_level(eb); | 
|  |  | 
|  | if (level != 0) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(eb, &key, i); | 
|  |  | 
|  | /* inode keys are done during the first stage */ | 
|  | if (key.type == BTRFS_INODE_ITEM_KEY && | 
|  | wc->stage == LOG_WALK_REPLAY_INODES) { | 
|  | struct btrfs_inode_item *inode_item; | 
|  | u32 mode; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(eb, i, | 
|  | struct btrfs_inode_item); | 
|  | /* | 
|  | * If we have a tmpfile (O_TMPFILE) that got fsync'ed | 
|  | * and never got linked before the fsync, skip it, as | 
|  | * replaying it is pointless since it would be deleted | 
|  | * later. We skip logging tmpfiles, but it's always | 
|  | * possible we are replaying a log created with a kernel | 
|  | * that used to log tmpfiles. | 
|  | */ | 
|  | if (btrfs_inode_nlink(eb, inode_item) == 0) { | 
|  | wc->ignore_cur_inode = true; | 
|  | continue; | 
|  | } else { | 
|  | wc->ignore_cur_inode = false; | 
|  | } | 
|  | ret = replay_xattr_deletes(wc->trans, root, log, | 
|  | path, key.objectid); | 
|  | if (ret) | 
|  | break; | 
|  | mode = btrfs_inode_mode(eb, inode_item); | 
|  | if (S_ISDIR(mode)) { | 
|  | ret = replay_dir_deletes(wc->trans, | 
|  | root, log, path, key.objectid, 0); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Before replaying extents, truncate the inode to its | 
|  | * size. We need to do it now and not after log replay | 
|  | * because before an fsync we can have prealloc extents | 
|  | * added beyond the inode's i_size. If we did it after, | 
|  | * through orphan cleanup for example, we would drop | 
|  | * those prealloc extents just after replaying them. | 
|  | */ | 
|  | if (S_ISREG(mode)) { | 
|  | struct inode *inode; | 
|  | u64 from; | 
|  |  | 
|  | inode = read_one_inode(root, key.objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | from = ALIGN(i_size_read(inode), | 
|  | root->fs_info->sectorsize); | 
|  | ret = btrfs_drop_extents(wc->trans, root, inode, | 
|  | from, (u64)-1, 1); | 
|  | if (!ret) { | 
|  | /* Update the inode's nbytes. */ | 
|  | ret = btrfs_update_inode(wc->trans, | 
|  | root, inode); | 
|  | } | 
|  | iput(inode); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(wc->trans, root, | 
|  | path, key.objectid); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->ignore_cur_inode) | 
|  | continue; | 
|  |  | 
|  | if (key.type == BTRFS_DIR_INDEX_KEY && | 
|  | wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { | 
|  | ret = replay_one_dir_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage < LOG_WALK_REPLAY_ALL) | 
|  | continue; | 
|  |  | 
|  | /* these keys are simply copied */ | 
|  | if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } else if (key.type == BTRFS_INODE_REF_KEY || | 
|  | key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = add_inode_ref(wc->trans, root, log, path, | 
|  | eb, i, &key); | 
|  | if (ret && ret != -ENOENT) | 
|  | break; | 
|  | ret = 0; | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | ret = replay_one_extent(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } else if (key.type == BTRFS_DIR_ITEM_KEY) { | 
|  | ret = replay_one_dir_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 root_owner; | 
|  | u64 bytenr; | 
|  | u64 ptr_gen; | 
|  | struct extent_buffer *next; | 
|  | struct extent_buffer *cur; | 
|  | struct extent_buffer *parent; | 
|  | u32 blocksize; | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  |  | 
|  | while (*level > 0) { | 
|  | struct btrfs_key first_key; | 
|  |  | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  | cur = path->nodes[*level]; | 
|  |  | 
|  | WARN_ON(btrfs_header_level(cur) != *level); | 
|  |  | 
|  | if (path->slots[*level] >= | 
|  | btrfs_header_nritems(cur)) | 
|  | break; | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
|  | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
|  | btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); | 
|  | blocksize = fs_info->nodesize; | 
|  |  | 
|  | parent = path->nodes[*level]; | 
|  | root_owner = btrfs_header_owner(parent); | 
|  |  | 
|  | next = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | if (IS_ERR(next)) | 
|  | return PTR_ERR(next); | 
|  |  | 
|  | if (*level == 1) { | 
|  | ret = wc->process_func(root, next, wc, ptr_gen, | 
|  | *level - 1); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | path->slots[*level]++; | 
|  | if (wc->free) { | 
|  | ret = btrfs_read_buffer(next, ptr_gen, | 
|  | *level - 1, &first_key); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (trans) { | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | clean_tree_block(fs_info, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  | } else { | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) | 
|  | clear_extent_buffer_dirty(next); | 
|  | } | 
|  |  | 
|  | WARN_ON(root_owner != | 
|  | BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_and_pin_reserved_extent( | 
|  | fs_info, bytenr, | 
|  | blocksize); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | free_extent_buffer(next); | 
|  | continue; | 
|  | } | 
|  | ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | WARN_ON(*level <= 0); | 
|  | if (path->nodes[*level-1]) | 
|  | free_extent_buffer(path->nodes[*level-1]); | 
|  | path->nodes[*level-1] = next; | 
|  | *level = btrfs_header_level(next); | 
|  | path->slots[*level] = 0; | 
|  | cond_resched(); | 
|  | } | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  |  | 
|  | path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); | 
|  |  | 
|  | cond_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 root_owner; | 
|  | int i; | 
|  | int slot; | 
|  | int ret; | 
|  |  | 
|  | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
|  | slot = path->slots[i]; | 
|  | if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { | 
|  | path->slots[i]++; | 
|  | *level = i; | 
|  | WARN_ON(*level == 0); | 
|  | return 0; | 
|  | } else { | 
|  | struct extent_buffer *parent; | 
|  | if (path->nodes[*level] == root->node) | 
|  | parent = path->nodes[*level]; | 
|  | else | 
|  | parent = path->nodes[*level + 1]; | 
|  |  | 
|  | root_owner = btrfs_header_owner(parent); | 
|  | ret = wc->process_func(root, path->nodes[*level], wc, | 
|  | btrfs_header_generation(path->nodes[*level]), | 
|  | *level); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (wc->free) { | 
|  | struct extent_buffer *next; | 
|  |  | 
|  | next = path->nodes[*level]; | 
|  |  | 
|  | if (trans) { | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | clean_tree_block(fs_info, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  | } else { | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) | 
|  | clear_extent_buffer_dirty(next); | 
|  | } | 
|  |  | 
|  | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_and_pin_reserved_extent( | 
|  | fs_info, | 
|  | path->nodes[*level]->start, | 
|  | path->nodes[*level]->len); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | *level = i + 1; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop the reference count on the tree rooted at 'snap'.  This traverses | 
|  | * the tree freeing any blocks that have a ref count of zero after being | 
|  | * decremented. | 
|  | */ | 
|  | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log->fs_info; | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int level; | 
|  | struct btrfs_path *path; | 
|  | int orig_level; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | level = btrfs_header_level(log->node); | 
|  | orig_level = level; | 
|  | path->nodes[level] = log->node; | 
|  | extent_buffer_get(log->node); | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wret = walk_up_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* was the root node processed? if not, catch it here */ | 
|  | if (path->nodes[orig_level]) { | 
|  | ret = wc->process_func(log, path->nodes[orig_level], wc, | 
|  | btrfs_header_generation(path->nodes[orig_level]), | 
|  | orig_level); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (wc->free) { | 
|  | struct extent_buffer *next; | 
|  |  | 
|  | next = path->nodes[orig_level]; | 
|  |  | 
|  | if (trans) { | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | clean_tree_block(fs_info, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  | } else { | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) | 
|  | clear_extent_buffer_dirty(next); | 
|  | } | 
|  |  | 
|  | WARN_ON(log->root_key.objectid != | 
|  | BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_and_pin_reserved_extent(fs_info, | 
|  | next->start, next->len); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to update the item for a given subvolumes log root | 
|  | * in the tree of log roots | 
|  | */ | 
|  | static int update_log_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log->fs_info; | 
|  | int ret; | 
|  |  | 
|  | if (log->log_transid == 1) { | 
|  | /* insert root item on the first sync */ | 
|  | ret = btrfs_insert_root(trans, fs_info->log_root_tree, | 
|  | &log->root_key, &log->root_item); | 
|  | } else { | 
|  | ret = btrfs_update_root(trans, fs_info->log_root_tree, | 
|  | &log->root_key, &log->root_item); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void wait_log_commit(struct btrfs_root *root, int transid) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | int index = transid % 2; | 
|  |  | 
|  | /* | 
|  | * we only allow two pending log transactions at a time, | 
|  | * so we know that if ours is more than 2 older than the | 
|  | * current transaction, we're done | 
|  | */ | 
|  | for (;;) { | 
|  | prepare_to_wait(&root->log_commit_wait[index], | 
|  | &wait, TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | if (!(root->log_transid_committed < transid && | 
|  | atomic_read(&root->log_commit[index]))) | 
|  | break; | 
|  |  | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule(); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | finish_wait(&root->log_commit_wait[index], &wait); | 
|  | } | 
|  |  | 
|  | static void wait_for_writer(struct btrfs_root *root) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | for (;;) { | 
|  | prepare_to_wait(&root->log_writer_wait, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | if (!atomic_read(&root->log_writers)) | 
|  | break; | 
|  |  | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule(); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | finish_wait(&root->log_writer_wait, &wait); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_remove_log_ctx(struct btrfs_root *root, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | if (!ctx) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | list_del_init(&ctx->list); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoked in log mutex context, or be sure there is no other task which | 
|  | * can access the list. | 
|  | */ | 
|  | static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, | 
|  | int index, int error) | 
|  | { | 
|  | struct btrfs_log_ctx *ctx; | 
|  | struct btrfs_log_ctx *safe; | 
|  |  | 
|  | list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { | 
|  | list_del_init(&ctx->list); | 
|  | ctx->log_ret = error; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&root->log_ctxs[index]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_sync_log does sends a given tree log down to the disk and | 
|  | * updates the super blocks to record it.  When this call is done, | 
|  | * you know that any inodes previously logged are safely on disk only | 
|  | * if it returns 0. | 
|  | * | 
|  | * Any other return value means you need to call btrfs_commit_transaction. | 
|  | * Some of the edge cases for fsyncing directories that have had unlinks | 
|  | * or renames done in the past mean that sometimes the only safe | 
|  | * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN, | 
|  | * that has happened. | 
|  | */ | 
|  | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | int index1; | 
|  | int index2; | 
|  | int mark; | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct btrfs_root *log_root_tree = fs_info->log_root_tree; | 
|  | int log_transid = 0; | 
|  | struct btrfs_log_ctx root_log_ctx; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | log_transid = ctx->log_transid; | 
|  | if (root->log_transid_committed >= log_transid) { | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ctx->log_ret; | 
|  | } | 
|  |  | 
|  | index1 = log_transid % 2; | 
|  | if (atomic_read(&root->log_commit[index1])) { | 
|  | wait_log_commit(root, log_transid); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ctx->log_ret; | 
|  | } | 
|  | ASSERT(log_transid == root->log_transid); | 
|  | atomic_set(&root->log_commit[index1], 1); | 
|  |  | 
|  | /* wait for previous tree log sync to complete */ | 
|  | if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | 
