| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Interface for controlling IO bandwidth on a request queue | 
 |  * | 
 |  * Copyright (C) 2010 Vivek Goyal <[email protected]> | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blktrace_api.h> | 
 | #include <linux/blk-cgroup.h> | 
 | #include "blk.h" | 
 | #include "blk-cgroup-rwstat.h" | 
 |  | 
 | /* Max dispatch from a group in 1 round */ | 
 | static int throtl_grp_quantum = 8; | 
 |  | 
 | /* Total max dispatch from all groups in one round */ | 
 | static int throtl_quantum = 32; | 
 |  | 
 | /* Throttling is performed over a slice and after that slice is renewed */ | 
 | #define DFL_THROTL_SLICE_HD (HZ / 10) | 
 | #define DFL_THROTL_SLICE_SSD (HZ / 50) | 
 | #define MAX_THROTL_SLICE (HZ) | 
 | #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ | 
 | #define MIN_THROTL_BPS (320 * 1024) | 
 | #define MIN_THROTL_IOPS (10) | 
 | #define DFL_LATENCY_TARGET (-1L) | 
 | #define DFL_IDLE_THRESHOLD (0) | 
 | #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ | 
 | #define LATENCY_FILTERED_SSD (0) | 
 | /* | 
 |  * For HD, very small latency comes from sequential IO. Such IO is helpless to | 
 |  * help determine if its IO is impacted by others, hence we ignore the IO | 
 |  */ | 
 | #define LATENCY_FILTERED_HD (1000L) /* 1ms */ | 
 |  | 
 | static struct blkcg_policy blkcg_policy_throtl; | 
 |  | 
 | /* A workqueue to queue throttle related work */ | 
 | static struct workqueue_struct *kthrotld_workqueue; | 
 |  | 
 | /* | 
 |  * To implement hierarchical throttling, throtl_grps form a tree and bios | 
 |  * are dispatched upwards level by level until they reach the top and get | 
 |  * issued.  When dispatching bios from the children and local group at each | 
 |  * level, if the bios are dispatched into a single bio_list, there's a risk | 
 |  * of a local or child group which can queue many bios at once filling up | 
 |  * the list starving others. | 
 |  * | 
 |  * To avoid such starvation, dispatched bios are queued separately | 
 |  * according to where they came from.  When they are again dispatched to | 
 |  * the parent, they're popped in round-robin order so that no single source | 
 |  * hogs the dispatch window. | 
 |  * | 
 |  * throtl_qnode is used to keep the queued bios separated by their sources. | 
 |  * Bios are queued to throtl_qnode which in turn is queued to | 
 |  * throtl_service_queue and then dispatched in round-robin order. | 
 |  * | 
 |  * It's also used to track the reference counts on blkg's.  A qnode always | 
 |  * belongs to a throtl_grp and gets queued on itself or the parent, so | 
 |  * incrementing the reference of the associated throtl_grp when a qnode is | 
 |  * queued and decrementing when dequeued is enough to keep the whole blkg | 
 |  * tree pinned while bios are in flight. | 
 |  */ | 
 | struct throtl_qnode { | 
 | 	struct list_head	node;		/* service_queue->queued[] */ | 
 | 	struct bio_list		bios;		/* queued bios */ | 
 | 	struct throtl_grp	*tg;		/* tg this qnode belongs to */ | 
 | }; | 
 |  | 
 | struct throtl_service_queue { | 
 | 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */ | 
 |  | 
 | 	/* | 
 | 	 * Bios queued directly to this service_queue or dispatched from | 
 | 	 * children throtl_grp's. | 
 | 	 */ | 
 | 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */ | 
 | 	unsigned int		nr_queued[2];	/* number of queued bios */ | 
 |  | 
 | 	/* | 
 | 	 * RB tree of active children throtl_grp's, which are sorted by | 
 | 	 * their ->disptime. | 
 | 	 */ | 
 | 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */ | 
 | 	unsigned int		nr_pending;	/* # queued in the tree */ | 
 | 	unsigned long		first_pending_disptime;	/* disptime of the first tg */ | 
 | 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */ | 
 | }; | 
 |  | 
 | enum tg_state_flags { | 
 | 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */ | 
 | 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */ | 
 | }; | 
 |  | 
 | #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node) | 
 |  | 
 | enum { | 
 | 	LIMIT_LOW, | 
 | 	LIMIT_MAX, | 
 | 	LIMIT_CNT, | 
 | }; | 
 |  | 
 | struct throtl_grp { | 
 | 	/* must be the first member */ | 
 | 	struct blkg_policy_data pd; | 
 |  | 
 | 	/* active throtl group service_queue member */ | 
 | 	struct rb_node rb_node; | 
 |  | 
 | 	/* throtl_data this group belongs to */ | 
 | 	struct throtl_data *td; | 
 |  | 
 | 	/* this group's service queue */ | 
 | 	struct throtl_service_queue service_queue; | 
 |  | 
 | 	/* | 
 | 	 * qnode_on_self is used when bios are directly queued to this | 
 | 	 * throtl_grp so that local bios compete fairly with bios | 
 | 	 * dispatched from children.  qnode_on_parent is used when bios are | 
 | 	 * dispatched from this throtl_grp into its parent and will compete | 
 | 	 * with the sibling qnode_on_parents and the parent's | 
 | 	 * qnode_on_self. | 
 | 	 */ | 
 | 	struct throtl_qnode qnode_on_self[2]; | 
 | 	struct throtl_qnode qnode_on_parent[2]; | 
 |  | 
 | 	/* | 
 | 	 * Dispatch time in jiffies. This is the estimated time when group | 
 | 	 * will unthrottle and is ready to dispatch more bio. It is used as | 
 | 	 * key to sort active groups in service tree. | 
 | 	 */ | 
 | 	unsigned long disptime; | 
 |  | 
 | 	unsigned int flags; | 
 |  | 
 | 	/* are there any throtl rules between this group and td? */ | 
 | 	bool has_rules[2]; | 
 |  | 
 | 	/* internally used bytes per second rate limits */ | 
 | 	uint64_t bps[2][LIMIT_CNT]; | 
 | 	/* user configured bps limits */ | 
 | 	uint64_t bps_conf[2][LIMIT_CNT]; | 
 |  | 
 | 	/* internally used IOPS limits */ | 
 | 	unsigned int iops[2][LIMIT_CNT]; | 
 | 	/* user configured IOPS limits */ | 
 | 	unsigned int iops_conf[2][LIMIT_CNT]; | 
 |  | 
 | 	/* Number of bytes disptached in current slice */ | 
 | 	uint64_t bytes_disp[2]; | 
 | 	/* Number of bio's dispatched in current slice */ | 
 | 	unsigned int io_disp[2]; | 
 |  | 
 | 	unsigned long last_low_overflow_time[2]; | 
 |  | 
 | 	uint64_t last_bytes_disp[2]; | 
 | 	unsigned int last_io_disp[2]; | 
 |  | 
 | 	unsigned long last_check_time; | 
 |  | 
 | 	unsigned long latency_target; /* us */ | 
 | 	unsigned long latency_target_conf; /* us */ | 
 | 	/* When did we start a new slice */ | 
 | 	unsigned long slice_start[2]; | 
 | 	unsigned long slice_end[2]; | 
 |  | 
 | 	unsigned long last_finish_time; /* ns / 1024 */ | 
 | 	unsigned long checked_last_finish_time; /* ns / 1024 */ | 
 | 	unsigned long avg_idletime; /* ns / 1024 */ | 
 | 	unsigned long idletime_threshold; /* us */ | 
 | 	unsigned long idletime_threshold_conf; /* us */ | 
 |  | 
 | 	unsigned int bio_cnt; /* total bios */ | 
 | 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ | 
 | 	unsigned long bio_cnt_reset_time; | 
 |  | 
 | 	struct blkg_rwstat stat_bytes; | 
 | 	struct blkg_rwstat stat_ios; | 
 | }; | 
 |  | 
 | /* We measure latency for request size from <= 4k to >= 1M */ | 
 | #define LATENCY_BUCKET_SIZE 9 | 
 |  | 
 | struct latency_bucket { | 
 | 	unsigned long total_latency; /* ns / 1024 */ | 
 | 	int samples; | 
 | }; | 
 |  | 
 | struct avg_latency_bucket { | 
 | 	unsigned long latency; /* ns / 1024 */ | 
 | 	bool valid; | 
 | }; | 
 |  | 
 | struct throtl_data | 
 | { | 
 | 	/* service tree for active throtl groups */ | 
 | 	struct throtl_service_queue service_queue; | 
 |  | 
 | 	struct request_queue *queue; | 
 |  | 
 | 	/* Total Number of queued bios on READ and WRITE lists */ | 
 | 	unsigned int nr_queued[2]; | 
 |  | 
 | 	unsigned int throtl_slice; | 
 |  | 
 | 	/* Work for dispatching throttled bios */ | 
 | 	struct work_struct dispatch_work; | 
 | 	unsigned int limit_index; | 
 | 	bool limit_valid[LIMIT_CNT]; | 
 |  | 
 | 	unsigned long low_upgrade_time; | 
 | 	unsigned long low_downgrade_time; | 
 |  | 
 | 	unsigned int scale; | 
 |  | 
 | 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; | 
 | 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; | 
 | 	struct latency_bucket __percpu *latency_buckets[2]; | 
 | 	unsigned long last_calculate_time; | 
 | 	unsigned long filtered_latency; | 
 |  | 
 | 	bool track_bio_latency; | 
 | }; | 
 |  | 
 | static void throtl_pending_timer_fn(struct timer_list *t); | 
 |  | 
 | static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) | 
 | { | 
 | 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL; | 
 | } | 
 |  | 
 | static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) | 
 | { | 
 | 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); | 
 | } | 
 |  | 
 | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | 
 | { | 
 | 	return pd_to_blkg(&tg->pd); | 
 | } | 
 |  | 
 | /** | 
 |  * sq_to_tg - return the throl_grp the specified service queue belongs to | 
 |  * @sq: the throtl_service_queue of interest | 
 |  * | 
 |  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one | 
