|  | // SPDX-License-Identifier: Apache-2.0 OR MIT | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use super::AsVecIntoIter; | 
|  | use crate::alloc::{Allocator, Global}; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::collections::VecDeque; | 
|  | use crate::raw_vec::RawVec; | 
|  | use core::array; | 
|  | use core::fmt; | 
|  | use core::iter::{ | 
|  | FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce, | 
|  | }; | 
|  | use core::marker::PhantomData; | 
|  | use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; | 
|  | use core::num::NonZeroUsize; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use core::ops::Deref; | 
|  | use core::ptr::{self, NonNull}; | 
|  | use core::slice::{self}; | 
|  |  | 
|  | /// An iterator that moves out of a vector. | 
|  | /// | 
|  | /// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) | 
|  | /// (provided by the [`IntoIterator`] trait). | 
|  | /// | 
|  | /// # Example | 
|  | /// | 
|  | /// ``` | 
|  | /// let v = vec![0, 1, 2]; | 
|  | /// let iter: std::vec::IntoIter<_> = v.into_iter(); | 
|  | /// ``` | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[rustc_insignificant_dtor] | 
|  | pub struct IntoIter< | 
|  | T, | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, | 
|  | > { | 
|  | pub(super) buf: NonNull<T>, | 
|  | pub(super) phantom: PhantomData<T>, | 
|  | pub(super) cap: usize, | 
|  | // the drop impl reconstructs a RawVec from buf, cap and alloc | 
|  | // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop | 
|  | pub(super) alloc: ManuallyDrop<A>, | 
|  | pub(super) ptr: *const T, | 
|  | pub(super) end: *const T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that | 
|  | // ptr == end is a quick test for the Iterator being empty, that works | 
|  | // for both ZST and non-ZST. | 
|  | } | 
|  |  | 
|  | #[stable(feature = "vec_intoiter_debug", since = "1.13.0")] | 
|  | impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | f.debug_tuple("IntoIter").field(&self.as_slice()).finish() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T, A: Allocator> IntoIter<T, A> { | 
|  | /// Returns the remaining items of this iterator as a slice. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let vec = vec!['a', 'b', 'c']; | 
|  | /// let mut into_iter = vec.into_iter(); | 
|  | /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); | 
|  | /// let _ = into_iter.next().unwrap(); | 
|  | /// assert_eq!(into_iter.as_slice(), &['b', 'c']); | 
|  | /// ``` | 
|  | #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] | 
|  | pub fn as_slice(&self) -> &[T] { | 
|  | unsafe { slice::from_raw_parts(self.ptr, self.len()) } | 
|  | } | 
|  |  | 
|  | /// Returns the remaining items of this iterator as a mutable slice. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let vec = vec!['a', 'b', 'c']; | 
|  | /// let mut into_iter = vec.into_iter(); | 
|  | /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); | 
|  | /// into_iter.as_mut_slice()[2] = 'z'; | 
|  | /// assert_eq!(into_iter.next().unwrap(), 'a'); | 
|  | /// assert_eq!(into_iter.next().unwrap(), 'b'); | 
|  | /// assert_eq!(into_iter.next().unwrap(), 'z'); | 
|  | /// ``` | 
|  | #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] | 
|  | pub fn as_mut_slice(&mut self) -> &mut [T] { | 
|  | unsafe { &mut *self.as_raw_mut_slice() } | 
|  | } | 
|  |  | 
|  | /// Returns a reference to the underlying allocator. | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn allocator(&self) -> &A { | 
|  | &self.alloc | 
|  | } | 
|  |  | 
|  | fn as_raw_mut_slice(&mut self) -> *mut [T] { | 
|  | ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len()) | 
|  | } | 
|  |  | 
|  | /// Drops remaining elements and relinquishes the backing allocation. | 
|  | /// This method guarantees it won't panic before relinquishing | 
|  | /// the backing allocation. | 
|  | /// | 
|  | /// This is roughly equivalent to the following, but more efficient | 
|  | /// | 
|  | /// ``` | 
|  | /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter(); | 
|  | /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter()); | 
|  | /// (&mut into_iter).for_each(drop); | 
|  | /// std::mem::forget(into_iter); | 
|  | /// ``` | 
|  | /// | 
|  | /// This method is used by in-place iteration, refer to the vec::in_place_collect | 
|  | /// documentation for an overview. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | pub(super) fn forget_allocation_drop_remaining(&mut self) { | 
|  | let remaining = self.as_raw_mut_slice(); | 
|  |  | 
|  | // overwrite the individual fields instead of creating a new | 
|  | // struct and then overwriting &mut self. | 
|  | // this creates less assembly | 
|  | self.cap = 0; | 
|  | self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) }; | 
|  | self.ptr = self.buf.as_ptr(); | 
|  | self.end = self.buf.as_ptr(); | 
|  |  | 
|  | // Dropping the remaining elements can panic, so this needs to be | 