|  | wait_log_commit(root, log_transid - 1); | 
|  |  | 
|  | while (1) { | 
|  | int batch = atomic_read(&root->log_batch); | 
|  | /* when we're on an ssd, just kick the log commit out */ | 
|  | if (!btrfs_test_opt(fs_info, SSD) && | 
|  | test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | wait_for_writer(root); | 
|  | if (batch == atomic_read(&root->log_batch)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* bail out if we need to do a full commit */ | 
|  | if (btrfs_need_log_full_commit(fs_info, trans)) { | 
|  | ret = -EAGAIN; | 
|  | mutex_unlock(&root->log_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (log_transid % 2 == 0) | 
|  | mark = EXTENT_DIRTY; | 
|  | else | 
|  | mark = EXTENT_NEW; | 
|  |  | 
|  | /* we start IO on  all the marked extents here, but we don't actually | 
|  | * wait for them until later. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); | 
|  | if (ret) { | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_set_root_node(&log->root_item, log->node); | 
|  |  | 
|  | root->log_transid++; | 
|  | log->log_transid = root->log_transid; | 
|  | root->log_start_pid = 0; | 
|  | /* | 
|  | * IO has been started, blocks of the log tree have WRITTEN flag set | 
|  | * in their headers. new modifications of the log will be written to | 
|  | * new positions. so it's safe to allow log writers to go in. | 
|  | */ | 
|  | mutex_unlock(&root->log_mutex); | 
|  |  | 
|  | btrfs_init_log_ctx(&root_log_ctx, NULL); | 
|  |  | 
|  | mutex_lock(&log_root_tree->log_mutex); | 
|  | atomic_inc(&log_root_tree->log_batch); | 
|  | atomic_inc(&log_root_tree->log_writers); | 
|  |  | 
|  | index2 = log_root_tree->log_transid % 2; | 
|  | list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); | 
|  | root_log_ctx.log_transid = log_root_tree->log_transid; | 
|  |  | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  |  | 
|  | ret = update_log_root(trans, log); | 
|  |  | 
|  | mutex_lock(&log_root_tree->log_mutex); | 
|  | if (atomic_dec_and_test(&log_root_tree->log_writers)) { | 
|  | /* atomic_dec_and_test implies a barrier */ | 
|  | cond_wake_up_nomb(&log_root_tree->log_writer_wait); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | if (!list_empty(&root_log_ctx.list)) | 
|  | list_del_init(&root_log_ctx.list); | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  |  | 
|  | if (ret != -ENOSPC) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out; | 
|  | } | 
|  | btrfs_wait_tree_log_extents(log, mark); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { | 
|  | blk_finish_plug(&plug); | 
|  | list_del_init(&root_log_ctx.list); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | ret = root_log_ctx.log_ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | index2 = root_log_ctx.log_transid % 2; | 
|  | if (atomic_read(&log_root_tree->log_commit[index2])) { | 
|  | blk_finish_plug(&plug); | 
|  | ret = btrfs_wait_tree_log_extents(log, mark); | 
|  | wait_log_commit(log_root_tree, | 
|  | root_log_ctx.log_transid); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | if (!ret) | 
|  | ret = root_log_ctx.log_ret; | 
|  | goto out; | 
|  | } | 
|  | ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); | 
|  | atomic_set(&log_root_tree->log_commit[index2], 1); | 
|  |  | 
|  | if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { | 
|  | wait_log_commit(log_root_tree, | 
|  | root_log_ctx.log_transid - 1); | 
|  | } | 
|  |  | 
|  | wait_for_writer(log_root_tree); | 
|  |  | 
|  | /* | 
|  | * now that we've moved on to the tree of log tree roots, | 
|  | * check the full commit flag again | 
|  | */ | 
|  | if (btrfs_need_log_full_commit(fs_info, trans)) { | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_wait_tree_log_extents(log, mark); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | ret = -EAGAIN; | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | ret = btrfs_write_marked_extents(fs_info, | 
|  | &log_root_tree->dirty_log_pages, | 
|  | EXTENT_DIRTY | EXTENT_NEW); | 
|  | blk_finish_plug(&plug); | 
|  | if (ret) { | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  | ret = btrfs_wait_tree_log_extents(log, mark); | 
|  | if (!ret) | 
|  | ret = btrfs_wait_tree_log_extents(log_root_tree, | 
|  | EXTENT_NEW | EXTENT_DIRTY); | 
|  | if (ret) { | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | btrfs_set_super_log_root(fs_info->super_for_commit, | 
|  | log_root_tree->node->start); | 
|  | btrfs_set_super_log_root_level(fs_info->super_for_commit, | 
|  | btrfs_header_level(log_root_tree->node)); | 
|  |  | 
|  | log_root_tree->log_transid++; | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  |  | 
|  | /* | 
|  | * nobody else is going to jump in and write the the ctree | 
|  | * super here because the log_commit atomic below is protecting | 
|  | * us.  We must be called with a transaction handle pinning | 
|  | * the running transaction open, so a full commit can't hop | 
|  | * in and cause problems either. | 
|  | */ | 
|  | ret = write_all_supers(fs_info, 1); | 
|  | if (ret) { | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | if (root->last_log_commit < log_transid) | 
|  | root->last_log_commit = log_transid; | 
|  | mutex_unlock(&root->log_mutex); | 
|  |  | 
|  | out_wake_log_root: | 
|  | mutex_lock(&log_root_tree->log_mutex); | 
|  | btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); | 
|  |  | 
|  | log_root_tree->log_transid_committed++; | 
|  | atomic_set(&log_root_tree->log_commit[index2], 0); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  |  | 
|  | /* | 
|  | * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
|  | * all the updates above are seen by the woken threads. It might not be | 
|  | * necessary, but proving that seems to be hard. | 
|  | */ | 
|  | cond_wake_up(&log_root_tree->log_commit_wait[index2]); | 
|  | out: | 
|  | mutex_lock(&root->log_mutex); | 
|  | btrfs_remove_all_log_ctxs(root, index1, ret); | 
|  | root->log_transid_committed++; | 
|  | atomic_set(&root->log_commit[index1], 0); | 
|  | mutex_unlock(&root->log_mutex); | 
|  |  | 
|  | /* | 
|  | * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
|  | * all the updates above are seen by the woken threads. It might not be | 
|  | * necessary, but proving that seems to be hard. | 
|  | */ | 
|  | cond_wake_up(&root->log_commit_wait[index1]); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void free_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log) | 
|  | { | 
|  | int ret; | 
|  | u64 start; | 
|  | u64 end; | 
|  | struct walk_control wc = { | 
|  | .free = 1, | 
|  | .process_func = process_one_buffer | 
|  | }; | 
|  |  | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  | if (ret) { | 
|  | if (trans) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | btrfs_handle_fs_error(log->fs_info, ret, NULL); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(&log->dirty_log_pages, | 
|  | 0, &start, &end, | 
|  | EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT, | 
|  | NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | clear_extent_bits(&log->dirty_log_pages, start, end, | 
|  | EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); | 
|  | } | 
|  |  | 
|  | free_extent_buffer(log->node); | 
|  | kfree(log); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free all the extents used by the tree log.  This should be called | 
|  | * at commit time of the full transaction | 
|  | */ | 
|  | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
|  | { | 
|  | if (root->log_root) { | 
|  | free_log_tree(trans, root->log_root); | 
|  | root->log_root = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (fs_info->log_root_tree) { | 
|  | free_log_tree(trans, fs_info->log_root_tree); | 
|  | fs_info->log_root_tree = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If both a file and directory are logged, and unlinks or renames are | 
|  | * mixed in, we have a few interesting corners: | 
|  | * | 
|  | * create file X in dir Y | 
|  | * link file X to X.link in dir Y | 
|  | * fsync file X | 
|  | * unlink file X but leave X.link | 
|  | * fsync dir Y | 
|  | * | 
|  | * After a crash we would expect only X.link to exist.  But file X | 
|  | * didn't get fsync'd again so the log has back refs for X and X.link. | 
|  | * | 
|  | * We solve this by removing directory entries and inode backrefs from the | 
|  | * log when a file that was logged in the current transaction is | 
|  | * unlinked.  Any later fsync will include the updated log entries, and | 
|  | * we'll be able to reconstruct the proper directory items from backrefs. | 
|  | * | 
|  | * This optimizations allows us to avoid relogging the entire inode | 
|  | * or the entire directory. | 
|  | */ | 
|  | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const char *name, int name_len, | 
|  | struct btrfs_inode *dir, u64 index) | 
|  | { | 
|  | struct btrfs_root *log; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int err = 0; | 
|  | int bytes_del = 0; | 
|  | u64 dir_ino = btrfs_ino(dir); | 
|  |  | 
|  | if (dir->logged_trans < trans->transid) | 
|  | return 0; | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&dir->log_mutex); | 
|  |  | 
|  | log = root->log_root; | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | di = btrfs_lookup_dir_item(trans, log, path, dir_ino, | 
|  | name, name_len, -1); | 
|  | if (IS_ERR(di)) { | 
|  | err = PTR_ERR(di); | 
|  | goto fail; | 
|  | } | 
|  | if (di) { | 
|  | ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
|  | bytes_del += name_len; | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, | 
|  | index, name, name_len, -1); | 
|  | if (IS_ERR(di)) { | 
|  | err = PTR_ERR(di); | 
|  | goto fail; | 
|  | } | 
|  | if (di) { | 
|  | ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
|  | bytes_del += name_len; | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update the directory size in the log to reflect the names | 
|  | * we have removed | 
|  | */ | 
|  | if (bytes_del) { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | key.objectid = dir_ino; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  | if (ret == 0) { | 
|  | struct btrfs_inode_item *item; | 
|  | u64 i_size; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | i_size = btrfs_inode_size(path->nodes[0], item); | 
|  | if (i_size > bytes_del) | 
|  | i_size -= bytes_del; | 
|  | else | 
|  | i_size = 0; | 
|  | btrfs_set_inode_size(path->nodes[0], item, i_size); | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | } else | 
|  | ret = 0; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | fail: | 
|  | btrfs_free_path(path); | 
|  | out_unlock: | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | if (ret == -ENOSPC) { | 
|  | btrfs_set_log_full_commit(root->fs_info, trans); | 
|  | ret = 0; | 
|  | } else if (ret < 0) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  |  | 
|  | btrfs_end_log_trans(root); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* see comments for btrfs_del_dir_entries_in_log */ | 
|  | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const char *name, int name_len, | 
|  | struct btrfs_inode *inode, u64 dirid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *log; | 
|  | u64 index; | 
|  | int ret; | 
|  |  | 
|  | if (inode->logged_trans < trans->transid) | 
|  | return 0; | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return 0; | 
|  | log = root->log_root; | 
|  | mutex_lock(&inode->log_mutex); | 
|  |  | 
|  | ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), | 
|  | dirid, &index); | 
|  | mutex_unlock(&inode->log_mutex); | 
|  | if (ret == -ENOSPC) { | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | ret = 0; | 
|  | } else if (ret < 0 && ret != -ENOENT) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_log_trans(root); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * creates a range item in the log for 'dirid'.  first_offset and | 
|  | * last_offset tell us which parts of the key space the log should | 
|  | * be considered authoritative for. | 
|  | */ | 
|  | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | int key_type, u64 dirid, | 
|  | u64 first_offset, u64 last_offset) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dir_log_item *item; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.offset = first_offset; | 
|  | if (key_type == BTRFS_DIR_ITEM_KEY) | 
|  | key.type = BTRFS_DIR_LOG_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * log all the items included in the current transaction for a given | 
|  | * directory.  This also creates the range items in the log tree required | 
|  | * to replay anything deleted before the fsync | 
|  | */ | 
|  | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, int key_type, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | u64 min_offset, u64 *last_offset_ret) | 