 |  * embedded in throtl_data, %NULL is returned. | 
 |  */ | 
 | static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) | 
 | { | 
 | 	if (sq && sq->parent_sq) | 
 | 		return container_of(sq, struct throtl_grp, service_queue); | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * sq_to_td - return throtl_data the specified service queue belongs to | 
 |  * @sq: the throtl_service_queue of interest | 
 |  * | 
 |  * A service_queue can be embedded in either a throtl_grp or throtl_data. | 
 |  * Determine the associated throtl_data accordingly and return it. | 
 |  */ | 
 | static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) | 
 | { | 
 | 	struct throtl_grp *tg = sq_to_tg(sq); | 
 |  | 
 | 	if (tg) | 
 | 		return tg->td; | 
 | 	else | 
 | 		return container_of(sq, struct throtl_data, service_queue); | 
 | } | 
 |  | 
 | /* | 
 |  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to | 
 |  * make the IO dispatch more smooth. | 
 |  * Scale up: linearly scale up according to lapsed time since upgrade. For | 
 |  *           every throtl_slice, the limit scales up 1/2 .low limit till the | 
 |  *           limit hits .max limit | 
 |  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit | 
 |  */ | 
 | static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) | 
 | { | 
 | 	/* arbitrary value to avoid too big scale */ | 
 | 	if (td->scale < 4096 && time_after_eq(jiffies, | 
 | 	    td->low_upgrade_time + td->scale * td->throtl_slice)) | 
 | 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; | 
 |  | 
 | 	return low + (low >> 1) * td->scale; | 
 | } | 
 |  | 
 | static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) | 
 | { | 
 | 	struct blkcg_gq *blkg = tg_to_blkg(tg); | 
 | 	struct throtl_data *td; | 
 | 	uint64_t ret; | 
 |  | 
 | 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | 
 | 		return U64_MAX; | 
 |  | 
 | 	td = tg->td; | 
 | 	ret = tg->bps[rw][td->limit_index]; | 
 | 	if (ret == 0 && td->limit_index == LIMIT_LOW) { | 
 | 		/* intermediate node or iops isn't 0 */ | 
 | 		if (!list_empty(&blkg->blkcg->css.children) || | 
 | 		    tg->iops[rw][td->limit_index]) | 
 | 			return U64_MAX; | 
 | 		else | 
 | 			return MIN_THROTL_BPS; | 
 | 	} | 
 |  | 
 | 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && | 
 | 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { | 
 | 		uint64_t adjusted; | 
 |  | 
 | 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); | 
 | 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) | 
 | { | 
 | 	struct blkcg_gq *blkg = tg_to_blkg(tg); | 
 | 	struct throtl_data *td; | 
 | 	unsigned int ret; | 
 |  | 
 | 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | 
 | 		return UINT_MAX; | 
 |  | 
 | 	td = tg->td; | 
 | 	ret = tg->iops[rw][td->limit_index]; | 
 | 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { | 
 | 		/* intermediate node or bps isn't 0 */ | 
 | 		if (!list_empty(&blkg->blkcg->css.children) || | 
 | 		    tg->bps[rw][td->limit_index]) | 
 | 			return UINT_MAX; | 
 | 		else | 
 | 			return MIN_THROTL_IOPS; | 
 | 	} | 
 |  | 
 | 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && | 
 | 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { | 
 | 		uint64_t adjusted; | 
 |  | 
 | 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); | 
 | 		if (adjusted > UINT_MAX) | 
 | 			adjusted = UINT_MAX; | 
 | 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define request_bucket_index(sectors) \ | 
 | 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) | 
 |  | 
 | /** | 
 |  * throtl_log - log debug message via blktrace | 
 |  * @sq: the service_queue being reported | 
 |  * @fmt: printf format string | 
 |  * @args: printf args | 
 |  * | 
 |  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a | 
 |  * throtl_grp; otherwise, just "throtl". | 
 |  */ | 
 | #define throtl_log(sq, fmt, args...)	do {				\ | 
 | 	struct throtl_grp *__tg = sq_to_tg((sq));			\ | 
 | 	struct throtl_data *__td = sq_to_td((sq));			\ | 
 | 									\ | 
 | 	(void)__td;							\ | 
 | 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\ | 
 | 		break;							\ | 
 | 	if ((__tg)) {							\ | 
 | 		blk_add_cgroup_trace_msg(__td->queue,			\ | 
 | 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ | 
 | 	} else {							\ | 
 | 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\ | 
 | 	}								\ | 
 | } while (0) | 
 |  | 
 | static inline unsigned int throtl_bio_data_size(struct bio *bio) | 
 | { | 
 | 	/* assume it's one sector */ | 
 | 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) | 
 | 		return 512; | 
 | 	return bio->bi_iter.bi_size; | 
 | } | 
 |  | 
 | static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) | 
 | { | 
 | 	INIT_LIST_HEAD(&qn->node); | 
 | 	bio_list_init(&qn->bios); | 
 | 	qn->tg = tg; | 
 | } | 
 |  | 
 | /** | 
 |  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it | 
 |  * @bio: bio being added | 
 |  * @qn: qnode to add bio to | 
 |  * @queued: the service_queue->queued[] list @qn belongs to | 
 |  * | 
 |  * Add @bio to @qn and put @qn on @queued if it's not already on. | 
 |  * @qn->tg's reference count is bumped when @qn is activated.  See the | 
 |  * comment on top of throtl_qnode definition for details. | 
 |  */ | 
 | static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, | 
 | 				 struct list_head *queued) | 
 | { | 
 | 	bio_list_add(&qn->bios, bio); | 
 | 	if (list_empty(&qn->node)) { | 
 | 		list_add_tail(&qn->node, queued); | 
 | 		blkg_get(tg_to_blkg(qn->tg)); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * throtl_peek_queued - peek the first bio on a qnode list | 
 |  * @queued: the qnode list to peek | 
 |  */ | 
 | static struct bio *throtl_peek_queued(struct list_head *queued) | 
 | { | 
 | 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (list_empty(queued)) | 
 | 		return NULL; | 
 |  | 
 | 	bio = bio_list_peek(&qn->bios); | 
 | 	WARN_ON_ONCE(!bio); | 
 | 	return bio; | 
 | } | 
 |  | 
 | /** | 
 |  * throtl_pop_queued - pop the first bio form a qnode list | 
 |  * @queued: the qnode list to pop a bio from | 
 |  * @tg_to_put: optional out argument for throtl_grp to put | 
 |  * | 
 |  * Pop the first bio from the qnode list @queued.  After popping, the first | 
 |  * qnode is removed from @queued if empty or moved to the end of @queued so | 
 |  * that the popping order is round-robin. | 
 |  * | 
 |  * When the first qnode is removed, its associated throtl_grp should be put | 
 |  * too.  If @tg_to_put is NULL, this function automatically puts it; | 
 |  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is | 
 |  * responsible for putting it. | 
 |  */ | 
 | static struct bio *throtl_pop_queued(struct list_head *queued, | 
 | 				     struct throtl_grp **tg_to_put) | 
 | { | 
 | 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (list_empty(queued)) | 
 | 		return NULL; | 
 |  | 
 | 	bio = bio_list_pop(&qn->bios); | 
 | 	WARN_ON_ONCE(!bio); | 
 |  | 
 | 	if (bio_list_empty(&qn->bios)) { | 
 | 		list_del_init(&qn->node); | 
 | 		if (tg_to_put) | 
 | 			*tg_to_put = qn->tg; | 
 | 		else | 
 | 			blkg_put(tg_to_blkg(qn->tg)); | 
 | 	} else { | 
 | 		list_move_tail(&qn->node, queued); | 
 | 	} | 
 |  | 
 | 	return bio; | 
 | } | 
 |  | 
 | /* init a service_queue, assumes the caller zeroed it */ | 
 | static void throtl_service_queue_init(struct throtl_service_queue *sq) | 
 | { | 
 | 	INIT_LIST_HEAD(&sq->queued[0]); | 
 | 	INIT_LIST_HEAD(&sq->queued[1]); | 
 | 	sq->pending_tree = RB_ROOT_CACHED; | 
 | 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); | 
 | } | 
 |  | 
 | static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, | 
 | 						struct request_queue *q, | 
 | 						struct blkcg *blkcg) | 
 | { | 
 | 	struct throtl_grp *tg; | 
 | 	int rw; | 
 |  | 
 | 	tg = kzalloc_node(sizeof(*tg), gfp, q->node); | 
 | 	if (!tg) | 
 | 		return NULL; | 
 |  | 
 | 	if (blkg_rwstat_init(&tg->stat_bytes, gfp)) | 
 | 		goto err_free_tg; | 
 |  | 
 | 	if (blkg_rwstat_init(&tg->stat_ios, gfp)) | 
 | 		goto err_exit_stat_bytes; | 
 |  | 
 | 	throtl_service_queue_init(&tg->service_queue); | 
 |  | 
 | 	for (rw = READ; rw <= WRITE; rw++) { | 
 | 		throtl_qnode_init(&tg->qnode_on_self[rw], tg); | 
 | 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg); | 
 | 	} | 
 |  | 
 | 	RB_CLEAR_NODE(&tg->rb_node); | 
 | 	tg->bps[READ][LIMIT_MAX] = U64_MAX; | 
 | 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX; | 
 | 	tg->iops[READ][LIMIT_MAX] = UINT_MAX; | 
 | 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; | 
 | 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; | 
 | 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; | 
 | 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; | 
 | 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; | 
 | 	/* LIMIT_LOW will have default value 0 */ | 