|  | // done only after updating the other fields. | 
|  | unsafe { | 
|  | ptr::drop_in_place(remaining); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed. | 
|  | pub(crate) fn forget_remaining_elements(&mut self) { | 
|  | // For th ZST case, it is crucial that we mutate `end` here, not `ptr`. | 
|  | // `ptr` must stay aligned, while `end` may be unaligned. | 
|  | self.end = self.ptr; | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[inline] | 
|  | pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> { | 
|  | // Keep our `Drop` impl from dropping the elements and the allocator | 
|  | let mut this = ManuallyDrop::new(self); | 
|  |  | 
|  | // SAFETY: This allocation originally came from a `Vec`, so it passes | 
|  | // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`, | 
|  | // so the `sub_ptr`s below cannot wrap, and will produce a well-formed | 
|  | // range. `end` ≤ `buf + cap`, so the range will be in-bounds. | 
|  | // Taking `alloc` is ok because nothing else is going to look at it, | 
|  | // since our `Drop` impl isn't going to run so there's no more code. | 
|  | unsafe { | 
|  | let buf = this.buf.as_ptr(); | 
|  | let initialized = if T::IS_ZST { | 
|  | // All the pointers are the same for ZSTs, so it's fine to | 
|  | // say that they're all at the beginning of the "allocation". | 
|  | 0..this.len() | 
|  | } else { | 
|  | this.ptr.sub_ptr(buf)..this.end.sub_ptr(buf) | 
|  | }; | 
|  | let cap = this.cap; | 
|  | let alloc = ManuallyDrop::take(&mut this.alloc); | 
|  | VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")] | 
|  | impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { | 
|  | fn as_ref(&self) -> &[T] { | 
|  | self.as_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T, A: Allocator> Iterator for IntoIter<T, A> { | 
|  | type Item = T; | 
|  |  | 
|  | #[inline] | 
|  | fn next(&mut self) -> Option<T> { | 
|  | if self.ptr == self.end { | 
|  | None | 
|  | } else if T::IS_ZST { | 
|  | // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by | 
|  | // reducing the `end`. | 
|  | self.end = self.end.wrapping_byte_sub(1); | 
|  |  | 
|  | // Make up a value of this ZST. | 
|  | Some(unsafe { mem::zeroed() }) | 
|  | } else { | 
|  | let old = self.ptr; | 
|  | self.ptr = unsafe { self.ptr.add(1) }; | 
|  |  | 
|  | Some(unsafe { ptr::read(old) }) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn size_hint(&self) -> (usize, Option<usize>) { | 
|  | let exact = if T::IS_ZST { | 
|  | self.end.addr().wrapping_sub(self.ptr.addr()) | 
|  | } else { | 
|  | unsafe { self.end.sub_ptr(self.ptr) } | 
|  | }; | 
|  | (exact, Some(exact)) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { | 
|  | let step_size = self.len().min(n); | 
|  | let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size); | 
|  | if T::IS_ZST { | 
|  | // See `next` for why we sub `end` here. | 
|  | self.end = self.end.wrapping_byte_sub(step_size); | 
|  | } else { | 
|  | // SAFETY: the min() above ensures that step_size is in bounds | 
|  | self.ptr = unsafe { self.ptr.add(step_size) }; | 
|  | } | 
|  | // SAFETY: the min() above ensures that step_size is in bounds | 
|  | unsafe { | 
|  | ptr::drop_in_place(to_drop); | 
|  | } | 
|  | NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn count(self) -> usize { | 
|  | self.len() | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> { | 
|  | let mut raw_ary = MaybeUninit::uninit_array(); | 
|  |  | 
|  | let len = self.len(); | 
|  |  | 
|  | if T::IS_ZST { | 
|  | if len < N { | 
|  | self.forget_remaining_elements(); | 
|  | // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct | 
|  | return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) }); | 
|  | } | 
|  |  | 
|  | self.end = self.end.wrapping_byte_sub(N); | 
|  | // Safety: ditto | 
|  | return Ok(unsafe { raw_ary.transpose().assume_init() }); | 
|  | } | 
|  |  | 
|  | if len < N { | 
|  | // Safety: `len` indicates that this many elements are available and we just checked that | 
|  | // it fits into the array. | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, len); | 
|  | self.forget_remaining_elements(); | 
|  | return Err(array::IntoIter::new_unchecked(raw_ary, 0..len)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize | 
|  | // the array. | 
|  | return unsafe { | 
|  | ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, N); | 
|  | self.ptr = self.ptr.add(N); | 
|  | Ok(raw_ary.transpose().assume_init()) | 
|  | }; | 
|  | } | 
|  |  | 
|  | unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item | 
|  | where | 
|  | Self: TrustedRandomAccessNoCoerce, | 
|  | { | 
|  | // SAFETY: the caller must guarantee that `i` is in bounds of the | 
|  | // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)` | 
|  | // is guaranteed to pointer to an element of the `Vec<T>` and | 
|  | // thus guaranteed to be valid to dereference. | 
|  | // | 