|  | { | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct extent_buffer *src; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int i; | 
|  | int nritems; | 
|  | u64 first_offset = min_offset; | 
|  | u64 last_offset = (u64)-1; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | log = root->log_root; | 
|  |  | 
|  | min_key.objectid = ino; | 
|  | min_key.type = key_type; | 
|  | min_key.offset = min_offset; | 
|  |  | 
|  | ret = btrfs_search_forward(root, &min_key, path, trans->transid); | 
|  |  | 
|  | /* | 
|  | * we didn't find anything from this transaction, see if there | 
|  | * is anything at all | 
|  | */ | 
|  | if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { | 
|  | min_key.objectid = ino; | 
|  | min_key.type = key_type; | 
|  | min_key.offset = (u64)-1; | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  | ret = btrfs_previous_item(root, path, ino, key_type); | 
|  |  | 
|  | /* if ret == 0 there are items for this type, | 
|  | * create a range to tell us the last key of this type. | 
|  | * otherwise, there are no items in this directory after | 
|  | * *min_offset, and we create a range to indicate that. | 
|  | */ | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
|  | path->slots[0]); | 
|  | if (key_type == tmp.type) | 
|  | first_offset = max(min_offset, tmp.offset) + 1; | 
|  | } | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* go backward to find any previous key */ | 
|  | ret = btrfs_previous_item(root, path, ino, key_type); | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
|  | if (key_type == tmp.type) { | 
|  | first_offset = tmp.offset; | 
|  | ret = overwrite_item(trans, log, dst_path, | 
|  | path->nodes[0], path->slots[0], | 
|  | &tmp); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* find the first key from this transaction again */ | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (WARN_ON(ret != 0)) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * we have a block from this transaction, log every item in it | 
|  | * from our directory | 
|  | */ | 
|  | while (1) { | 
|  | struct btrfs_key tmp; | 
|  | src = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(src); | 
|  | for (i = path->slots[0]; i < nritems; i++) { | 
|  | struct btrfs_dir_item *di; | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &min_key, i); | 
|  |  | 
|  | if (min_key.objectid != ino || min_key.type != key_type) | 
|  | goto done; | 
|  | ret = overwrite_item(trans, log, dst_path, src, i, | 
|  | &min_key); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must make sure that when we log a directory entry, | 
|  | * the corresponding inode, after log replay, has a | 
|  | * matching link count. For example: | 
|  | * | 
|  | * touch foo | 
|  | * mkdir mydir | 
|  | * sync | 
|  | * ln foo mydir/bar | 
|  | * xfs_io -c "fsync" mydir | 
|  | * <crash> | 
|  | * <mount fs and log replay> | 
|  | * | 
|  | * Would result in a fsync log that when replayed, our | 
|  | * file inode would have a link count of 1, but we get | 
|  | * two directory entries pointing to the same inode. | 
|  | * After removing one of the names, it would not be | 
|  | * possible to remove the other name, which resulted | 
|  | * always in stale file handle errors, and would not | 
|  | * be possible to rmdir the parent directory, since | 
|  | * its i_size could never decrement to the value | 
|  | * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. | 
|  | */ | 
|  | di = btrfs_item_ptr(src, i, struct btrfs_dir_item); | 
|  | btrfs_dir_item_key_to_cpu(src, di, &tmp); | 
|  | if (ctx && | 
|  | (btrfs_dir_transid(src, di) == trans->transid || | 
|  | btrfs_dir_type(src, di) == BTRFS_FT_DIR) && | 
|  | tmp.type != BTRFS_ROOT_ITEM_KEY) | 
|  | ctx->log_new_dentries = true; | 
|  | } | 
|  | path->slots[0] = nritems; | 
|  |  | 
|  | /* | 
|  | * look ahead to the next item and see if it is also | 
|  | * from this directory and from this transaction | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) { | 
|  | if (ret == 1) | 
|  | last_offset = (u64)-1; | 
|  | else | 
|  | err = ret; | 
|  | goto done; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
|  | if (tmp.objectid != ino || tmp.type != key_type) { | 
|  | last_offset = (u64)-1; | 
|  | goto done; | 
|  | } | 
|  | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
|  | ret = overwrite_item(trans, log, dst_path, | 
|  | path->nodes[0], path->slots[0], | 
|  | &tmp); | 
|  | if (ret) | 
|  | err = ret; | 
|  | else | 
|  | last_offset = tmp.offset; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | done: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  |  | 
|  | if (err == 0) { | 
|  | *last_offset_ret = last_offset; | 
|  | /* | 
|  | * insert the log range keys to indicate where the log | 
|  | * is valid | 
|  | */ | 
|  | ret = insert_dir_log_key(trans, log, path, key_type, | 
|  | ino, first_offset, last_offset); | 
|  | if (ret) | 
|  | err = ret; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * logging directories is very similar to logging inodes, We find all the items | 
|  | * from the current transaction and write them to the log. | 
|  | * | 
|  | * The recovery code scans the directory in the subvolume, and if it finds a | 
|  | * key in the range logged that is not present in the log tree, then it means | 
|  | * that dir entry was unlinked during the transaction. | 
|  | * | 
|  | * In order for that scan to work, we must include one key smaller than | 
|  | * the smallest logged by this transaction and one key larger than the largest | 
|  | * key logged by this transaction. | 
|  | */ | 
|  | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | u64 min_key; | 
|  | u64 max_key; | 
|  | int ret; | 
|  | int key_type = BTRFS_DIR_ITEM_KEY; | 
|  |  | 
|  | again: | 
|  | min_key = 0; | 
|  | max_key = 0; | 
|  | while (1) { | 
|  | ret = log_dir_items(trans, root, inode, path, dst_path, key_type, | 
|  | ctx, min_key, &max_key); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (max_key == (u64)-1) | 
|  | break; | 
|  | min_key = max_key + 1; | 
|  | } | 
|  |  | 
|  | if (key_type == BTRFS_DIR_ITEM_KEY) { | 
|  | key_type = BTRFS_DIR_INDEX_KEY; | 
|  | goto again; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper function to drop items from the log before we relog an | 
|  | * inode.  max_key_type indicates the highest item type to remove. | 
|  | * This cannot be run for file data extents because it does not | 
|  | * free the extents they point to. | 
|  | */ | 
|  | static int drop_objectid_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, int max_key_type) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int start_slot; | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = max_key_type; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
|  | BUG_ON(ret == 0); /* Logic error */ | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  |  | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  |  | 
|  | if (found_key.objectid != objectid) | 
|  | break; | 
|  |  | 
|  | found_key.offset = 0; | 
|  | found_key.type = 0; | 
|  | ret = btrfs_bin_search(path->nodes[0], &found_key, 0, | 
|  | &start_slot); | 
|  |  | 
|  | ret = btrfs_del_items(trans, log, path, start_slot, | 
|  | path->slots[0] - start_slot + 1); | 
|  | /* | 
|  | * If start slot isn't 0 then we don't need to re-search, we've | 
|  | * found the last guy with the objectid in this tree. | 
|  | */ | 
|  | if (ret || start_slot != 0) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_inode_item *item, | 
|  | struct inode *inode, int log_inode_only, | 
|  | u64 logged_isize) | 
|  | { | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | if (log_inode_only) { | 
|  | /* set the generation to zero so the recover code | 
|  | * can tell the difference between an logging | 
|  | * just to say 'this inode exists' and a logging | 
|  | * to say 'update this inode with these values' | 
|  | */ | 
|  | btrfs_set_token_inode_generation(leaf, item, 0, &token); | 
|  | btrfs_set_token_inode_size(leaf, item, logged_isize, &token); | 
|  | } else { | 
|  | btrfs_set_token_inode_generation(leaf, item, | 
|  | BTRFS_I(inode)->generation, | 
|  | &token); | 
|  | btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); | 
|  | } | 
|  |  | 
|  | btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); | 
|  | btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); | 
|  | btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); | 
|  | btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(leaf, &item->atime, | 
|  | inode->i_atime.tv_sec, &token); | 
|  | btrfs_set_token_timespec_nsec(leaf, &item->atime, | 
|  | inode->i_atime.tv_nsec, &token); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(leaf, &item->mtime, | 
|  | inode->i_mtime.tv_sec, &token); | 
|  | btrfs_set_token_timespec_nsec(leaf, &item->mtime, | 
|  | inode->i_mtime.tv_nsec, &token); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(leaf, &item->ctime, | 
|  | inode->i_ctime.tv_sec, &token); | 
|  | btrfs_set_token_timespec_nsec(leaf, &item->ctime, | 
|  | inode->i_ctime.tv_nsec, &token); | 
|  |  | 
|  | btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), | 
|  | &token); | 
|  |  | 
|  | btrfs_set_token_inode_sequence(leaf, item, | 
|  | inode_peek_iversion(inode), &token); | 
|  | btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); | 
|  | btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); | 
|  | btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); | 
|  | btrfs_set_token_inode_block_group(leaf, item, 0, &token); | 
|  | } | 
|  |  | 
|  | static int log_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, struct btrfs_path *path, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_inode_item *inode_item; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, log, path, | 
|  | &inode->location, sizeof(*inode_item)); | 
|  | if (ret && ret != -EEXIST) | 
|  | return ret; | 
|  | inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, | 
|  | 0, 0); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_path *src_path, u64 *last_extent, | 
|  | int start_slot, int nr, int inode_only, | 
|  | u64 logged_isize) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | unsigned long src_offset; | 
|  | unsigned long dst_offset; | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | struct btrfs_file_extent_item *extent; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct extent_buffer *src = src_path->nodes[0]; | 
|  | struct btrfs_key first_key, last_key, key; | 
|  | int ret; | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  | char *ins_data; | 
|  | int i; | 
|  | struct list_head ordered_sums; | 
|  | int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; | 
|  | bool has_extents = false; | 
|  | bool need_find_last_extent = true; | 
|  | bool done = false; | 
|  |  | 
|  | INIT_LIST_HEAD(&ordered_sums); | 
|  |  | 
|  | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
|  | nr * sizeof(u32), GFP_NOFS); | 
|  | if (!ins_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | first_key.objectid = (u64)-1; | 
|  |  | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | 
|  | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | 
|  | } | 
|  | ret = btrfs_insert_empty_items(trans, log, dst_path, | 
|  | ins_keys, ins_sizes, nr); | 
|  | if (ret) { | 
|  | kfree(ins_data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr; i++, dst_path->slots[0]++) { | 
|  | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | 
|  | dst_path->slots[0]); | 
|  |  | 
|  | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | 
|  |  | 
|  | if (i == nr - 1) | 
|  | last_key = ins_keys[i]; | 
|  |  | 
|  | if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | 
|  | inode_item = btrfs_item_ptr(dst_path->nodes[0], | 
|  | dst_path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | fill_inode_item(trans, dst_path->nodes[0], inode_item, | 
|  | &inode->vfs_inode, | 
|  | inode_only == LOG_INODE_EXISTS, | 
|  | logged_isize); | 
|  | } else { | 
|  | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
|  | src_offset, ins_sizes[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We set need_find_last_extent here in case we know we were | 
|  | * processing other items and then walk into the first extent in | 
|  | * the inode.  If we don't hit an extent then nothing changes, | 
|  | * we'll do the last search the next time around. | 
|  | */ | 
|  | if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { | 
|  | has_extents = true; | 
|  | if (first_key.objectid == (u64)-1) | 
|  | first_key = ins_keys[i]; | 
|  | } else { | 
|  | need_find_last_extent = false; | 
|  | } | 
|  |  | 
|  | /* take a reference on file data extents so that truncates | 
|  | * or deletes of this inode don't have to relog the inode | 
|  | * again | 
|  | */ | 
|  | if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && | 