 |  | 
 | 	tg->latency_target = DFL_LATENCY_TARGET; | 
 | 	tg->latency_target_conf = DFL_LATENCY_TARGET; | 
 | 	tg->idletime_threshold = DFL_IDLE_THRESHOLD; | 
 | 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; | 
 |  | 
 | 	return &tg->pd; | 
 |  | 
 | err_exit_stat_bytes: | 
 | 	blkg_rwstat_exit(&tg->stat_bytes); | 
 | err_free_tg: | 
 | 	kfree(tg); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void throtl_pd_init(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	struct blkcg_gq *blkg = tg_to_blkg(tg); | 
 | 	struct throtl_data *td = blkg->q->td; | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 |  | 
 | 	/* | 
 | 	 * If on the default hierarchy, we switch to properly hierarchical | 
 | 	 * behavior where limits on a given throtl_grp are applied to the | 
 | 	 * whole subtree rather than just the group itself.  e.g. If 16M | 
 | 	 * read_bps limit is set on the root group, the whole system can't | 
 | 	 * exceed 16M for the device. | 
 | 	 * | 
 | 	 * If not on the default hierarchy, the broken flat hierarchy | 
 | 	 * behavior is retained where all throtl_grps are treated as if | 
 | 	 * they're all separate root groups right below throtl_data. | 
 | 	 * Limits of a group don't interact with limits of other groups | 
 | 	 * regardless of the position of the group in the hierarchy. | 
 | 	 */ | 
 | 	sq->parent_sq = &td->service_queue; | 
 | 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) | 
 | 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; | 
 | 	tg->td = td; | 
 | } | 
 |  | 
 | /* | 
 |  * Set has_rules[] if @tg or any of its parents have limits configured. | 
 |  * This doesn't require walking up to the top of the hierarchy as the | 
 |  * parent's has_rules[] is guaranteed to be correct. | 
 |  */ | 
 | static void tg_update_has_rules(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); | 
 | 	struct throtl_data *td = tg->td; | 
 | 	int rw; | 
 |  | 
 | 	for (rw = READ; rw <= WRITE; rw++) | 
 | 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || | 
 | 			(td->limit_valid[td->limit_index] && | 
 | 			 (tg_bps_limit(tg, rw) != U64_MAX || | 
 | 			  tg_iops_limit(tg, rw) != UINT_MAX)); | 
 | } | 
 |  | 
 | static void throtl_pd_online(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	/* | 
 | 	 * We don't want new groups to escape the limits of its ancestors. | 
 | 	 * Update has_rules[] after a new group is brought online. | 
 | 	 */ | 
 | 	tg_update_has_rules(tg); | 
 | } | 
 |  | 
 | static void blk_throtl_update_limit_valid(struct throtl_data *td) | 
 | { | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct blkcg_gq *blkg; | 
 | 	bool low_valid = false; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { | 
 | 		struct throtl_grp *tg = blkg_to_tg(blkg); | 
 |  | 
 | 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || | 
 | 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { | 
 | 			low_valid = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	td->limit_valid[LIMIT_LOW] = low_valid; | 
 | } | 
 |  | 
 | static void throtl_upgrade_state(struct throtl_data *td); | 
 | static void throtl_pd_offline(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 |  | 
 | 	tg->bps[READ][LIMIT_LOW] = 0; | 
 | 	tg->bps[WRITE][LIMIT_LOW] = 0; | 
 | 	tg->iops[READ][LIMIT_LOW] = 0; | 
 | 	tg->iops[WRITE][LIMIT_LOW] = 0; | 
 |  | 
 | 	blk_throtl_update_limit_valid(tg->td); | 
 |  | 
 | 	if (!tg->td->limit_valid[tg->td->limit_index]) | 
 | 		throtl_upgrade_state(tg->td); | 
 | } | 
 |  | 
 | static void throtl_pd_free(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 |  | 
 | 	del_timer_sync(&tg->service_queue.pending_timer); | 
 | 	blkg_rwstat_exit(&tg->stat_bytes); | 
 | 	blkg_rwstat_exit(&tg->stat_ios); | 
 | 	kfree(tg); | 
 | } | 
 |  | 
 | static struct throtl_grp * | 
 | throtl_rb_first(struct throtl_service_queue *parent_sq) | 
 | { | 
 | 	struct rb_node *n; | 
 | 	/* Service tree is empty */ | 
 | 	if (!parent_sq->nr_pending) | 
 | 		return NULL; | 
 |  | 
 | 	n = rb_first_cached(&parent_sq->pending_tree); | 
 | 	WARN_ON_ONCE(!n); | 
 | 	if (!n) | 
 | 		return NULL; | 
 | 	return rb_entry_tg(n); | 
 | } | 
 |  | 
 | static void throtl_rb_erase(struct rb_node *n, | 
 | 			    struct throtl_service_queue *parent_sq) | 
 | { | 
 | 	rb_erase_cached(n, &parent_sq->pending_tree); | 
 | 	RB_CLEAR_NODE(n); | 
 | 	--parent_sq->nr_pending; | 
 | } | 
 |  | 
 | static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) | 
 | { | 
 | 	struct throtl_grp *tg; | 
 |  | 
 | 	tg = throtl_rb_first(parent_sq); | 
 | 	if (!tg) | 
 | 		return; | 
 |  | 
 | 	parent_sq->first_pending_disptime = tg->disptime; | 
 | } | 
 |  | 
 | static void tg_service_queue_add(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; | 
 | 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct throtl_grp *__tg; | 
 | 	unsigned long key = tg->disptime; | 
 | 	bool leftmost = true; | 
 |  | 
 | 	while (*node != NULL) { | 
 | 		parent = *node; | 
 | 		__tg = rb_entry_tg(parent); | 
 |  | 
 | 		if (time_before(key, __tg->disptime)) | 
 | 			node = &parent->rb_left; | 
 | 		else { | 
 | 			node = &parent->rb_right; | 
 | 			leftmost = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&tg->rb_node, parent, node); | 
 | 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, | 
 | 			       leftmost); | 
 | } | 
 |  | 
 | static void __throtl_enqueue_tg(struct throtl_grp *tg) | 
 | { | 
 | 	tg_service_queue_add(tg); | 
 | 	tg->flags |= THROTL_TG_PENDING; | 
 | 	tg->service_queue.parent_sq->nr_pending++; | 
 | } | 
 |  | 
 | static void throtl_enqueue_tg(struct throtl_grp *tg) | 
 | { | 
 | 	if (!(tg->flags & THROTL_TG_PENDING)) | 
 | 		__throtl_enqueue_tg(tg); | 
 | } | 
 |  | 
 | static void __throtl_dequeue_tg(struct throtl_grp *tg) | 
 | { | 
 | 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); | 
 | 	tg->flags &= ~THROTL_TG_PENDING; | 
 | } | 
 |  | 
 | static void throtl_dequeue_tg(struct throtl_grp *tg) | 
 | { | 
 | 	if (tg->flags & THROTL_TG_PENDING) | 
 | 		__throtl_dequeue_tg(tg); | 
 | } | 
 |  | 
 | /* Call with queue lock held */ | 
 | static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, | 
 | 					  unsigned long expires) | 
 | { | 
 | 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; | 
 |  | 
 | 	/* | 
 | 	 * Since we are adjusting the throttle limit dynamically, the sleep | 
 | 	 * time calculated according to previous limit might be invalid. It's | 
 | 	 * possible the cgroup sleep time is very long and no other cgroups | 
 | 	 * have IO running so notify the limit changes. Make sure the cgroup | 
 | 	 * doesn't sleep too long to avoid the missed notification. | 
 | 	 */ | 
 | 	if (time_after(expires, max_expire)) | 
 | 		expires = max_expire; | 
 | 	mod_timer(&sq->pending_timer, expires); | 
 | 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", | 
 | 		   expires - jiffies, jiffies); | 
 | } | 
 |  | 
 | /** | 
 |  * throtl_schedule_next_dispatch - schedule the next dispatch cycle | 
 |  * @sq: the service_queue to schedule dispatch for | 
 |  * @force: force scheduling | 
 |  * | 
 |  * Arm @sq->pending_timer so that the next dispatch cycle starts on the | 
 |  * dispatch time of the first pending child.  Returns %true if either timer | 
 |  * is armed or there's no pending child left.  %false if the current | 
 |  * dispatch window is still open and the caller should continue | 
 |  * dispatching. | 
 |  * | 
 |  * If @force is %true, the dispatch timer is always scheduled and this | 
 |  * function is guaranteed to return %true.  This is to be used when the | 
 |  * caller can't dispatch itself and needs to invoke pending_timer | 
 |  * unconditionally.  Note that forced scheduling is likely to induce short | 
 |  * delay before dispatch starts even if @sq->first_pending_disptime is not | 
 |  * in the future and thus shouldn't be used in hot paths. | 
 |  */ | 
 | static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, | 
 | 					  bool force) | 
 | { | 
 | 	/* any pending children left? */ | 
 | 	if (!sq->nr_pending) | 
 | 		return true; | 
 |  | 
 | 	update_min_dispatch_time(sq); | 
 |  | 
 | 	/* is the next dispatch time in the future? */ | 
 | 	if (force || time_after(sq->first_pending_disptime, jiffies)) { | 
 | 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* tell the caller to continue dispatching */ | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, | 
 | 		bool rw, unsigned long start) | 
 | { | 
 | 	tg->bytes_disp[rw] = 0; | 
 | 	tg->io_disp[rw] = 0; | 
 |  | 
 | 	/* | 
 | 	 * Previous slice has expired. We must have trimmed it after last | 
 | 	 * bio dispatch. That means since start of last slice, we never used | 
 | 	 * that bandwidth. Do try to make use of that bandwidth while giving | 
 | 	 * credit. | 
 | 	 */ | 
 | 	if (time_after_eq(start, tg->slice_start[rw])) | 