|  | // Also note the implementation of `Self: TrustedRandomAccess` requires | 
|  | // that `T: Copy` so reading elements from the buffer doesn't invalidate | 
|  | // them for `Drop`. | 
|  | unsafe { | 
|  | if T::IS_ZST { mem::zeroed() } else { ptr::read(self.ptr.add(i)) } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { | 
|  | #[inline] | 
|  | fn next_back(&mut self) -> Option<T> { | 
|  | if self.end == self.ptr { | 
|  | None | 
|  | } else if T::IS_ZST { | 
|  | // See above for why 'ptr.offset' isn't used | 
|  | self.end = self.end.wrapping_byte_sub(1); | 
|  |  | 
|  | // Make up a value of this ZST. | 
|  | Some(unsafe { mem::zeroed() }) | 
|  | } else { | 
|  | self.end = unsafe { self.end.sub(1) }; | 
|  |  | 
|  | Some(unsafe { ptr::read(self.end) }) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { | 
|  | let step_size = self.len().min(n); | 
|  | if T::IS_ZST { | 
|  | // SAFETY: same as for advance_by() | 
|  | self.end = self.end.wrapping_byte_sub(step_size); | 
|  | } else { | 
|  | // SAFETY: same as for advance_by() | 
|  | self.end = unsafe { self.end.sub(step_size) }; | 
|  | } | 
|  | let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size); | 
|  | // SAFETY: same as for advance_by() | 
|  | unsafe { | 
|  | ptr::drop_in_place(to_drop); | 
|  | } | 
|  | NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { | 
|  | fn is_empty(&self) -> bool { | 
|  | self.ptr == self.end | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "fused", since = "1.26.0")] | 
|  | impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} | 
|  |  | 
|  | #[unstable(feature = "trusted_len", issue = "37572")] | 
|  | unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {} | 
|  |  | 
|  | #[stable(feature = "default_iters", since = "1.70.0")] | 
|  | impl<T, A> Default for IntoIter<T, A> | 
|  | where | 
|  | A: Allocator + Default, | 
|  | { | 
|  | /// Creates an empty `vec::IntoIter`. | 
|  | /// | 
|  | /// ``` | 
|  | /// # use std::vec; | 
|  | /// let iter: vec::IntoIter<u8> = Default::default(); | 
|  | /// assert_eq!(iter.len(), 0); | 
|  | /// assert_eq!(iter.as_slice(), &[]); | 
|  | /// ``` | 
|  | fn default() -> Self { | 
|  | super::Vec::new_in(Default::default()).into_iter() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[doc(hidden)] | 
|  | #[unstable(issue = "none", feature = "std_internals")] | 
|  | #[rustc_unsafe_specialization_marker] | 
|  | pub trait NonDrop {} | 
|  |  | 
|  | // T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr | 
|  | // and thus we can't implement drop-handling | 
|  | #[unstable(issue = "none", feature = "std_internals")] | 
|  | impl<T: Copy> NonDrop for T {} | 
|  |  | 
|  | #[doc(hidden)] | 
|  | #[unstable(issue = "none", feature = "std_internals")] | 
|  | // TrustedRandomAccess (without NoCoerce) must not be implemented because | 
|  | // subtypes/supertypes of `T` might not be `NonDrop` | 
|  | unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A> | 
|  | where | 
|  | T: NonDrop, | 
|  | { | 
|  | const MAY_HAVE_SIDE_EFFECT: bool = false; | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "vec_into_iter_clone", since = "1.8.0")] | 
|  | impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { | 
|  | #[cfg(not(test))] | 
|  | fn clone(&self) -> Self { | 
|  | self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter() | 
|  | } | 
|  | #[cfg(test)] | 
|  | fn clone(&self) -> Self { | 
|  | crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> { | 
|  | fn drop(&mut self) { | 
|  | struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); | 
|  |  | 
|  | impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec | 
|  | let alloc = ManuallyDrop::take(&mut self.0.alloc); | 
|  | // RawVec handles deallocation | 
|  | let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | let guard = DropGuard(self); | 
|  | // destroy the remaining elements | 
|  | unsafe { | 
|  | ptr::drop_in_place(guard.0.as_raw_mut_slice()); | 
|  | } | 
|  | // now `guard` will be dropped and do the rest | 
|  | } | 
|  | } | 
|  |  | 
|  | // In addition to the SAFETY invariants of the following three unsafe traits | 
|  | // also refer to the vec::in_place_collect module documentation to get an overview | 
|  | #[unstable(issue = "none", feature = "inplace_iteration")] | 
|  | #[doc(hidden)] | 
|  | unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {} | 
|  |  | 
|  | #[unstable(issue = "none", feature = "inplace_iteration")] | 
|  | #[doc(hidden)] | 
|  | unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { | 
|  | type Source = Self; | 
|  |  | 
|  | #[inline] | 
|  | unsafe fn as_inner(&mut self) -> &mut Self::Source { | 
|  | self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | unsafe impl<T> AsVecIntoIter for IntoIter<T> { | 
|  | type Item = T; | 
|  |  | 
|  | fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> { | 
|  | self | 
|  | } | 
|  | } |