|  | !skip_csum) { | 
|  | int found_type; | 
|  | extent = btrfs_item_ptr(src, start_slot + i, | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_generation(src, extent) < trans->transid) | 
|  | continue; | 
|  |  | 
|  | found_type = btrfs_file_extent_type(src, extent); | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG) { | 
|  | u64 ds, dl, cs, cl; | 
|  | ds = btrfs_file_extent_disk_bytenr(src, | 
|  | extent); | 
|  | /* ds == 0 is a hole */ | 
|  | if (ds == 0) | 
|  | continue; | 
|  |  | 
|  | dl = btrfs_file_extent_disk_num_bytes(src, | 
|  | extent); | 
|  | cs = btrfs_file_extent_offset(src, extent); | 
|  | cl = btrfs_file_extent_num_bytes(src, | 
|  | extent); | 
|  | if (btrfs_file_extent_compression(src, | 
|  | extent)) { | 
|  | cs = 0; | 
|  | cl = dl; | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_range( | 
|  | fs_info->csum_root, | 
|  | ds + cs, ds + cs + cl - 1, | 
|  | &ordered_sums, 0); | 
|  | if (ret) { | 
|  | btrfs_release_path(dst_path); | 
|  | kfree(ins_data); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | 
|  | btrfs_release_path(dst_path); | 
|  | kfree(ins_data); | 
|  |  | 
|  | /* | 
|  | * we have to do this after the loop above to avoid changing the | 
|  | * log tree while trying to change the log tree. | 
|  | */ | 
|  | ret = 0; | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | if (!ret) | 
|  | ret = btrfs_csum_file_blocks(trans, log, sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  |  | 
|  | if (!has_extents) | 
|  | return ret; | 
|  |  | 
|  | if (need_find_last_extent && *last_extent == first_key.offset) { | 
|  | /* | 
|  | * We don't have any leafs between our current one and the one | 
|  | * we processed before that can have file extent items for our | 
|  | * inode (and have a generation number smaller than our current | 
|  | * transaction id). | 
|  | */ | 
|  | need_find_last_extent = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because we use btrfs_search_forward we could skip leaves that were | 
|  | * not modified and then assume *last_extent is valid when it really | 
|  | * isn't.  So back up to the previous leaf and read the end of the last | 
|  | * extent before we go and fill in holes. | 
|  | */ | 
|  | if (need_find_last_extent) { | 
|  | u64 len; | 
|  |  | 
|  | ret = btrfs_prev_leaf(inode->root, src_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) | 
|  | goto fill_holes; | 
|  | if (src_path->slots[0]) | 
|  | src_path->slots[0]--; | 
|  | src = src_path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); | 
|  | if (key.objectid != btrfs_ino(inode) || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | goto fill_holes; | 
|  | extent = btrfs_item_ptr(src, src_path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(src, extent) == | 
|  | BTRFS_FILE_EXTENT_INLINE) { | 
|  | len = btrfs_file_extent_ram_bytes(src, extent); | 
|  | *last_extent = ALIGN(key.offset + len, | 
|  | fs_info->sectorsize); | 
|  | } else { | 
|  | len = btrfs_file_extent_num_bytes(src, extent); | 
|  | *last_extent = key.offset + len; | 
|  | } | 
|  | } | 
|  | fill_holes: | 
|  | /* So we did prev_leaf, now we need to move to the next leaf, but a few | 
|  | * things could have happened | 
|  | * | 
|  | * 1) A merge could have happened, so we could currently be on a leaf | 
|  | * that holds what we were copying in the first place. | 
|  | * 2) A split could have happened, and now not all of the items we want | 
|  | * are on the same leaf. | 
|  | * | 
|  | * So we need to adjust how we search for holes, we need to drop the | 
|  | * path and re-search for the first extent key we found, and then walk | 
|  | * forward until we hit the last one we copied. | 
|  | */ | 
|  | if (need_find_last_extent) { | 
|  | /* btrfs_prev_leaf could return 1 without releasing the path */ | 
|  | btrfs_release_path(src_path); | 
|  | ret = btrfs_search_slot(NULL, inode->root, &first_key, | 
|  | src_path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ASSERT(ret == 0); | 
|  | src = src_path->nodes[0]; | 
|  | i = src_path->slots[0]; | 
|  | } else { | 
|  | i = start_slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok so here we need to go through and fill in any holes we may have | 
|  | * to make sure that holes are punched for those areas in case they had | 
|  | * extents previously. | 
|  | */ | 
|  | while (!done) { | 
|  | u64 offset, len; | 
|  | u64 extent_end; | 
|  |  | 
|  | if (i >= btrfs_header_nritems(src_path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(inode->root, src_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ASSERT(ret == 0); | 
|  | src = src_path->nodes[0]; | 
|  | i = 0; | 
|  | need_find_last_extent = true; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &key, i); | 
|  | if (!btrfs_comp_cpu_keys(&key, &last_key)) | 
|  | done = true; | 
|  | if (key.objectid != btrfs_ino(inode) || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  | extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(src, extent) == | 
|  | BTRFS_FILE_EXTENT_INLINE) { | 
|  | len = btrfs_file_extent_ram_bytes(src, extent); | 
|  | extent_end = ALIGN(key.offset + len, | 
|  | fs_info->sectorsize); | 
|  | } else { | 
|  | len = btrfs_file_extent_num_bytes(src, extent); | 
|  | extent_end = key.offset + len; | 
|  | } | 
|  | i++; | 
|  |  | 
|  | if (*last_extent == key.offset) { | 
|  | *last_extent = extent_end; | 
|  | continue; | 
|  | } | 
|  | offset = *last_extent; | 
|  | len = key.offset - *last_extent; | 
|  | ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), | 
|  | offset, 0, 0, len, 0, len, 0, 0, 0); | 
|  | if (ret) | 
|  | break; | 
|  | *last_extent = extent_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there is a hole between the last extent found in our leaf | 
|  | * and the first extent in the next leaf. If there is one, we need to | 
|  | * log an explicit hole so that at replay time we can punch the hole. | 
|  | */ | 
|  | if (ret == 0 && | 
|  | key.objectid == btrfs_ino(inode) && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY && | 
|  | i == btrfs_header_nritems(src_path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(inode->root, src_path); | 
|  | need_find_last_extent = true; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | } else if (ret == 0) { | 
|  | btrfs_item_key_to_cpu(src_path->nodes[0], &key, | 
|  | src_path->slots[0]); | 
|  | if (key.objectid == btrfs_ino(inode) && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY && | 
|  | *last_extent < key.offset) { | 
|  | const u64 len = key.offset - *last_extent; | 
|  |  | 
|  | ret = btrfs_insert_file_extent(trans, log, | 
|  | btrfs_ino(inode), | 
|  | *last_extent, 0, | 
|  | 0, len, 0, len, | 
|  | 0, 0, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Need to let the callers know we dropped the path so they should | 
|  | * re-search. | 
|  | */ | 
|  | if (!ret && need_find_last_extent) | 
|  | ret = 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | struct extent_map *em1, *em2; | 
|  |  | 
|  | em1 = list_entry(a, struct extent_map, list); | 
|  | em2 = list_entry(b, struct extent_map, list); | 
|  |  | 
|  | if (em1->start < em2->start) | 
|  | return -1; | 
|  | else if (em1->start > em2->start) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_extent_csums(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_root *log_root, | 
|  | const struct extent_map *em) | 
|  | { | 
|  | u64 csum_offset; | 
|  | u64 csum_len; | 
|  | LIST_HEAD(ordered_sums); | 
|  | int ret = 0; | 
|  |  | 
|  | if (inode->flags & BTRFS_INODE_NODATASUM || | 
|  | test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || | 
|  | em->block_start == EXTENT_MAP_HOLE) | 
|  | return 0; | 
|  |  | 
|  | /* If we're compressed we have to save the entire range of csums. */ | 
|  | if (em->compress_type) { | 
|  | csum_offset = 0; | 
|  | csum_len = max(em->block_len, em->orig_block_len); | 
|  | } else { | 
|  | csum_offset = em->mod_start - em->start; | 
|  | csum_len = em->mod_len; | 
|  | } | 
|  |  | 
|  | /* block start is already adjusted for the file extent offset. */ | 
|  | ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, | 
|  | em->block_start + csum_offset, | 
|  | em->block_start + csum_offset + | 
|  | csum_len - 1, &ordered_sums, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | if (!ret) | 
|  | ret = btrfs_csum_file_blocks(trans, log_root, sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int log_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, struct btrfs_root *root, | 
|  | const struct extent_map *em, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_map_token token; | 
|  | struct btrfs_key key; | 
|  | u64 extent_offset = em->start - em->orig_start; | 
|  | u64 block_len; | 
|  | int ret; | 
|  | int extent_inserted = 0; | 
|  |  | 
|  | ret = log_extent_csums(trans, inode, log, em); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, | 
|  | em->start + em->len, NULL, 0, 1, | 
|  | sizeof(*fi), &extent_inserted); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!extent_inserted) { | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = em->start; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &key, | 
|  | sizeof(*fi)); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, | 
|  | &token); | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | btrfs_set_token_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_PREALLOC, | 
|  | &token); | 
|  | else | 
|  | btrfs_set_token_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG, | 
|  | &token); | 
|  |  | 
|  | block_len = max(em->block_len, em->orig_block_len); | 
|  | if (em->compress_type != BTRFS_COMPRESS_NONE) { | 
|  | btrfs_set_token_file_extent_disk_bytenr(leaf, fi, | 
|  | em->block_start, | 
|  | &token); | 
|  | btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, | 
|  | &token); | 
|  | } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { | 
|  | btrfs_set_token_file_extent_disk_bytenr(leaf, fi, | 
|  | em->block_start - | 
|  | extent_offset, &token); | 
|  | btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, | 
|  | &token); | 
|  | } else { | 
|  | btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); | 
|  | btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, | 
|  | &token); | 
|  | } | 
|  |  | 
|  | btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); | 
|  | btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); | 
|  | btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); | 
|  | btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, | 
|  | &token); | 
|  | btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); | 
|  | btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log all prealloc extents beyond the inode's i_size to make sure we do not | 
|  | * lose them after doing a fast fsync and replaying the log. We scan the | 
|  | * subvolume's root instead of iterating the inode's extent map tree because | 
|  | * otherwise we can log incorrect extent items based on extent map conversion. | 
|  | * That can happen due to the fact that extent maps are merged when they | 
|  | * are not in the extent map tree's list of modified extents. | 
|  | */ | 
|  | static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_key key; | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_path *dst_path = NULL; | 
|  | u64 last_extent = (u64)-1; | 
|  | int ins_nr = 0; | 
|  | int start_slot; | 
|  | int ret; | 
|  |  | 
|  | if (!(inode->flags & BTRFS_INODE_PREALLOC)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = i_size; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | if (ins_nr > 0) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, start_slot, | 
|  | ins_nr, 1, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ins_nr = 0; | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid > ino) | 
|  | break; | 
|  | if (WARN_ON_ONCE(key.objectid < ino) || | 
|  | key.type < BTRFS_EXTENT_DATA_KEY || | 
|  | key.offset < i_size) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  | if (last_extent == (u64)-1) { | 
|  | last_extent = key.offset; | 
|  | /* | 
|  | * Avoid logging extent items logged in past fsync calls | 
|  | * and leading to duplicate keys in the log tree. | 
|  | */ | 
|  | do { | 
|  | ret = btrfs_truncate_inode_items(trans, | 
|  | root->log_root, | 
|  | &inode->vfs_inode, | 
|  | i_size, | 
|  | BTRFS_EXTENT_DATA_KEY); | 
|  | } while (ret == -EAGAIN); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | if (ins_nr == 0) | 
|  | start_slot = slot; | 
|  | ins_nr++; | 
|  | path->slots[0]++; | 
|  | if (!dst_path) { | 
|  | dst_path = btrfs_alloc_path(); | 
|  | if (!dst_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ins_nr > 0) { | 
|  | ret = copy_items(trans, inode, dst_path, path, &last_extent, | 