 | 		tg->slice_start[rw] = start; | 
 |  | 
 | 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | 
 | 	throtl_log(&tg->service_queue, | 
 | 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", | 
 | 		   rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
 | 		   tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	tg->bytes_disp[rw] = 0; | 
 | 	tg->io_disp[rw] = 0; | 
 | 	tg->slice_start[rw] = jiffies; | 
 | 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | 
 | 	throtl_log(&tg->service_queue, | 
 | 		   "[%c] new slice start=%lu end=%lu jiffies=%lu", | 
 | 		   rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
 | 		   tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, | 
 | 					unsigned long jiffy_end) | 
 | { | 
 | 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); | 
 | } | 
 |  | 
 | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | 
 | 				       unsigned long jiffy_end) | 
 | { | 
 | 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); | 
 | 	throtl_log(&tg->service_queue, | 
 | 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 
 | 		   rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
 | 		   tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | /* Determine if previously allocated or extended slice is complete or not */ | 
 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Trim the used slices and adjust slice start accordingly */ | 
 | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	unsigned long nr_slices, time_elapsed, io_trim; | 
 | 	u64 bytes_trim, tmp; | 
 |  | 
 | 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 
 |  | 
 | 	/* | 
 | 	 * If bps are unlimited (-1), then time slice don't get | 
 | 	 * renewed. Don't try to trim the slice if slice is used. A new | 
 | 	 * slice will start when appropriate. | 
 | 	 */ | 
 | 	if (throtl_slice_used(tg, rw)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * A bio has been dispatched. Also adjust slice_end. It might happen | 
 | 	 * that initially cgroup limit was very low resulting in high | 
 | 	 * slice_end, but later limit was bumped up and bio was dispached | 
 | 	 * sooner, then we need to reduce slice_end. A high bogus slice_end | 
 | 	 * is bad because it does not allow new slice to start. | 
 | 	 */ | 
 |  | 
 | 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); | 
 |  | 
 | 	time_elapsed = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	nr_slices = time_elapsed / tg->td->throtl_slice; | 
 |  | 
 | 	if (!nr_slices) | 
 | 		return; | 
 | 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; | 
 | 	do_div(tmp, HZ); | 
 | 	bytes_trim = tmp; | 
 |  | 
 | 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / | 
 | 		HZ; | 
 |  | 
 | 	if (!bytes_trim && !io_trim) | 
 | 		return; | 
 |  | 
 | 	if (tg->bytes_disp[rw] >= bytes_trim) | 
 | 		tg->bytes_disp[rw] -= bytes_trim; | 
 | 	else | 
 | 		tg->bytes_disp[rw] = 0; | 
 |  | 
 | 	if (tg->io_disp[rw] >= io_trim) | 
 | 		tg->io_disp[rw] -= io_trim; | 
 | 	else | 
 | 		tg->io_disp[rw] = 0; | 
 |  | 
 | 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; | 
 |  | 
 | 	throtl_log(&tg->service_queue, | 
 | 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", | 
 | 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, | 
 | 		   tg->slice_start[rw], tg->slice_end[rw], jiffies); | 
 | } | 
 |  | 
 | static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, | 
 | 				  unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	unsigned int io_allowed; | 
 | 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
 | 	u64 tmp; | 
 |  | 
 | 	jiffy_elapsed = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	/* Round up to the next throttle slice, wait time must be nonzero */ | 
 | 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); | 
 |  | 
 | 	/* | 
 | 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be | 
 | 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 
 | 	 * will allow dispatch after 1 second and after that slice should | 
 | 	 * have been trimmed. | 
 | 	 */ | 
 |  | 
 | 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; | 
 | 	do_div(tmp, HZ); | 
 |  | 
 | 	if (tmp > UINT_MAX) | 
 | 		io_allowed = UINT_MAX; | 
 | 	else | 
 | 		io_allowed = tmp; | 
 |  | 
 | 	if (tg->io_disp[rw] + 1 <= io_allowed) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* Calc approx time to dispatch */ | 
 | 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; | 
 |  | 
 | 	if (wait) | 
 | 		*wait = jiffy_wait; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, | 
 | 				 unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	u64 bytes_allowed, extra_bytes, tmp; | 
 | 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
 | 	unsigned int bio_size = throtl_bio_data_size(bio); | 
 |  | 
 | 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
 |  | 
 | 	/* Slice has just started. Consider one slice interval */ | 
 | 	if (!jiffy_elapsed) | 
 | 		jiffy_elapsed_rnd = tg->td->throtl_slice; | 
 |  | 
 | 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); | 
 |  | 
 | 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; | 
 | 	do_div(tmp, HZ); | 
 | 	bytes_allowed = tmp; | 
 |  | 
 | 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* Calc approx time to dispatch */ | 
 | 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; | 
 | 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); | 
 |  | 
 | 	if (!jiffy_wait) | 
 | 		jiffy_wait = 1; | 
 |  | 
 | 	/* | 
 | 	 * This wait time is without taking into consideration the rounding | 
 | 	 * up we did. Add that time also. | 
 | 	 */ | 
 | 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 
 | 	if (wait) | 
 | 		*wait = jiffy_wait; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns whether one can dispatch a bio or not. Also returns approx number | 
 |  * of jiffies to wait before this bio is with-in IO rate and can be dispatched | 
 |  */ | 
 | static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, | 
 | 			    unsigned long *wait) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; | 
 |  | 
 | 	/* | 
 |  	 * Currently whole state machine of group depends on first bio | 
 | 	 * queued in the group bio list. So one should not be calling | 
 | 	 * this function with a different bio if there are other bios | 
 | 	 * queued. | 
 | 	 */ | 
 | 	BUG_ON(tg->service_queue.nr_queued[rw] && | 
 | 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw])); | 
 |  | 
 | 	/* If tg->bps = -1, then BW is unlimited */ | 
 | 	if (tg_bps_limit(tg, rw) == U64_MAX && | 
 | 	    tg_iops_limit(tg, rw) == UINT_MAX) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If previous slice expired, start a new one otherwise renew/extend | 
 | 	 * existing slice to make sure it is at least throtl_slice interval | 
 | 	 * long since now. New slice is started only for empty throttle group. | 
 | 	 * If there is queued bio, that means there should be an active | 
 | 	 * slice and it should be extended instead. | 
 | 	 */ | 
 | 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) | 
 | 		throtl_start_new_slice(tg, rw); | 
 | 	else { | 
 | 		if (time_before(tg->slice_end[rw], | 
 | 		    jiffies + tg->td->throtl_slice)) | 
 | 			throtl_extend_slice(tg, rw, | 
 | 				jiffies + tg->td->throtl_slice); | 
 | 	} | 
 |  | 
 | 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) && | 
 | 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) { | 
 | 		if (wait) | 
 | 			*wait = 0; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	max_wait = max(bps_wait, iops_wait); | 
 |  | 
 | 	if (wait) | 
 | 		*wait = max_wait; | 
 |  | 
 | 	if (time_before(tg->slice_end[rw], jiffies + max_wait)) | 
 | 		throtl_extend_slice(tg, rw, jiffies + max_wait); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) | 
 | { | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	unsigned int bio_size = throtl_bio_data_size(bio); | 
 |  | 
 | 	/* Charge the bio to the group */ | 
 | 	tg->bytes_disp[rw] += bio_size; | 
 | 	tg->io_disp[rw]++; | 
 | 	tg->last_bytes_disp[rw] += bio_size; | 
 | 	tg->last_io_disp[rw]++; | 
 |  | 
 | 	/* | 
 | 	 * BIO_THROTTLED is used to prevent the same bio to be throttled | 
 | 	 * more than once as a throttled bio will go through blk-throtl the | 
 | 	 * second time when it eventually gets issued.  Set it when a bio | 
 | 	 * is being charged to a tg. | 
 | 	 */ | 
 | 	if (!bio_flagged(bio, BIO_THROTTLED)) | 
 | 		bio_set_flag(bio, BIO_THROTTLED); | 
 | } | 
 |  | 
 | /** | 
 |  * throtl_add_bio_tg - add a bio to the specified throtl_grp | 
 |  * @bio: bio to add | 
 |  * @qn: qnode to use | 
 |  * @tg: the target throtl_grp | 
 |  * | 
 |  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified, | 
 |  * tg->qnode_on_self[] is used. | 
 |  */ | 
 | static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, | 