|  | start_slot, ins_nr, 1, 0); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | const u64 start, | 
|  | const u64 end) | 
|  | { | 
|  | struct extent_map *em, *n; | 
|  | struct list_head extents; | 
|  | struct extent_map_tree *tree = &inode->extent_tree; | 
|  | u64 logged_start, logged_end; | 
|  | u64 test_gen; | 
|  | int ret = 0; | 
|  | int num = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&extents); | 
|  |  | 
|  | down_write(&inode->dio_sem); | 
|  | write_lock(&tree->lock); | 
|  | test_gen = root->fs_info->last_trans_committed; | 
|  | logged_start = start; | 
|  | logged_end = end; | 
|  |  | 
|  | list_for_each_entry_safe(em, n, &tree->modified_extents, list) { | 
|  | list_del_init(&em->list); | 
|  | /* | 
|  | * Just an arbitrary number, this can be really CPU intensive | 
|  | * once we start getting a lot of extents, and really once we | 
|  | * have a bunch of extents we just want to commit since it will | 
|  | * be faster. | 
|  | */ | 
|  | if (++num > 32768) { | 
|  | list_del_init(&tree->modified_extents); | 
|  | ret = -EFBIG; | 
|  | goto process; | 
|  | } | 
|  |  | 
|  | if (em->generation <= test_gen) | 
|  | continue; | 
|  |  | 
|  | /* We log prealloc extents beyond eof later. */ | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && | 
|  | em->start >= i_size_read(&inode->vfs_inode)) | 
|  | continue; | 
|  |  | 
|  | if (em->start < logged_start) | 
|  | logged_start = em->start; | 
|  | if ((em->start + em->len - 1) > logged_end) | 
|  | logged_end = em->start + em->len - 1; | 
|  |  | 
|  | /* Need a ref to keep it from getting evicted from cache */ | 
|  | refcount_inc(&em->refs); | 
|  | set_bit(EXTENT_FLAG_LOGGING, &em->flags); | 
|  | list_add_tail(&em->list, &extents); | 
|  | num++; | 
|  | } | 
|  |  | 
|  | list_sort(NULL, &extents, extent_cmp); | 
|  | process: | 
|  | while (!list_empty(&extents)) { | 
|  | em = list_entry(extents.next, struct extent_map, list); | 
|  |  | 
|  | list_del_init(&em->list); | 
|  |  | 
|  | /* | 
|  | * If we had an error we just need to delete everybody from our | 
|  | * private list. | 
|  | */ | 
|  | if (ret) { | 
|  | clear_em_logging(tree, em); | 
|  | free_extent_map(em); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | write_unlock(&tree->lock); | 
|  |  | 
|  | ret = log_one_extent(trans, inode, root, em, path, ctx); | 
|  | write_lock(&tree->lock); | 
|  | clear_em_logging(tree, em); | 
|  | free_extent_map(em); | 
|  | } | 
|  | WARN_ON(!list_empty(&extents)); | 
|  | write_unlock(&tree->lock); | 
|  | up_write(&inode->dio_sem); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | if (!ret) | 
|  | ret = btrfs_log_prealloc_extents(trans, inode, path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, u64 *size_ret) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | *size_ret = 0; | 
|  | } else { | 
|  | struct btrfs_inode_item *item; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | *size_ret = btrfs_inode_size(path->nodes[0], item); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At the moment we always log all xattrs. This is to figure out at log replay | 
|  | * time which xattrs must have their deletion replayed. If a xattr is missing | 
|  | * in the log tree and exists in the fs/subvol tree, we delete it. This is | 
|  | * because if a xattr is deleted, the inode is fsynced and a power failure | 
|  | * happens, causing the log to be replayed the next time the fs is mounted, | 
|  | * we want the xattr to not exist anymore (same behaviour as other filesystems | 
|  | * with a journal, ext3/4, xfs, f2fs, etc). | 
|  | */ | 
|  | static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | int ins_nr = 0; | 
|  | int start_slot = 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | while (true) { | 
|  | int slot = path->slots[0]; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | if (slot >= nritems) { | 
|  | if (ins_nr > 0) { | 
|  | u64 last_extent = 0; | 
|  |  | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, start_slot, | 
|  | ins_nr, 1, 0); | 
|  | /* can't be 1, extent items aren't processed */ | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 0; | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | if (ins_nr == 0) | 
|  | start_slot = slot; | 
|  | ins_nr++; | 
|  | path->slots[0]++; | 
|  | cond_resched(); | 
|  | } | 
|  | if (ins_nr > 0) { | 
|  | u64 last_extent = 0; | 
|  |  | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, start_slot, | 
|  | ins_nr, 1, 0); | 
|  | /* can't be 1, extent items aren't processed */ | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the no holes feature is enabled we need to make sure any hole between the | 
|  | * last extent and the i_size of our inode is explicitly marked in the log. This | 
|  | * is to make sure that doing something like: | 
|  | * | 
|  | *      1) create file with 128Kb of data | 
|  | *      2) truncate file to 64Kb | 
|  | *      3) truncate file to 256Kb | 
|  | *      4) fsync file | 
|  | *      5) <crash/power failure> | 
|  | *      6) mount fs and trigger log replay | 
|  | * | 
|  | * Will give us a file with a size of 256Kb, the first 64Kb of data match what | 
|  | * the file had in its first 64Kb of data at step 1 and the last 192Kb of the | 
|  | * file correspond to a hole. The presence of explicit holes in a log tree is | 
|  | * what guarantees that log replay will remove/adjust file extent items in the | 
|  | * fs/subvol tree. | 
|  | * | 
|  | * Here we do not need to care about holes between extents, that is already done | 
|  | * by copy_items(). We also only need to do this in the full sync path, where we | 
|  | * lookup for extents from the fs/subvol tree only. In the fast path case, we | 
|  | * lookup the list of modified extent maps and if any represents a hole, we | 
|  | * insert a corresponding extent representing a hole in the log tree. | 
|  | */ | 
|  | static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | u64 hole_start; | 
|  | u64 hole_size; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, NO_HOLES)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | ASSERT(ret != 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ASSERT(path->slots[0] > 0); | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | /* inode does not have any extents */ | 
|  | hole_start = 0; | 
|  | hole_size = i_size; | 
|  | } else { | 
|  | struct btrfs_file_extent_item *extent; | 
|  | u64 len; | 
|  |  | 
|  | /* | 
|  | * If there's an extent beyond i_size, an explicit hole was | 
|  | * already inserted by copy_items(). | 
|  | */ | 
|  | if (key.offset >= i_size) | 
|  | return 0; | 
|  |  | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, extent) == | 
|  | BTRFS_FILE_EXTENT_INLINE) { | 
|  | len = btrfs_file_extent_ram_bytes(leaf, extent); | 
|  | ASSERT(len == i_size || | 
|  | (len == fs_info->sectorsize && | 
|  | btrfs_file_extent_compression(leaf, extent) != | 
|  | BTRFS_COMPRESS_NONE)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | len = btrfs_file_extent_num_bytes(leaf, extent); | 
|  | /* Last extent goes beyond i_size, no need to log a hole. */ | 
|  | if (key.offset + len > i_size) | 
|  | return 0; | 
|  | hole_start = key.offset + len; | 
|  | hole_size = i_size - hole_start; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* Last extent ends at i_size. */ | 
|  | if (hole_size == 0) | 
|  | return 0; | 
|  |  | 
|  | hole_size = ALIGN(hole_size, fs_info->sectorsize); | 
|  | ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, | 
|  | hole_size, 0, hole_size, 0, 0, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we are logging a new inode X, check if it doesn't have a reference that | 
|  | * matches the reference from some other inode Y created in a past transaction | 
|  | * and that was renamed in the current transaction. If we don't do this, then at | 
|  | * log replay time we can lose inode Y (and all its files if it's a directory): | 
|  | * | 
|  | * mkdir /mnt/x | 
|  | * echo "hello world" > /mnt/x/foobar | 
|  | * sync | 
|  | * mv /mnt/x /mnt/y | 
|  | * mkdir /mnt/x                 # or touch /mnt/x | 
|  | * xfs_io -c fsync /mnt/x | 
|  | * <power fail> | 
|  | * mount fs, trigger log replay | 
|  | * | 
|  | * After the log replay procedure, we would lose the first directory and all its | 
|  | * files (file foobar). | 
|  | * For the case where inode Y is not a directory we simply end up losing it: | 
|  | * | 
|  | * echo "123" > /mnt/foo | 
|  | * sync | 
|  | * mv /mnt/foo /mnt/bar | 
|  | * echo "abc" > /mnt/foo | 
|  | * xfs_io -c fsync /mnt/foo | 
|  | * <power fail> | 
|  | * | 
|  | * We also need this for cases where a snapshot entry is replaced by some other | 
|  | * entry (file or directory) otherwise we end up with an unreplayable log due to | 
|  | * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as | 
|  | * if it were a regular entry: | 
|  | * | 
|  | * mkdir /mnt/x | 
|  | * btrfs subvolume snapshot /mnt /mnt/x/snap | 
|  | * btrfs subvolume delete /mnt/x/snap | 
|  | * rmdir /mnt/x | 
|  | * mkdir /mnt/x | 
|  | * fsync /mnt/x or fsync some new file inside it | 
|  | * <power fail> | 
|  | * | 
|  | * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in | 
|  | * the same transaction. | 
|  | */ | 
|  | static int btrfs_check_ref_name_override(struct extent_buffer *eb, | 
|  | const int slot, | 
|  | const struct btrfs_key *key, | 
|  | struct btrfs_inode *inode, | 
|  | u64 *other_ino) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *search_path; | 
|  | char *name = NULL; | 
|  | u32 name_len = 0; | 
|  | u32 item_size = btrfs_item_size_nr(eb, slot); | 
|  | u32 cur_offset = 0; | 
|  | unsigned long ptr = btrfs_item_ptr_offset(eb, slot); | 
|  |  | 
|  | search_path = btrfs_alloc_path(); | 
|  | if (!search_path) | 
|  | return -ENOMEM; | 
|  | search_path->search_commit_root = 1; | 
|  | search_path->skip_locking = 1; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | u64 parent; | 
|  | u32 this_name_len; | 
|  | u32 this_len; | 
|  | unsigned long name_ptr; | 
|  | struct btrfs_dir_item *di; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_REF_KEY) { | 
|  | struct btrfs_inode_ref *iref; | 
|  |  | 
|  | iref = (struct btrfs_inode_ref *)(ptr + cur_offset); | 
|  | parent = key->offset; | 
|  | this_name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | name_ptr = (unsigned long)(iref + 1); | 
|  | this_len = sizeof(*iref) + this_name_len; | 
|  | } else { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)(ptr + | 
|  | cur_offset); | 
|  | parent = btrfs_inode_extref_parent(eb, extref); | 
|  | this_name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | name_ptr = (unsigned long)&extref->name; | 
|  | this_len = sizeof(*extref) + this_name_len; | 
|  | } | 
|  |  | 
|  | if (this_name_len > name_len) { | 
|  | char *new_name; | 
|  |  | 
|  | new_name = krealloc(name, this_name_len, GFP_NOFS); | 
|  | if (!new_name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | name_len = this_name_len; | 
|  | name = new_name; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(eb, name, name_ptr, this_name_len); | 
|  | di = btrfs_lookup_dir_item(NULL, inode->root, search_path, | 
|  | parent, name, this_name_len, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | struct btrfs_key di_key; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(search_path->nodes[0], | 
|  | di, &di_key); | 
|  | if (di_key.type == BTRFS_INODE_ITEM_KEY) { | 
|  | ret = 1; | 
|  | *other_ino = di_key.objectid; | 
|  | } else { | 
|  | ret = -EAGAIN; | 
|  | } | 
|  | goto out; | 
|  | } else if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(search_path); | 
|  |  | 
|  | cur_offset += this_len; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(search_path); | 
|  | kfree(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* log a single inode in the tree log. | 
|  | * At least one parent directory for this inode must exist in the tree | 
|  | * or be logged already. | 
|  | * | 
|  | * Any items from this inode changed by the current transaction are copied | 
|  | * to the log tree.  An extra reference is taken on any extents in this | 
|  | * file, allowing us to avoid a whole pile of corner cases around logging | 
|  | * blocks that have been removed from the tree. | 
|  | * | 
|  | * See LOG_INODE_ALL and related defines for a description of what inode_only | 
|  | * does. | 
|  | * | 
|  | * This handles both files and directories. | 
|  | */ | 
|  | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | int inode_only, | 
|  | const loff_t start, | 
|  | const loff_t end, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_path *dst_path; | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_key max_key; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | u64 last_extent = 0; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int nritems; | 
|  | int ins_start_slot = 0; | 
|  | int ins_nr; | 
|  | bool fast_search = false; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | u64 logged_isize = 0; | 
|  | bool need_log_inode_item = true; | 
|  | bool xattrs_logged = false; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | dst_path = btrfs_alloc_path(); | 
|  | if (!dst_path) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | min_key.objectid = ino; | 
|  | min_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | min_key.offset = 0; | 
|  |  | 
|  | max_key.objectid = ino; | 
|  |  | 
|  |  | 
|  | /* today the code can only do partial logging of directories */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) || | 
|  | (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags) && | 
|  | inode_only >= LOG_INODE_EXISTS)) | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | else | 
|  | max_key.type = (u8)-1; | 
|  | max_key.offset = (u64)-1; | 
|  |  | 
|  | /* | 
|  | * Only run delayed items if we are a dir or a new file. | 
|  | * Otherwise commit the delayed inode only, which is needed in | 
|  | * order for the log replay code to mark inodes for link count | 
|  | * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). | 
|  | */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) || | 
|  | inode->generation > fs_info->last_trans_committed) | 
|  | ret = btrfs_commit_inode_delayed_items(trans, inode); | 
|  | else | 
|  | ret = btrfs_commit_inode_delayed_inode(inode); | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (inode_only == LOG_OTHER_INODE) { | 
|  | inode_only = LOG_INODE_EXISTS; | 
|  | mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); | 
|  | } else { | 
|  | mutex_lock(&inode->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a brute force approach to making sure we get the most uptodate | 
|  | * copies of everything. | 
|  | */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode)) { | 
|  | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  |  | 
|  | if (inode_only == LOG_INODE_EXISTS) | 
|  | max_key_type = BTRFS_XATTR_ITEM_KEY; | 
|  | ret = drop_objectid_items(trans, log, path, ino, max_key_type); | 
|  | } else { | 
|  | if (inode_only == LOG_INODE_EXISTS) { | 
|  | /* | 
|  | * Make sure the new inode item we write to the log has | 
|  | * the same isize as the current one (if it exists). | 
|  | * This is necessary to prevent data loss after log | 
|  | * replay, and also to prevent doing a wrong expanding | 
|  | * truncate - for e.g. create file, write 4K into offset | 
|  | * 0, fsync, write 4K into offset 4096, add hard link, | 
|  | * fsync some other file (to sync log), power fail - if | 
|  | * we use the inode's current i_size, after log replay | 
|  | * we get a 8Kb file, with the last 4Kb extent as a hole | 
|  | * (zeroes), as if an expanding truncate happened, | 
|  | * instead of getting a file of 4Kb only. | 
|  | */ | 
|  | err = logged_inode_size(log, inode, path, &logged_isize); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | } | 
|  | if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags)) { | 
|  | if (inode_only == LOG_INODE_EXISTS) { | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | ret = drop_objectid_items(trans, log, path, ino, | 
|  | max_key.type); | 
|  | } else { | 
|  | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags); | 
|  | clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
|  | &inode->runtime_flags); | 
|  | while(1) { | 
|  | ret = btrfs_truncate_inode_items(trans, | 
|  | log, &inode->vfs_inode, 0, 0); | 
|  | if (ret != -EAGAIN) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
|  | &inode->runtime_flags) || | 
|  | inode_only == LOG_INODE_EXISTS) { | 
|  | if (inode_only == LOG_INODE_ALL) | 
|  | fast_search = true; | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | ret = drop_objectid_items(trans, log, path, ino, | 
|  | max_key.type); | 
|  | } else { | 
|  | if (inode_only == LOG_INODE_ALL) | 
|  | fast_search = true; | 
|  | goto log_extents; | 
|  | } | 
|  |  | 
|  | } | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ins_nr = 0; | 
|  | ret = btrfs_search_forward(root, &min_key, | 
|  | path, trans->transid); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (ret != 0) | 
|  | break; | 
|  | again: | 
|  | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | 
|  | if (min_key.objectid != ino) | 
|  | break; | 
|  | if (min_key.type > max_key.type) | 
|  | break; | 
|  |  | 
|  | if (min_key.type == BTRFS_INODE_ITEM_KEY) | 
|  | need_log_inode_item = false; | 
|  |  | 
|  | if ((min_key.type == BTRFS_INODE_REF_KEY || | 
|  | min_key.type == BTRFS_INODE_EXTREF_KEY) && | 
|  | inode->generation == trans->transid) { | 
|  | u64 other_ino = 0; | 
|  |  | 
|  | ret = btrfs_check_ref_name_override(path->nodes[0], | 
|  | path->slots[0], &min_key, inode, | 
|  | &other_ino); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } else if (ret > 0 && ctx && | 
|  | other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { | 
|  | struct btrfs_key inode_key; | 
|  | struct inode *other_inode; | 
|  |  | 
|  | if (ins_nr > 0) { | 
|  | ins_nr++; | 
|  | } else { | 
|  | ins_nr = 1; | 
|  | ins_start_slot = path->slots[0]; | 
|  | } | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, ins_start_slot, | 
|  | ins_nr, inode_only, | 
|  | logged_isize); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | ins_nr = 0; | 
|  | btrfs_release_path(path); | 
|  | inode_key.objectid = other_ino; | 
|  | inode_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | inode_key.offset = 0; | 
|  | other_inode = btrfs_iget(fs_info->sb, | 
|  | &inode_key, root, | 
|  | NULL); | 
|  | /* | 
|  | * If the other inode that had a conflicting dir | 
|  | * entry was deleted in the current transaction, | 
|  | * we don't need to do more work nor fallback to | 
|  | * a transaction commit. | 
|  | */ | 
|  | if (other_inode == ERR_PTR(-ENOENT)) { | 
|  | goto next_key; | 
|  | } else if (IS_ERR(other_inode)) { | 
|  | err = PTR_ERR(other_inode); | 
|  | goto out_unlock; | 
|  | } | 
|  | /* | 
|  | * We are safe logging the other inode without | 
|  | * acquiring its i_mutex as long as we log with | 
|  | * the LOG_INODE_EXISTS mode. We're safe against | 
|  | * concurrent renames of the other inode as well | 
|  | * because during a rename we pin the log and | 
|  | * update the log with the new name before we | 
|  | * unpin it. | 
|  | */ | 
|  | err = btrfs_log_inode(trans, root, | 
|  | BTRFS_I(other_inode), | 
|  | LOG_OTHER_INODE, 0, LLONG_MAX, | 
|  | ctx); | 
|  | iput(other_inode); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | else | 
|  | goto next_key; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ | 
|  | if (min_key.type == BTRFS_XATTR_ITEM_KEY) { | 
|  | if (ins_nr == 0) | 
|  | goto next_slot; | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, ins_start_slot, | 
|  | ins_nr, inode_only, logged_isize); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | ins_nr = 0; | 
|  | if (ret) { | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
|  | ins_nr++; | 
|  | goto next_slot; | 
|  | } else if (!ins_nr) { | 
|  | ins_start_slot = path->slots[0]; | 
|  | ins_nr = 1; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | ret = copy_items(trans, inode, dst_path, path, &last_extent, | 
|  | ins_start_slot, ins_nr, inode_only, | 
|  | logged_isize); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (ret) { | 
|  | ins_nr = 0; | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  | ins_nr = 1; | 
|  | ins_start_slot = path->slots[0]; | 
|  | next_slot: | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] < nritems) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | 
|  | path->slots[0]); | 
|  | goto again; | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | &last_extent, ins_start_slot, | 
|  | ins_nr, inode_only, logged_isize); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | ret = 0; | 
|  | ins_nr = 0; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | next_key: | 
|  | if (min_key.offset < (u64)-1) { | 
|  | min_key.offset++; | 
|  | } else if (min_key.type < max_key.type) { | 
|  | min_key.type++; | 
|  | min_key.offset = 0; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, inode, dst_path, path, &last_extent, | 
|  | ins_start_slot, ins_nr, inode_only, | 
|  | logged_isize); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | ret = 0; | 
|  | ins_nr = 0; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | xattrs_logged = true; | 
|  | if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | err = btrfs_log_trailing_hole(trans, root, inode, path); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | } | 
|  | log_extents: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | if (need_log_inode_item) { | 
|  | err = log_inode_item(trans, log, dst_path, inode); | 
|  | if (!err && !xattrs_logged) { | 
|  | err = btrfs_log_all_xattrs(trans, root, inode, path, | 
|  | dst_path); | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | } | 
|  | if (fast_search) { | 
|  | ret = btrfs_log_changed_extents(trans, root, inode, dst_path, | 
|  | ctx, start, end); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | } else if (inode_only == LOG_INODE_ALL) { | 
|  | struct extent_map *em, *n; | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | /* | 
|  | * We can't just remove every em if we're called for a ranged | 
|  | * fsync - that is, one that doesn't cover the whole possible | 
|  | * file range (0 to LLONG_MAX). This is because we can have | 
|  | * em's that fall outside the range we're logging and therefore | 
|  | * their ordered operations haven't completed yet | 
|  | * (btrfs_finish_ordered_io() not invoked yet). This means we | 
|  | * didn't get their respective file extent item in the fs/subvol | 
|  | * tree yet, and need to let the next fast fsync (one which | 
|  | * consults the list of modified extent maps) find the em so | 
|  | * that it logs a matching file extent item and waits for the | 
|  | * respective ordered operation to complete (if it's still | 
|  | * running). | 
|  | * | 
|  | * Removing every em outside the range we're logging would make | 
|  | * the next fast fsync not log their matching file extent items, | 
|  | * therefore making us lose data after a log replay. | 
|  | */ | 
|  | list_for_each_entry_safe(em, n, &em_tree->modified_extents, | 
|  | list) { | 
|  | const u64 mod_end = em->mod_start + em->mod_len - 1; | 
|  |  | 
|  | if (em->mod_start >= start && mod_end <= end) | 
|  | list_del_init(&em->list); | 
|  | } | 
|  | write_unlock(&em_tree->lock); | 
|  | } | 
|  |  | 
|  | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { | 
|  | ret = log_directory_changes(trans, root, inode, path, dst_path, | 
|  | ctx); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | inode->logged_trans = trans->transid; | 
|  | inode->last_log_commit = inode->last_sub_trans; | 
|  | spin_unlock(&inode->lock); | 
|  | out_unlock: | 
|  | mutex_unlock(&inode->log_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we must fallback to a transaction commit when logging an inode. | 
|  | * This must be called after logging the inode and is used only in the context | 
|  | * when fsyncing an inode requires the need to log some other inode - in which | 
|  | * case we can't lock the i_mutex of each other inode we need to log as that | 
|  | * can lead to deadlocks with concurrent fsync against other inodes (as we can | 
|  | * log inodes up or down in the hierarchy) or rename operations for example. So | 
|  | * we take the log_mutex of the inode after we have logged it and then check for | 
|  | * its last_unlink_trans value - this is safe because any task setting | 
|  | * last_unlink_trans must take the log_mutex and it must do this before it does | 
|  | * the actual unlink operation, so if we do this check before a concurrent task | 
|  | * sets last_unlink_trans it means we've logged a consistent version/state of | 
|  | * all the inode items, otherwise we are not sure and must do a transaction | 
|  | * commit (the concurrent task might have only updated last_unlink_trans before | 
|  | * we logged the inode or it might have also done the unlink). | 
|  | */ | 
|  | static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | bool ret = false; | 
|  |  | 
|  | mutex_lock(&inode->log_mutex); | 
|  | if (inode->last_unlink_trans > fs_info->last_trans_committed) { | 
|  | /* | 
|  | * Make sure any commits to the log are forced to be full | 
|  | * commits. | 
|  | */ | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | ret = true; | 
|  | } | 
|  | mutex_unlock(&inode->log_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * follow the dentry parent pointers up the chain and see if any | 
|  | * of the directories in it require a full commit before they can | 