 | 			      struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	bool rw = bio_data_dir(bio); | 
 |  | 
 | 	if (!qn) | 
 | 		qn = &tg->qnode_on_self[rw]; | 
 |  | 
 | 	/* | 
 | 	 * If @tg doesn't currently have any bios queued in the same | 
 | 	 * direction, queueing @bio can change when @tg should be | 
 | 	 * dispatched.  Mark that @tg was empty.  This is automatically | 
 | 	 * cleaered on the next tg_update_disptime(). | 
 | 	 */ | 
 | 	if (!sq->nr_queued[rw]) | 
 | 		tg->flags |= THROTL_TG_WAS_EMPTY; | 
 |  | 
 | 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); | 
 |  | 
 | 	sq->nr_queued[rw]++; | 
 | 	throtl_enqueue_tg(tg); | 
 | } | 
 |  | 
 | static void tg_update_disptime(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = throtl_peek_queued(&sq->queued[READ]); | 
 | 	if (bio) | 
 | 		tg_may_dispatch(tg, bio, &read_wait); | 
 |  | 
 | 	bio = throtl_peek_queued(&sq->queued[WRITE]); | 
 | 	if (bio) | 
 | 		tg_may_dispatch(tg, bio, &write_wait); | 
 |  | 
 | 	min_wait = min(read_wait, write_wait); | 
 | 	disptime = jiffies + min_wait; | 
 |  | 
 | 	/* Update dispatch time */ | 
 | 	throtl_dequeue_tg(tg); | 
 | 	tg->disptime = disptime; | 
 | 	throtl_enqueue_tg(tg); | 
 |  | 
 | 	/* see throtl_add_bio_tg() */ | 
 | 	tg->flags &= ~THROTL_TG_WAS_EMPTY; | 
 | } | 
 |  | 
 | static void start_parent_slice_with_credit(struct throtl_grp *child_tg, | 
 | 					struct throtl_grp *parent_tg, bool rw) | 
 | { | 
 | 	if (throtl_slice_used(parent_tg, rw)) { | 
 | 		throtl_start_new_slice_with_credit(parent_tg, rw, | 
 | 				child_tg->slice_start[rw]); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	struct throtl_service_queue *parent_sq = sq->parent_sq; | 
 | 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq); | 
 | 	struct throtl_grp *tg_to_put = NULL; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* | 
 | 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio | 
 | 	 * from @tg may put its reference and @parent_sq might end up | 
 | 	 * getting released prematurely.  Remember the tg to put and put it | 
 | 	 * after @bio is transferred to @parent_sq. | 
 | 	 */ | 
 | 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); | 
 | 	sq->nr_queued[rw]--; | 
 |  | 
 | 	throtl_charge_bio(tg, bio); | 
 |  | 
 | 	/* | 
 | 	 * If our parent is another tg, we just need to transfer @bio to | 
 | 	 * the parent using throtl_add_bio_tg().  If our parent is | 
 | 	 * @td->service_queue, @bio is ready to be issued.  Put it on its | 
 | 	 * bio_lists[] and decrease total number queued.  The caller is | 
 | 	 * responsible for issuing these bios. | 
 | 	 */ | 
 | 	if (parent_tg) { | 
 | 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); | 
 | 		start_parent_slice_with_credit(tg, parent_tg, rw); | 
 | 	} else { | 
 | 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], | 
 | 				     &parent_sq->queued[rw]); | 
 | 		BUG_ON(tg->td->nr_queued[rw] <= 0); | 
 | 		tg->td->nr_queued[rw]--; | 
 | 	} | 
 |  | 
 | 	throtl_trim_slice(tg, rw); | 
 |  | 
 | 	if (tg_to_put) | 
 | 		blkg_put(tg_to_blkg(tg_to_put)); | 
 | } | 
 |  | 
 | static int throtl_dispatch_tg(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	unsigned int nr_reads = 0, nr_writes = 0; | 
 | 	unsigned int max_nr_reads = throtl_grp_quantum*3/4; | 
 | 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* Try to dispatch 75% READS and 25% WRITES */ | 
 |  | 
 | 	while ((bio = throtl_peek_queued(&sq->queued[READ])) && | 
 | 	       tg_may_dispatch(tg, bio, NULL)) { | 
 |  | 
 | 		tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
 | 		nr_reads++; | 
 |  | 
 | 		if (nr_reads >= max_nr_reads) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && | 
 | 	       tg_may_dispatch(tg, bio, NULL)) { | 
 |  | 
 | 		tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
 | 		nr_writes++; | 
 |  | 
 | 		if (nr_writes >= max_nr_writes) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_reads + nr_writes; | 
 | } | 
 |  | 
 | static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) | 
 | { | 
 | 	unsigned int nr_disp = 0; | 
 |  | 
 | 	while (1) { | 
 | 		struct throtl_grp *tg = throtl_rb_first(parent_sq); | 
 | 		struct throtl_service_queue *sq; | 
 |  | 
 | 		if (!tg) | 
 | 			break; | 
 |  | 
 | 		if (time_before(jiffies, tg->disptime)) | 
 | 			break; | 
 |  | 
 | 		throtl_dequeue_tg(tg); | 
 |  | 
 | 		nr_disp += throtl_dispatch_tg(tg); | 
 |  | 
 | 		sq = &tg->service_queue; | 
 | 		if (sq->nr_queued[0] || sq->nr_queued[1]) | 
 | 			tg_update_disptime(tg); | 
 |  | 
 | 		if (nr_disp >= throtl_quantum) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_disp; | 
 | } | 
 |  | 
 | static bool throtl_can_upgrade(struct throtl_data *td, | 
 | 	struct throtl_grp *this_tg); | 
 | /** | 
 |  * throtl_pending_timer_fn - timer function for service_queue->pending_timer | 
 |  * @t: the pending_timer member of the throtl_service_queue being serviced | 
 |  * | 
 |  * This timer is armed when a child throtl_grp with active bio's become | 
 |  * pending and queued on the service_queue's pending_tree and expires when | 
 |  * the first child throtl_grp should be dispatched.  This function | 
 |  * dispatches bio's from the children throtl_grps to the parent | 
 |  * service_queue. | 
 |  * | 
 |  * If the parent's parent is another throtl_grp, dispatching is propagated | 
 |  * by either arming its pending_timer or repeating dispatch directly.  If | 
 |  * the top-level service_tree is reached, throtl_data->dispatch_work is | 
 |  * kicked so that the ready bio's are issued. | 
 |  */ | 
 | static void throtl_pending_timer_fn(struct timer_list *t) | 
 | { | 
 | 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); | 
 | 	struct throtl_grp *tg = sq_to_tg(sq); | 
 | 	struct throtl_data *td = sq_to_td(sq); | 
 | 	struct request_queue *q = td->queue; | 
 | 	struct throtl_service_queue *parent_sq; | 
 | 	bool dispatched; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irq(&q->queue_lock); | 
 | 	if (throtl_can_upgrade(td, NULL)) | 
 | 		throtl_upgrade_state(td); | 
 |  | 
 | again: | 
 | 	parent_sq = sq->parent_sq; | 
 | 	dispatched = false; | 
 |  | 
 | 	while (true) { | 
 | 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", | 
 | 			   sq->nr_queued[READ] + sq->nr_queued[WRITE], | 
 | 			   sq->nr_queued[READ], sq->nr_queued[WRITE]); | 
 |  | 
 | 		ret = throtl_select_dispatch(sq); | 
 | 		if (ret) { | 
 | 			throtl_log(sq, "bios disp=%u", ret); | 
 | 			dispatched = true; | 
 | 		} | 
 |  | 
 | 		if (throtl_schedule_next_dispatch(sq, false)) | 
 | 			break; | 
 |  | 
 | 		/* this dispatch windows is still open, relax and repeat */ | 
 | 		spin_unlock_irq(&q->queue_lock); | 
 | 		cpu_relax(); | 
 | 		spin_lock_irq(&q->queue_lock); | 
 | 	} | 
 |  | 
 | 	if (!dispatched) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (parent_sq) { | 
 | 		/* @parent_sq is another throl_grp, propagate dispatch */ | 
 | 		if (tg->flags & THROTL_TG_WAS_EMPTY) { | 
 | 			tg_update_disptime(tg); | 
 | 			if (!throtl_schedule_next_dispatch(parent_sq, false)) { | 
 | 				/* window is already open, repeat dispatching */ | 
 | 				sq = parent_sq; | 
 | 				tg = sq_to_tg(sq); | 
 | 				goto again; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* reached the top-level, queue issueing */ | 
 | 		queue_work(kthrotld_workqueue, &td->dispatch_work); | 
 | 	} | 
 | out_unlock: | 
 | 	spin_unlock_irq(&q->queue_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work | 
 |  * @work: work item being executed | 
 |  * | 
 |  * This function is queued for execution when bio's reach the bio_lists[] | 
 |  * of throtl_data->service_queue.  Those bio's are ready and issued by this | 
 |  * function. | 
 |  */ | 
 | static void blk_throtl_dispatch_work_fn(struct work_struct *work) | 
 | { | 
 | 	struct throtl_data *td = container_of(work, struct throtl_data, | 
 | 					      dispatch_work); | 
 | 	struct throtl_service_queue *td_sq = &td->service_queue; | 
 | 	struct request_queue *q = td->queue; | 
 | 	struct bio_list bio_list_on_stack; | 
 | 	struct bio *bio; | 
 | 	struct blk_plug plug; | 
 | 	int rw; | 
 |  | 
 | 	bio_list_init(&bio_list_on_stack); | 
 |  | 
 | 	spin_lock_irq(&q->queue_lock); | 
 | 	for (rw = READ; rw <= WRITE; rw++) | 
 | 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) | 
 | 			bio_list_add(&bio_list_on_stack, bio); | 
 | 	spin_unlock_irq(&q->queue_lock); | 
 |  | 
 | 	if (!bio_list_empty(&bio_list_on_stack)) { | 
 | 		blk_start_plug(&plug); | 
 | 		while((bio = bio_list_pop(&bio_list_on_stack))) | 
 | 			generic_make_request(bio); | 
 | 		blk_finish_plug(&plug); | 
 | 	} | 
 | } | 
 |  | 
 | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			      int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	u64 v = *(u64 *)((void *)tg + off); | 
 |  | 
 | 	if (v == U64_MAX) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, v); | 