|  | * be logged.  Returns zero if nothing special needs to be done or 1 if | 
|  | * a full commit is required. | 
|  | */ | 
|  | static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct dentry *parent, | 
|  | struct super_block *sb, | 
|  | u64 last_committed) | 
|  | { | 
|  | int ret = 0; | 
|  | struct dentry *old_parent = NULL; | 
|  | struct btrfs_inode *orig_inode = inode; | 
|  |  | 
|  | /* | 
|  | * for regular files, if its inode is already on disk, we don't | 
|  | * have to worry about the parents at all.  This is because | 
|  | * we can use the last_unlink_trans field to record renames | 
|  | * and other fun in this file. | 
|  | */ | 
|  | if (S_ISREG(inode->vfs_inode.i_mode) && | 
|  | inode->generation <= last_committed && | 
|  | inode->last_unlink_trans <= last_committed) | 
|  | goto out; | 
|  |  | 
|  | if (!S_ISDIR(inode->vfs_inode.i_mode)) { | 
|  | if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) | 
|  | goto out; | 
|  | inode = BTRFS_I(d_inode(parent)); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * If we are logging a directory then we start with our inode, | 
|  | * not our parent's inode, so we need to skip setting the | 
|  | * logged_trans so that further down in the log code we don't | 
|  | * think this inode has already been logged. | 
|  | */ | 
|  | if (inode != orig_inode) | 
|  | inode->logged_trans = trans->transid; | 
|  | smp_mb(); | 
|  |  | 
|  | if (btrfs_must_commit_transaction(trans, inode)) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) | 
|  | break; | 
|  |  | 
|  | if (IS_ROOT(parent)) { | 
|  | inode = BTRFS_I(d_inode(parent)); | 
|  | if (btrfs_must_commit_transaction(trans, inode)) | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | parent = dget_parent(parent); | 
|  | dput(old_parent); | 
|  | old_parent = parent; | 
|  | inode = BTRFS_I(d_inode(parent)); | 
|  |  | 
|  | } | 
|  | dput(old_parent); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_dir_list { | 
|  | u64 ino; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Log the inodes of the new dentries of a directory. See log_dir_items() for | 
|  | * details about the why it is needed. | 
|  | * This is a recursive operation - if an existing dentry corresponds to a | 
|  | * directory, that directory's new entries are logged too (same behaviour as | 
|  | * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes | 
|  | * the dentries point to we do not lock their i_mutex, otherwise lockdep | 
|  | * complains about the following circular lock dependency / possible deadlock: | 
|  | * | 
|  | *        CPU0                                        CPU1 | 
|  | *        ----                                        ---- | 
|  | * lock(&type->i_mutex_dir_key#3/2); | 
|  | *                                            lock(sb_internal#2); | 
|  | *                                            lock(&type->i_mutex_dir_key#3/2); | 
|  | * lock(&sb->s_type->i_mutex_key#14); | 
|  | * | 
|  | * Where sb_internal is the lock (a counter that works as a lock) acquired by | 
|  | * sb_start_intwrite() in btrfs_start_transaction(). | 
|  | * Not locking i_mutex of the inodes is still safe because: | 
|  | * | 
|  | * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible | 
|  | *    that while logging the inode new references (names) are added or removed | 
|  | *    from the inode, leaving the logged inode item with a link count that does | 
|  | *    not match the number of logged inode reference items. This is fine because | 
|  | *    at log replay time we compute the real number of links and correct the | 
|  | *    link count in the inode item (see replay_one_buffer() and | 
|  | *    link_to_fixup_dir()); | 
|  | * | 
|  | * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that | 
|  | *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and | 
|  | *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item | 
|  | *    has a size that doesn't match the sum of the lengths of all the logged | 
|  | *    names. This does not result in a problem because if a dir_item key is | 
|  | *    logged but its matching dir_index key is not logged, at log replay time we | 
|  | *    don't use it to replay the respective name (see replay_one_name()). On the | 
|  | *    other hand if only the dir_index key ends up being logged, the respective | 
|  | *    name is added to the fs/subvol tree with both the dir_item and dir_index | 
|  | *    keys created (see replay_one_name()). | 
|  | *    The directory's inode item with a wrong i_size is not a problem as well, | 
|  | *    since we don't use it at log replay time to set the i_size in the inode | 
|  | *    item of the fs/subvol tree (see overwrite_item()). | 
|  | */ | 
|  | static int log_new_dir_dentries(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *start_inode, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct btrfs_path *path; | 
|  | LIST_HEAD(dir_list); | 
|  | struct btrfs_dir_list *dir_elem; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); | 
|  | if (!dir_elem) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  | dir_elem->ino = btrfs_ino(start_inode); | 
|  | list_add_tail(&dir_elem->list, &dir_list); | 
|  |  | 
|  | while (!list_empty(&dir_list)) { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key min_key; | 
|  | int nritems; | 
|  | int i; | 
|  |  | 
|  | dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, | 
|  | list); | 
|  | if (ret) | 
|  | goto next_dir_inode; | 
|  |  | 
|  | min_key.objectid = dir_elem->ino; | 
|  | min_key.type = BTRFS_DIR_ITEM_KEY; | 
|  | min_key.offset = 0; | 
|  | again: | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_forward(log, &min_key, path, trans->transid); | 
|  | if (ret < 0) { | 
|  | goto next_dir_inode; | 
|  | } else if (ret > 0) { | 
|  | ret = 0; | 
|  | goto next_dir_inode; | 
|  | } | 
|  |  | 
|  | process_leaf: | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | for (i = path->slots[0]; i < nritems; i++) { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key di_key; | 
|  | struct inode *di_inode; | 
|  | struct btrfs_dir_list *new_dir_elem; | 
|  | int log_mode = LOG_INODE_EXISTS; | 
|  | int type; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &min_key, i); | 
|  | if (min_key.objectid != dir_elem->ino || | 
|  | min_key.type != BTRFS_DIR_ITEM_KEY) | 
|  | goto next_dir_inode; | 
|  |  | 
|  | di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); | 
|  | type = btrfs_dir_type(leaf, di); | 
|  | if (btrfs_dir_transid(leaf, di) < trans->transid && | 
|  | type != BTRFS_FT_DIR) | 
|  | continue; | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &di_key); | 
|  | if (di_key.type == BTRFS_ROOT_ITEM_KEY) | 
|  | continue; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); | 
|  | if (IS_ERR(di_inode)) { | 
|  | ret = PTR_ERR(di_inode); | 
|  | goto next_dir_inode; | 
|  | } | 
|  |  | 
|  | if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { | 
|  | iput(di_inode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctx->log_new_dentries = false; | 
|  | if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) | 
|  | log_mode = LOG_INODE_ALL; | 
|  | ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), | 
|  | log_mode, 0, LLONG_MAX, ctx); | 
|  | if (!ret && | 
|  | btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) | 
|  | ret = 1; | 
|  | iput(di_inode); | 
|  | if (ret) | 
|  | goto next_dir_inode; | 
|  | if (ctx->log_new_dentries) { | 
|  | new_dir_elem = kmalloc(sizeof(*new_dir_elem), | 
|  | GFP_NOFS); | 
|  | if (!new_dir_elem) { | 
|  | ret = -ENOMEM; | 
|  | goto next_dir_inode; | 
|  | } | 
|  | new_dir_elem->ino = di_key.objectid; | 
|  | list_add_tail(&new_dir_elem->list, &dir_list); | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (i == nritems) { | 
|  | ret = btrfs_next_leaf(log, path); | 
|  | if (ret < 0) { | 
|  | goto next_dir_inode; | 
|  | } else if (ret > 0) { | 
|  | ret = 0; | 
|  | goto next_dir_inode; | 
|  | } | 
|  | goto process_leaf; | 
|  | } | 
|  | if (min_key.offset < (u64)-1) { | 
|  | min_key.offset++; | 
|  | goto again; | 
|  | } | 
|  | next_dir_inode: | 
|  | list_del(&dir_elem->list); | 
|  | kfree(dir_elem); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *root = inode->root; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | u32 cur_offset = 0; | 
|  | u32 item_size; | 
|  | unsigned long ptr; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ | 
|  | if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(leaf, slot); | 
|  | ptr = btrfs_item_ptr_offset(leaf, slot); | 
|  | while (cur_offset < item_size) { | 
|  | struct btrfs_key inode_key; | 
|  | struct inode *dir_inode; | 
|  |  | 
|  | inode_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | inode_key.offset = 0; | 
|  |  | 
|  | if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *) | 
|  | (ptr + cur_offset); | 
|  | inode_key.objectid = btrfs_inode_extref_parent( | 
|  | leaf, extref); | 
|  | cur_offset += sizeof(*extref); | 
|  | cur_offset += btrfs_inode_extref_name_len(leaf, | 
|  | extref); | 
|  | } else { | 
|  | inode_key.objectid = key.offset; | 
|  | cur_offset = item_size; | 
|  | } | 
|  |  | 
|  | dir_inode = btrfs_iget(fs_info->sb, &inode_key, | 
|  | root, NULL); | 
|  | /* | 
|  | * If the parent inode was deleted, return an error to | 
|  | * fallback to a transaction commit. This is to prevent | 
|  | * getting an inode that was moved from one parent A to | 
|  | * a parent B, got its former parent A deleted and then | 
|  | * it got fsync'ed, from existing at both parents after | 
|  | * a log replay (and the old parent still existing). | 
|  | * Example: | 
|  | * | 
|  | * mkdir /mnt/A | 
|  | * mkdir /mnt/B | 
|  | * touch /mnt/B/bar | 
|  | * sync | 
|  | * mv /mnt/B/bar /mnt/A/bar | 
|  | * mv -T /mnt/A /mnt/B | 
|  | * fsync /mnt/B/bar | 
|  | * <power fail> | 
|  | * | 
|  | * If we ignore the old parent B which got deleted, | 
|  | * after a log replay we would have file bar linked | 
|  | * at both parents and the old parent B would still | 
|  | * exist. | 
|  | */ | 
|  | if (IS_ERR(dir_inode)) { | 
|  | ret = PTR_ERR(dir_inode); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ctx) | 
|  | ctx->log_new_dentries = false; | 
|  | ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), | 
|  | LOG_INODE_ALL, 0, LLONG_MAX, ctx); | 
|  | if (!ret && | 
|  | btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) | 
|  | ret = 1; | 
|  | if (!ret && ctx && ctx->log_new_dentries) | 
|  | ret = log_new_dir_dentries(trans, root, | 
|  | BTRFS_I(dir_inode), ctx); | 
|  | iput(dir_inode); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function around btrfs_log_inode to make sure newly created | 
|  | * parent directories also end up in the log.  A minimal inode and backref | 
|  | * only logging is done of any parent directories that are older than | 
|  | * the last committed transaction | 
|  | */ | 
|  | static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct dentry *parent, | 
|  | const loff_t start, | 
|  | const loff_t end, | 
|  | int inode_only, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct super_block *sb; | 
|  | struct dentry *old_parent = NULL; | 
|  | int ret = 0; | 
|  | u64 last_committed = fs_info->last_trans_committed; | 
|  | bool log_dentries = false; | 
|  | struct btrfs_inode *orig_inode = inode; | 
|  |  | 
|  | sb = inode->vfs_inode.i_sb; | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, NOTREELOG)) { | 
|  | ret = 1; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The prev transaction commit doesn't complete, we need do | 
|  | * full commit by ourselves. | 
|  | */ | 
|  | if (fs_info->last_trans_log_full_commit > | 
|  | fs_info->last_trans_committed) { | 
|  | ret = 1; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | if (btrfs_root_refs(&root->root_item) == 0) { | 
|  | ret = 1; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | ret = check_parent_dirs_for_sync(trans, inode, parent, sb, | 
|  | last_committed); | 
|  | if (ret) | 
|  | goto end_no_trans; | 
|  |  | 
|  | /* | 
|  | * Skip already logged inodes or inodes corresponding to tmpfiles | 
|  | * (since logging them is pointless, a link count of 0 means they | 
|  | * will never be accessible). | 
|  | */ | 
|  | if (btrfs_inode_in_log(inode, trans->transid) || | 
|  | inode->vfs_inode.i_nlink == 0) { | 
|  | ret = BTRFS_NO_LOG_SYNC; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | ret = start_log_trans(trans, root, ctx); | 
|  | if (ret) | 
|  | goto end_no_trans; | 
|  |  | 
|  | ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  |  | 
|  | /* | 
|  | * for regular files, if its inode is already on disk, we don't | 
|  | * have to worry about the parents at all.  This is because | 
|  | * we can use the last_unlink_trans field to record renames | 
|  | * and other fun in this file. | 