 | } | 
 |  | 
 | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			       int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	unsigned int v = *(unsigned int *)((void *)tg + off); | 
 |  | 
 | 	if (v == UINT_MAX) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, v); | 
 | } | 
 |  | 
 | static int tg_print_conf_u64(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, | 
 | 			  &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_print_conf_uint(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, | 
 | 			  &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tg_conf_updated(struct throtl_grp *tg, bool global) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct blkcg_gq *blkg; | 
 |  | 
 | 	throtl_log(&tg->service_queue, | 
 | 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", | 
 | 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), | 
 | 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); | 
 |  | 
 | 	/* | 
 | 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is | 
 | 	 * considered to have rules if either the tg itself or any of its | 
 | 	 * ancestors has rules.  This identifies groups without any | 
 | 	 * restrictions in the whole hierarchy and allows them to bypass | 
 | 	 * blk-throttle. | 
 | 	 */ | 
 | 	blkg_for_each_descendant_pre(blkg, pos_css, | 
 | 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { | 
 | 		struct throtl_grp *this_tg = blkg_to_tg(blkg); | 
 | 		struct throtl_grp *parent_tg; | 
 |  | 
 | 		tg_update_has_rules(this_tg); | 
 | 		/* ignore root/second level */ | 
 | 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || | 
 | 		    !blkg->parent->parent) | 
 | 			continue; | 
 | 		parent_tg = blkg_to_tg(blkg->parent); | 
 | 		/* | 
 | 		 * make sure all children has lower idle time threshold and | 
 | 		 * higher latency target | 
 | 		 */ | 
 | 		this_tg->idletime_threshold = min(this_tg->idletime_threshold, | 
 | 				parent_tg->idletime_threshold); | 
 | 		this_tg->latency_target = max(this_tg->latency_target, | 
 | 				parent_tg->latency_target); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're already holding queue_lock and know @tg is valid.  Let's | 
 | 	 * apply the new config directly. | 
 | 	 * | 
 | 	 * Restart the slices for both READ and WRITES. It might happen | 
 | 	 * that a group's limit are dropped suddenly and we don't want to | 
 | 	 * account recently dispatched IO with new low rate. | 
 | 	 */ | 
 | 	throtl_start_new_slice(tg, 0); | 
 | 	throtl_start_new_slice(tg, 1); | 
 |  | 
 | 	if (tg->flags & THROTL_TG_PENDING) { | 
 | 		tg_update_disptime(tg); | 
 | 		throtl_schedule_next_dispatch(sq->parent_sq, true); | 
 | 	} | 
 | } | 
 |  | 
 | static ssize_t tg_set_conf(struct kernfs_open_file *of, | 
 | 			   char *buf, size_t nbytes, loff_t off, bool is_u64) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
 | 	struct blkg_conf_ctx ctx; | 
 | 	struct throtl_grp *tg; | 
 | 	int ret; | 
 | 	u64 v; | 
 |  | 
 | 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (sscanf(ctx.body, "%llu", &v) != 1) | 
 | 		goto out_finish; | 
 | 	if (!v) | 
 | 		v = U64_MAX; | 
 |  | 
 | 	tg = blkg_to_tg(ctx.blkg); | 
 |  | 
 | 	if (is_u64) | 
 | 		*(u64 *)((void *)tg + of_cft(of)->private) = v; | 
 | 	else | 
 | 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v; | 
 |  | 
 | 	tg_conf_updated(tg, false); | 
 | 	ret = 0; | 
 | out_finish: | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return ret ?: nbytes; | 
 | } | 
 |  | 
 | static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, | 
 | 			       char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	return tg_set_conf(of, buf, nbytes, off, true); | 
 | } | 
 |  | 
 | static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	return tg_set_conf(of, buf, nbytes, off, false); | 
 | } | 
 |  | 
 | static int tg_print_rwstat(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  blkg_prfill_rwstat, &blkcg_policy_throtl, | 
 | 			  seq_cft(sf)->private, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, | 
 | 				      struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct blkg_rwstat_sample sum; | 
 |  | 
 | 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, | 
 | 				  &sum); | 
 | 	return __blkg_prfill_rwstat(sf, pd, &sum); | 
 | } | 
 |  | 
 | static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl, | 
 | 			  seq_cft(sf)->private, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct cftype throtl_legacy_files[] = { | 
 | 	{ | 
 | 		.name = "throttle.read_bps_device", | 
 | 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), | 
 | 		.seq_show = tg_print_conf_u64, | 
 | 		.write = tg_set_conf_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.write_bps_device", | 
 | 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), | 
 | 		.seq_show = tg_print_conf_u64, | 
 | 		.write = tg_set_conf_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.read_iops_device", | 
 | 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), | 
 | 		.seq_show = tg_print_conf_uint, | 
 | 		.write = tg_set_conf_uint, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.write_iops_device", | 
 | 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), | 
 | 		.seq_show = tg_print_conf_uint, | 
 | 		.write = tg_set_conf_uint, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_service_bytes", | 
 | 		.private = offsetof(struct throtl_grp, stat_bytes), | 
 | 		.seq_show = tg_print_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_service_bytes_recursive", | 
 | 		.private = offsetof(struct throtl_grp, stat_bytes), | 
 | 		.seq_show = tg_print_rwstat_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_serviced", | 
 | 		.private = offsetof(struct throtl_grp, stat_ios), | 
 | 		.seq_show = tg_print_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "throttle.io_serviced_recursive", | 
 | 		.private = offsetof(struct throtl_grp, stat_ios), | 
 | 		.seq_show = tg_print_rwstat_recursive, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			 int off) | 
 | { | 
 | 	struct throtl_grp *tg = pd_to_tg(pd); | 
 | 	const char *dname = blkg_dev_name(pd->blkg); | 
 | 	char bufs[4][21] = { "max", "max", "max", "max" }; | 
 | 	u64 bps_dft; | 
 | 	unsigned int iops_dft; | 
 | 	char idle_time[26] = ""; | 
 | 	char latency_time[26] = ""; | 
 |  | 
 | 	if (!dname) | 
 | 		return 0; | 
 |  | 
 | 	if (off == LIMIT_LOW) { | 
 | 		bps_dft = 0; | 
 | 		iops_dft = 0; | 
 | 	} else { | 
 | 		bps_dft = U64_MAX; | 
 | 		iops_dft = UINT_MAX; | 
 | 	} | 
 |  | 
 | 	if (tg->bps_conf[READ][off] == bps_dft && | 
 | 	    tg->bps_conf[WRITE][off] == bps_dft && | 
 | 	    tg->iops_conf[READ][off] == iops_dft && | 
 | 	    tg->iops_conf[WRITE][off] == iops_dft && | 
 | 	    (off != LIMIT_LOW || | 
 | 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && | 
 | 	      tg->latency_target_conf == DFL_LATENCY_TARGET))) | 
 | 		return 0; | 
 |  | 
 | 	if (tg->bps_conf[READ][off] != U64_MAX) | 
 | 		snprintf(bufs[0], sizeof(bufs[0]), "%llu", | 
 | 			tg->bps_conf[READ][off]); | 
 | 	if (tg->bps_conf[WRITE][off] != U64_MAX) | 
 | 		snprintf(bufs[1], sizeof(bufs[1]), "%llu", | 
 | 			tg->bps_conf[WRITE][off]); | 
 | 	if (tg->iops_conf[READ][off] != UINT_MAX) | 
 | 		snprintf(bufs[2], sizeof(bufs[2]), "%u", | 
 | 			tg->iops_conf[READ][off]); | 
 | 	if (tg->iops_conf[WRITE][off] != UINT_MAX) | 
 | 		snprintf(bufs[3], sizeof(bufs[3]), "%u", | 
 | 			tg->iops_conf[WRITE][off]); | 
 | 	if (off == LIMIT_LOW) { | 
 | 		if (tg->idletime_threshold_conf == ULONG_MAX) | 
 | 			strcpy(idle_time, " idle=max"); | 
 | 		else | 
 | 			snprintf(idle_time, sizeof(idle_time), " idle=%lu", | 
 | 				tg->idletime_threshold_conf); | 
 |  | 
 | 		if (tg->latency_target_conf == ULONG_MAX) | 
 | 			strcpy(latency_time, " latency=max"); | 
 | 		else | 
 | 			snprintf(latency_time, sizeof(latency_time), | 
 | 				" latency=%lu", tg->latency_target_conf); | 
 | 	} | 
 |  | 
 | 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", | 
 | 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, | 
 | 		   latency_time); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_print_limit(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, | 
 | 			  &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t tg_set_limit(struct kernfs_open_file *of, | 
 | 			  char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
 | 	struct blkg_conf_ctx ctx; | 
 | 	struct throtl_grp *tg; | 
 | 	u64 v[4]; | 
 | 	unsigned long idle_time; | 
 | 	unsigned long latency_time; | 
 | 	int ret; | 
 | 	int index = of_cft(of)->private; | 
 |  | 
 | 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	tg = blkg_to_tg(ctx.blkg); | 
 |  | 
 | 	v[0] = tg->bps_conf[READ][index]; | 
 | 	v[1] = tg->bps_conf[WRITE][index]; | 
 | 	v[2] = tg->iops_conf[READ][index]; | 
 | 	v[3] = tg->iops_conf[WRITE][index]; | 
 |  | 
 | 	idle_time = tg->idletime_threshold_conf; | 
 | 	latency_time = tg->latency_target_conf; | 
 | 	while (true) { | 
 | 		char tok[27];	/* wiops=18446744073709551616 */ | 
 | 		char *p; | 
 | 		u64 val = U64_MAX; | 
 | 		int len; | 
 |  | 
 | 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) | 
 | 			break; | 
 | 		if (tok[0] == '\0') | 
 | 			break; | 
 | 		ctx.body += len; | 
 |  | 
 | 		ret = -EINVAL; | 
 | 		p = tok; | 
 | 		strsep(&p, "="); | 
 | 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) | 
 | 			goto out_finish; | 
 |  | 
 | 		ret = -ERANGE; | 
 | 		if (!val) | 
 | 			goto out_finish; | 
 |  | 
 | 		ret = -EINVAL; | 
 | 		if (!strcmp(tok, "rbps")) | 
 | 			v[0] = val; | 
 | 		else if (!strcmp(tok, "wbps")) | 
 | 			v[1] = val; | 
 | 		else if (!strcmp(tok, "riops")) | 
 | 			v[2] = min_t(u64, val, UINT_MAX); | 
 | 		else if (!strcmp(tok, "wiops")) | 
 | 			v[3] = min_t(u64, val, UINT_MAX); | 
 | 		else if (off == LIMIT_LOW && !strcmp(tok, "idle")) | 
 | 			idle_time = val; | 
 | 		else if (off == LIMIT_LOW && !strcmp(tok, "latency")) | 
 | 			latency_time = val; | 
 | 		else | 
 | 			goto out_finish; | 
 | 	} | 
 |  | 
 | 	tg->bps_conf[READ][index] = v[0]; | 
 | 	tg->bps_conf[WRITE][index] = v[1]; | 
 | 	tg->iops_conf[READ][index] = v[2]; | 
 | 	tg->iops_conf[WRITE][index] = v[3]; | 
 |  | 
 | 	if (index == LIMIT_MAX) { | 
 | 		tg->bps[READ][index] = v[0]; | 
 | 		tg->bps[WRITE][index] = v[1]; | 
 | 		tg->iops[READ][index] = v[2]; | 
 | 		tg->iops[WRITE][index] = v[3]; | 
 | 	} | 
 | 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], | 
 | 		tg->bps_conf[READ][LIMIT_MAX]); | 
 | 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], | 
 | 		tg->bps_conf[WRITE][LIMIT_MAX]); | 
 | 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], | 
 | 		tg->iops_conf[READ][LIMIT_MAX]); | 
 | 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], | 
 | 		tg->iops_conf[WRITE][LIMIT_MAX]); | 
 | 	tg->idletime_threshold_conf = idle_time; | 
 | 	tg->latency_target_conf = latency_time; | 
 |  | 
 | 	/* force user to configure all settings for low limit  */ | 
 | 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || | 
 | 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || | 
 | 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || | 
 | 	    tg->latency_target_conf == DFL_LATENCY_TARGET) { | 
 | 		tg->bps[READ][LIMIT_LOW] = 0; | 
 | 		tg->bps[WRITE][LIMIT_LOW] = 0; | 
 | 		tg->iops[READ][LIMIT_LOW] = 0; | 
 | 		tg->iops[WRITE][LIMIT_LOW] = 0; | 
 | 		tg->idletime_threshold = DFL_IDLE_THRESHOLD; | 
 | 		tg->latency_target = DFL_LATENCY_TARGET; | 
 | 	} else if (index == LIMIT_LOW) { | 
 | 		tg->idletime_threshold = tg->idletime_threshold_conf; | 
 | 		tg->latency_target = tg->latency_target_conf; | 
 | 	} | 
 |  | 
 | 	blk_throtl_update_limit_valid(tg->td); | 
 | 	if (tg->td->limit_valid[LIMIT_LOW]) { | 
 | 		if (index == LIMIT_LOW) | 
 | 			tg->td->limit_index = LIMIT_LOW; | 
 | 	} else | 
 | 		tg->td->limit_index = LIMIT_MAX; | 
 | 	tg_conf_updated(tg, index == LIMIT_LOW && | 
 | 		tg->td->limit_valid[LIMIT_LOW]); | 
 | 	ret = 0; | 
 | out_finish: | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return ret ?: nbytes; | 
 | } | 
 |  | 
 | static struct cftype throtl_files[] = { | 
 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | 	{ | 
 | 		.name = "low", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = tg_print_limit, | 
 | 		.write = tg_set_limit, | 
 | 		.private = LIMIT_LOW, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 		.name = "max", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = tg_print_limit, | 
 | 		.write = tg_set_limit, | 
 | 		.private = LIMIT_MAX, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | static void throtl_shutdown_wq(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 |  | 
 | 	cancel_work_sync(&td->dispatch_work); | 
 | } | 
 |  | 
 | static struct blkcg_policy blkcg_policy_throtl = { | 
 | 	.dfl_cftypes		= throtl_files, | 
 | 	.legacy_cftypes		= throtl_legacy_files, | 
 |  | 
 | 	.pd_alloc_fn		= throtl_pd_alloc, | 
 | 	.pd_init_fn		= throtl_pd_init, | 
 | 	.pd_online_fn		= throtl_pd_online, | 
 | 	.pd_offline_fn		= throtl_pd_offline, | 
 | 	.pd_free_fn		= throtl_pd_free, | 
 | }; | 
 |  | 
 | static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) | 
 | { | 
 | 	unsigned long rtime = jiffies, wtime = jiffies; | 
 |  | 
 | 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) | 
 | 		rtime = tg->last_low_overflow_time[READ]; | 
 | 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) | 
 | 		wtime = tg->last_low_overflow_time[WRITE]; | 
 | 	return min(rtime, wtime); | 
 | } | 
 |  | 
 | /* tg should not be an intermediate node */ | 
 | static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *parent_sq; | 
 | 	struct throtl_grp *parent = tg; | 
 | 	unsigned long ret = __tg_last_low_overflow_time(tg); | 
 |  | 
 | 	while (true) { | 
 | 		parent_sq = parent->service_queue.parent_sq; | 
 | 		parent = sq_to_tg(parent_sq); | 
 | 		if (!parent) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * The parent doesn't have low limit, it always reaches low | 
 | 		 * limit. Its overflow time is useless for children | 
 | 		 */ | 
 | 		if (!parent->bps[READ][LIMIT_LOW] && | 
 | 		    !parent->iops[READ][LIMIT_LOW] && | 
 | 		    !parent->bps[WRITE][LIMIT_LOW] && | 
 | 		    !parent->iops[WRITE][LIMIT_LOW]) | 
 | 			continue; | 
 | 		if (time_after(__tg_last_low_overflow_time(parent), ret)) | 
 | 			ret = __tg_last_low_overflow_time(parent); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool throtl_tg_is_idle(struct throtl_grp *tg) | 
 | { | 
 | 	/* | 
 | 	 * cgroup is idle if: | 
 | 	 * - single idle is too long, longer than a fixed value (in case user | 
 | 	 *   configure a too big threshold) or 4 times of idletime threshold | 
 | 	 * - average think time is more than threshold | 
 | 	 * - IO latency is largely below threshold | 
 | 	 */ | 
 | 	unsigned long time; | 
 | 	bool ret; | 
 |  | 
 | 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); | 
 | 	ret = tg->latency_target == DFL_LATENCY_TARGET || | 
 | 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD || | 
 | 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time || | 
 | 	      tg->avg_idletime > tg->idletime_threshold || | 
 | 	      (tg->latency_target && tg->bio_cnt && | 
 | 		tg->bad_bio_cnt * 5 < tg->bio_cnt); | 
 | 	throtl_log(&tg->service_queue, | 
 | 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", | 
 | 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, | 
 | 		tg->bio_cnt, ret, tg->td->scale); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool throtl_tg_can_upgrade(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_service_queue *sq = &tg->service_queue; | 
 | 	bool read_limit, write_limit; | 
 |  | 
 | 	/* | 
 | 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always | 
 | 	 * reaches), it's ok to upgrade to next limit | 
 | 	 */ | 
 | 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; | 
 | 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; | 
 | 	if (!read_limit && !write_limit) | 
 | 		return true; | 
 | 	if (read_limit && sq->nr_queued[READ] && | 
 | 	    (!write_limit || sq->nr_queued[WRITE])) | 
 | 		return true; | 
 | 	if (write_limit && sq->nr_queued[WRITE] && | 
 | 	    (!read_limit || sq->nr_queued[READ])) | 
 | 		return true; | 
 |  | 
 | 	if (time_after_eq(jiffies, | 
 | 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && | 
 | 	    throtl_tg_is_idle(tg)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) | 
 | { | 
 | 	while (true) { | 
 | 		if (throtl_tg_can_upgrade(tg)) | 
 | 			return true; | 
 | 		tg = sq_to_tg(tg->service_queue.parent_sq); | 
 | 		if (!tg || !tg_to_blkg(tg)->parent) | 
 | 			return false; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool throtl_can_upgrade(struct throtl_data *td, | 
 | 	struct throtl_grp *this_tg) | 
 | { | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct blkcg_gq *blkg; | 
 |  | 
 | 	if (td->limit_index != LIMIT_LOW) | 
 | 		return false; | 
 |  | 
 | 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) | 
 | 		return false; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { | 
 | 		struct throtl_grp *tg = blkg_to_tg(blkg); | 
 |  | 
 | 		if (tg == this_tg) | 
 | 			continue; | 
 | 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) | 
 | 			continue; | 
 | 		if (!throtl_hierarchy_can_upgrade(tg)) { | 
 | 			rcu_read_unlock(); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void throtl_upgrade_check(struct throtl_grp *tg) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 |  | 
 | 	if (tg->td->limit_index != LIMIT_LOW) | 
 | 		return; | 
 |  | 
 | 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) | 
 | 		return; | 
 |  | 
 | 	tg->last_check_time = now; | 
 |  | 
 | 	if (!time_after_eq(now, | 