|  | */ | 
|  | if (S_ISREG(inode->vfs_inode.i_mode) && | 
|  | inode->generation <= last_committed && | 
|  | inode->last_unlink_trans <= last_committed) { | 
|  | ret = 0; | 
|  | goto end_trans; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) | 
|  | log_dentries = true; | 
|  |  | 
|  | /* | 
|  | * On unlink we must make sure all our current and old parent directory | 
|  | * inodes are fully logged. This is to prevent leaving dangling | 
|  | * directory index entries in directories that were our parents but are | 
|  | * not anymore. Not doing this results in old parent directory being | 
|  | * impossible to delete after log replay (rmdir will always fail with | 
|  | * error -ENOTEMPTY). | 
|  | * | 
|  | * Example 1: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch testdir/foo | 
|  | * ln testdir/foo testdir/bar | 
|  | * sync | 
|  | * unlink testdir/bar | 
|  | * xfs_io -c fsync testdir/foo | 
|  | * <power failure> | 
|  | * mount fs, triggers log replay | 
|  | * | 
|  | * If we don't log the parent directory (testdir), after log replay the | 
|  | * directory still has an entry pointing to the file inode using the bar | 
|  | * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and | 
|  | * the file inode has a link count of 1. | 
|  | * | 
|  | * Example 2: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch foo | 
|  | * ln foo testdir/foo2 | 
|  | * ln foo testdir/foo3 | 
|  | * sync | 
|  | * unlink testdir/foo3 | 
|  | * xfs_io -c fsync foo | 
|  | * <power failure> | 
|  | * mount fs, triggers log replay | 
|  | * | 
|  | * Similar as the first example, after log replay the parent directory | 
|  | * testdir still has an entry pointing to the inode file with name foo3 | 
|  | * but the file inode does not have a matching BTRFS_INODE_REF_KEY item | 
|  | * and has a link count of 2. | 
|  | */ | 
|  | if (inode->last_unlink_trans > last_committed) { | 
|  | ret = btrfs_log_all_parents(trans, orig_inode, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) | 
|  | break; | 
|  |  | 
|  | inode = BTRFS_I(d_inode(parent)); | 
|  | if (root != inode->root) | 
|  | break; | 
|  |  | 
|  | if (inode->generation > last_committed) { | 
|  | ret = btrfs_log_inode(trans, root, inode, | 
|  | LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  | } | 
|  | if (IS_ROOT(parent)) | 
|  | break; | 
|  |  | 
|  | parent = dget_parent(parent); | 
|  | dput(old_parent); | 
|  | old_parent = parent; | 
|  | } | 
|  | if (log_dentries) | 
|  | ret = log_new_dir_dentries(trans, root, orig_inode, ctx); | 
|  | else | 
|  | ret = 0; | 
|  | end_trans: | 
|  | dput(old_parent); | 
|  | if (ret < 0) { | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | btrfs_remove_log_ctx(root, ctx); | 
|  | btrfs_end_log_trans(root); | 
|  | end_no_trans: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * it is not safe to log dentry if the chunk root has added new | 
|  | * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
|  | * If this returns 1, you must commit the transaction to safely get your | 
|  | * data on disk. | 
|  | */ | 
|  | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
|  | struct dentry *dentry, | 
|  | const loff_t start, | 
|  | const loff_t end, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct dentry *parent = dget_parent(dentry); | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, | 
|  | start, end, LOG_INODE_ALL, ctx); | 
|  | dput(parent); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * should be called during mount to recover any replay any log trees | 
|  | * from the FS | 
|  | */ | 
|  | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key tmp_key; | 
|  | struct btrfs_root *log; | 
|  | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
|  | struct walk_control wc = { | 
|  | .process_func = process_one_buffer, | 
|  | .stage = 0, | 
|  | }; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
|  |  | 
|  | trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | wc.trans = trans; | 
|  | wc.pin = 1; | 
|  |  | 
|  | ret = walk_log_tree(trans, log_root_tree, &wc); | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to pin buffers while recovering log root tree."); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
|  |  | 
|  | if (ret < 0) { | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Couldn't find tree log root."); | 
|  | goto error; | 
|  | } | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | break; | 
|  |  | 
|  | log = btrfs_read_fs_root(log_root_tree, &found_key); | 
|  | if (IS_ERR(log)) { | 
|  | ret = PTR_ERR(log); | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Couldn't read tree log root."); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | tmp_key.objectid = found_key.offset; | 
|  | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | tmp_key.offset = (u64)-1; | 
|  |  | 
|  | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | 
|  | if (IS_ERR(wc.replay_dest)) { | 
|  | ret = PTR_ERR(wc.replay_dest); | 
|  | free_extent_buffer(log->node); | 
|  | free_extent_buffer(log->commit_root); | 
|  | kfree(log); | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Couldn't read target root for tree log recovery."); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | wc.replay_dest->log_root = log; | 
|  | btrfs_record_root_in_trans(trans, wc.replay_dest); | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  |  | 
|  | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { | 
|  | ret = fixup_inode_link_counts(trans, wc.replay_dest, | 
|  | path); | 
|  | } | 
|  |  | 
|  | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { | 
|  | struct btrfs_root *root = wc.replay_dest; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We have just replayed everything, and the highest | 
|  | * objectid of fs roots probably has changed in case | 
|  | * some inode_item's got replayed. | 
|  | * | 
|  | * root->objectid_mutex is not acquired as log replay | 
|  | * could only happen during mount. | 
|  | */ | 
|  | ret = btrfs_find_highest_objectid(root, | 
|  | &root->highest_objectid); | 
|  | } | 
|  |  | 
|  | key.offset = found_key.offset - 1; | 
|  | wc.replay_dest->log_root = NULL; | 
|  | free_extent_buffer(log->node); | 
|  | free_extent_buffer(log->commit_root); | 
|  | kfree(log); | 
|  |  | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* step one is to pin it all, step two is to replay just inodes */ | 
|  | if (wc.pin) { | 
|  | wc.pin = 0; | 
|  | wc.process_func = replay_one_buffer; | 
|  | wc.stage = LOG_WALK_REPLAY_INODES; | 
|  | goto again; | 
|  | } | 
|  | /* step three is to replay everything */ | 
|  | if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
|  | wc.stage++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | /* step 4: commit the transaction, which also unpins the blocks */ | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | free_extent_buffer(log_root_tree->node); | 
|  | log_root_tree->log_root = NULL; | 
|  | clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
|  | kfree(log_root_tree); | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | if (wc.trans) | 
|  | btrfs_end_transaction(wc.trans); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there are some corner cases where we want to force a full | 
|  | * commit instead of allowing a directory to be logged. | 
|  | * | 
|  | * They revolve around files there were unlinked from the directory, and | 
|  | * this function updates the parent directory so that a full commit is | 
|  | * properly done if it is fsync'd later after the unlinks are done. | 
|  | * | 
|  | * Must be called before the unlink operations (updates to the subvolume tree, | 
|  | * inodes, etc) are done. | 
|  | */ | 
|  | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, struct btrfs_inode *inode, | 
|  | int for_rename) | 
|  | { | 
|  | /* | 
|  | * when we're logging a file, if it hasn't been renamed | 
|  | * or unlinked, and its inode is fully committed on disk, | 
|  | * we don't have to worry about walking up the directory chain | 
|  | * to log its parents. | 
|  | * | 
|  | * So, we use the last_unlink_trans field to put this transid | 
|  | * into the file.  When the file is logged we check it and | 
|  | * don't log the parents if the file is fully on disk. | 
|  | */ | 
|  | mutex_lock(&inode->log_mutex); | 
|  | inode->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&inode->log_mutex); | 
|  |  | 
|  | /* | 
|  | * if this directory was already logged any new | 
|  | * names for this file/dir will get recorded | 
|  | */ | 
|  | smp_mb(); | 
|  | if (dir->logged_trans == trans->transid) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * if the inode we're about to unlink was logged, | 
|  | * the log will be properly updated for any new names | 
|  | */ | 
|  | if (inode->logged_trans == trans->transid) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * when renaming files across directories, if the directory | 
|  | * there we're unlinking from gets fsync'd later on, there's | 
|  | * no way to find the destination directory later and fsync it | 
|  | * properly.  So, we have to be conservative and force commits | 
|  | * so the new name gets discovered. | 
|  | */ | 
|  | if (for_rename) | 
|  | goto record; | 
|  |  | 
|  | /* we can safely do the unlink without any special recording */ | 
|  | return; | 
|  |  | 
|  | record: | 
|  | mutex_lock(&dir->log_mutex); | 
|  | dir->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that if someone attempts to fsync the parent directory of a deleted | 
|  | * snapshot, it ends up triggering a transaction commit. This is to guarantee | 
|  | * that after replaying the log tree of the parent directory's root we will not | 
|  | * see the snapshot anymore and at log replay time we will not see any log tree | 
|  | * corresponding to the deleted snapshot's root, which could lead to replaying | 
|  | * it after replaying the log tree of the parent directory (which would replay | 
|  | * the snapshot delete operation). | 
|  | * | 
|  | * Must be called before the actual snapshot destroy operation (updates to the | 
|  | * parent root and tree of tree roots trees, etc) are done. | 
|  | */ | 
|  | void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir) | 
|  | { | 
|  | mutex_lock(&dir->log_mutex); | 
|  | dir->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call this after adding a new name for a file and it will properly | 
|  | * update the log to reflect the new name. | 
|  | * | 
|  | * @ctx can not be NULL when @sync_log is false, and should be NULL when it's | 
|  | * true (because it's not used). | 
|  | * | 
|  | * Return value depends on whether @sync_log is true or false. | 
|  | * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be | 
|  | *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT | 
|  | *            otherwise. | 
|  | * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to | 
|  | *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, | 
|  | *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be | 
|  | *             committed (without attempting to sync the log). | 
|  | */ | 
|  | int btrfs_log_new_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, struct btrfs_inode *old_dir, | 
|  | struct dentry *parent, | 
|  | bool sync_log, struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * this will force the logging code to walk the dentry chain | 
|  | * up for the file | 
|  | */ | 
|  | if (!S_ISDIR(inode->vfs_inode.i_mode)) | 
|  | inode->last_unlink_trans = trans->transid; | 
|  |  | 
|  | /* | 
|  | * if this inode hasn't been logged and directory we're renaming it | 
|  | * from hasn't been logged, we don't need to log it | 
|  | */ | 
|  | if (inode->logged_trans <= fs_info->last_trans_committed && | 
|  | (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) | 
|  | return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : | 
|  | BTRFS_DONT_NEED_LOG_SYNC; | 
|  |  | 
|  | if (sync_log) { | 
|  | struct btrfs_log_ctx ctx2; | 
|  |  | 
|  | btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); | 
|  | ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, | 
|  | LOG_INODE_EXISTS, &ctx2); | 
|  | if (ret == BTRFS_NO_LOG_SYNC) | 
|  | return BTRFS_DONT_NEED_TRANS_COMMIT; | 
|  | else if (ret) | 
|  | return BTRFS_NEED_TRANS_COMMIT; | 
|  |  | 
|  | ret = btrfs_sync_log(trans, inode->root, &ctx2); | 
|  | if (ret) | 
|  | return BTRFS_NEED_TRANS_COMMIT; | 
|  | return BTRFS_DONT_NEED_TRANS_COMMIT; | 
|  | } | 
|  |  | 
|  | ASSERT(ctx); | 
|  | ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, | 
|  | LOG_INODE_EXISTS, ctx); | 
|  | if (ret == BTRFS_NO_LOG_SYNC) | 
|  | return BTRFS_DONT_NEED_LOG_SYNC; | 
|  | else if (ret) | 
|  | return BTRFS_NEED_TRANS_COMMIT; | 
|  |  | 
|  | return BTRFS_NEED_LOG_SYNC; | 
|  | } | 
|  |  |