 | 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) | 
 | 		return; | 
 |  | 
 | 	if (throtl_can_upgrade(tg->td, NULL)) | 
 | 		throtl_upgrade_state(tg->td); | 
 | } | 
 |  | 
 | static void throtl_upgrade_state(struct throtl_data *td) | 
 | { | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct blkcg_gq *blkg; | 
 |  | 
 | 	throtl_log(&td->service_queue, "upgrade to max"); | 
 | 	td->limit_index = LIMIT_MAX; | 
 | 	td->low_upgrade_time = jiffies; | 
 | 	td->scale = 0; | 
 | 	rcu_read_lock(); | 
 | 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { | 
 | 		struct throtl_grp *tg = blkg_to_tg(blkg); | 
 | 		struct throtl_service_queue *sq = &tg->service_queue; | 
 |  | 
 | 		tg->disptime = jiffies - 1; | 
 | 		throtl_select_dispatch(sq); | 
 | 		throtl_schedule_next_dispatch(sq, true); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	throtl_select_dispatch(&td->service_queue); | 
 | 	throtl_schedule_next_dispatch(&td->service_queue, true); | 
 | 	queue_work(kthrotld_workqueue, &td->dispatch_work); | 
 | } | 
 |  | 
 | static void throtl_downgrade_state(struct throtl_data *td, int new) | 
 | { | 
 | 	td->scale /= 2; | 
 |  | 
 | 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); | 
 | 	if (td->scale) { | 
 | 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	td->limit_index = new; | 
 | 	td->low_downgrade_time = jiffies; | 
 | } | 
 |  | 
 | static bool throtl_tg_can_downgrade(struct throtl_grp *tg) | 
 | { | 
 | 	struct throtl_data *td = tg->td; | 
 | 	unsigned long now = jiffies; | 
 |  | 
 | 	/* | 
 | 	 * If cgroup is below low limit, consider downgrade and throttle other | 
 | 	 * cgroups | 
 | 	 */ | 
 | 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && | 
 | 	    time_after_eq(now, tg_last_low_overflow_time(tg) + | 
 | 					td->throtl_slice) && | 
 | 	    (!throtl_tg_is_idle(tg) || | 
 | 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) | 
 | { | 
 | 	while (true) { | 
 | 		if (!throtl_tg_can_downgrade(tg)) | 
 | 			return false; | 
 | 		tg = sq_to_tg(tg->service_queue.parent_sq); | 
 | 		if (!tg || !tg_to_blkg(tg)->parent) | 
 | 			break; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static void throtl_downgrade_check(struct throtl_grp *tg) | 
 | { | 
 | 	uint64_t bps; | 
 | 	unsigned int iops; | 
 | 	unsigned long elapsed_time; | 
 | 	unsigned long now = jiffies; | 
 |  | 
 | 	if (tg->td->limit_index != LIMIT_MAX || | 
 | 	    !tg->td->limit_valid[LIMIT_LOW]) | 
 | 		return; | 
 | 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) | 
 | 		return; | 
 | 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) | 
 | 		return; | 
 |  | 
 | 	elapsed_time = now - tg->last_check_time; | 
 | 	tg->last_check_time = now; | 
 |  | 
 | 	if (time_before(now, tg_last_low_overflow_time(tg) + | 
 | 			tg->td->throtl_slice)) | 
 | 		return; | 
 |  | 
 | 	if (tg->bps[READ][LIMIT_LOW]) { | 
 | 		bps = tg->last_bytes_disp[READ] * HZ; | 
 | 		do_div(bps, elapsed_time); | 
 | 		if (bps >= tg->bps[READ][LIMIT_LOW]) | 
 | 			tg->last_low_overflow_time[READ] = now; | 
 | 	} | 
 |  | 
 | 	if (tg->bps[WRITE][LIMIT_LOW]) { | 
 | 		bps = tg->last_bytes_disp[WRITE] * HZ; | 
 | 		do_div(bps, elapsed_time); | 
 | 		if (bps >= tg->bps[WRITE][LIMIT_LOW]) | 
 | 			tg->last_low_overflow_time[WRITE] = now; | 
 | 	} | 
 |  | 
 | 	if (tg->iops[READ][LIMIT_LOW]) { | 
 | 		iops = tg->last_io_disp[READ] * HZ / elapsed_time; | 
 | 		if (iops >= tg->iops[READ][LIMIT_LOW]) | 
 | 			tg->last_low_overflow_time[READ] = now; | 
 | 	} | 
 |  | 
 | 	if (tg->iops[WRITE][LIMIT_LOW]) { | 
 | 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; | 
 | 		if (iops >= tg->iops[WRITE][LIMIT_LOW]) | 
 | 			tg->last_low_overflow_time[WRITE] = now; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If cgroup is below low limit, consider downgrade and throttle other | 
 | 	 * cgroups | 
 | 	 */ | 
 | 	if (throtl_hierarchy_can_downgrade(tg)) | 
 | 		throtl_downgrade_state(tg->td, LIMIT_LOW); | 
 |  | 
 | 	tg->last_bytes_disp[READ] = 0; | 
 | 	tg->last_bytes_disp[WRITE] = 0; | 
 | 	tg->last_io_disp[READ] = 0; | 
 | 	tg->last_io_disp[WRITE] = 0; | 
 | } | 
 |  | 
 | static void blk_throtl_update_idletime(struct throtl_grp *tg) | 
 | { | 
 | 	unsigned long now = ktime_get_ns() >> 10; | 
 | 	unsigned long last_finish_time = tg->last_finish_time; | 
 |  | 
 | 	if (now <= last_finish_time || last_finish_time == 0 || | 
 | 	    last_finish_time == tg->checked_last_finish_time) | 
 | 		return; | 
 |  | 
 | 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; | 
 | 	tg->checked_last_finish_time = last_finish_time; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | static void throtl_update_latency_buckets(struct throtl_data *td) | 
 | { | 
 | 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; | 
 | 	int i, cpu, rw; | 
 | 	unsigned long last_latency[2] = { 0 }; | 
 | 	unsigned long latency[2]; | 
 |  | 
 | 	if (!blk_queue_nonrot(td->queue)) | 
 | 		return; | 
 | 	if (time_before(jiffies, td->last_calculate_time + HZ)) | 
 | 		return; | 
 | 	td->last_calculate_time = jiffies; | 
 |  | 
 | 	memset(avg_latency, 0, sizeof(avg_latency)); | 
 | 	for (rw = READ; rw <= WRITE; rw++) { | 
 | 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { | 
 | 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; | 
 |  | 
 | 			for_each_possible_cpu(cpu) { | 
 | 				struct latency_bucket *bucket; | 
 |  | 
 | 				/* this isn't race free, but ok in practice */ | 
 | 				bucket = per_cpu_ptr(td->latency_buckets[rw], | 
 | 					cpu); | 
 | 				tmp->total_latency += bucket[i].total_latency; | 
 | 				tmp->samples += bucket[i].samples; | 
 | 				bucket[i].total_latency = 0; | 
 | 				bucket[i].samples = 0; | 
 | 			} | 
 |  | 
 | 			if (tmp->samples >= 32) { | 
 | 				int samples = tmp->samples; | 
 |  | 
 | 				latency[rw] = tmp->total_latency; | 
 |  | 
 | 				tmp->total_latency = 0; | 
 | 				tmp->samples = 0; | 
 | 				latency[rw] /= samples; | 
 | 				if (latency[rw] == 0) | 
 | 					continue; | 
 | 				avg_latency[rw][i].latency = latency[rw]; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (rw = READ; rw <= WRITE; rw++) { | 
 | 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { | 
 | 			if (!avg_latency[rw][i].latency) { | 
 | 				if (td->avg_buckets[rw][i].latency < last_latency[rw]) | 
 | 					td->avg_buckets[rw][i].latency = | 
 | 						last_latency[rw]; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!td->avg_buckets[rw][i].valid) | 
 | 				latency[rw] = avg_latency[rw][i].latency; | 
 | 			else | 
 | 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 + | 
 | 					avg_latency[rw][i].latency) >> 3; | 
 |  | 
 | 			td->avg_buckets[rw][i].latency = max(latency[rw], | 
 | 				last_latency[rw]); | 
 | 			td->avg_buckets[rw][i].valid = true; | 
 | 			last_latency[rw] = td->avg_buckets[rw][i].latency; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) | 
 | 		throtl_log(&td->service_queue, | 
 | 			"Latency bucket %d: read latency=%ld, read valid=%d, " | 
 | 			"write latency=%ld, write valid=%d", i, | 
 | 			td->avg_buckets[READ][i].latency, | 
 | 			td->avg_buckets[READ][i].valid, | 
 | 			td->avg_buckets[WRITE][i].latency, | 
 | 			td->avg_buckets[WRITE][i].valid); | 
 | } | 
 | #else | 
 | static inline void throtl_update_latency_buckets(struct throtl_data *td) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, | 
 | 		    struct bio *bio) | 
 | { | 
 | 	struct throtl_qnode *qn = NULL; | 
 | 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); | 
 | 	struct throtl_service_queue *sq; | 
 | 	bool rw = bio_data_dir(bio); | 
 | 	bool throttled = false; | 
 | 	struct throtl_data *td = tg->td; | 
 |  | 
 | 	WARN_ON_ONCE(!rcu_read_lock_held()); | 
 |  | 
 | 	/* see throtl_charge_bio() */ | 
 | 	if (bio_flagged(bio, BIO_THROTTLED)) | 
 | 		goto out; | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { | 
 | 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, | 
 | 				bio->bi_iter.bi_size); | 
 | 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); | 
 | 	} | 
 |  | 
 | 	if (!tg->has_rules[rw]) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irq(&q->queue_lock); | 
 |  | 
 | 	throtl_update_latency_buckets(td); | 
 |  | 
 | 	blk_throtl_update_idletime(tg); | 
 |  | 
 | 	sq = &tg->service_queue; | 
 |  | 
 | again: | 
 | 	while (true) { | 
 | 		if (tg->last_low_overflow_time[rw] == 0) | 
 | 			tg->last_low_overflow_time[rw] = jiffies; | 
 | 		throtl_downgrade_check(tg); | 
 | 		throtl_upgrade_check(tg); | 
 | 		/* throtl is FIFO - if bios are already queued, should queue */ | 
 | 		if (sq->nr_queued[rw]) | 
 | 			break; | 
 |  | 
 | 		/* if above limits, break to queue */ | 
 | 		if (!tg_may_dispatch(tg, bio, NULL)) { | 
 | 			tg->last_low_overflow_time[rw] = jiffies; | 
 | 			if (throtl_can_upgrade(td, tg)) { | 
 | 				throtl_upgrade_state(td); | 
 | 				goto again; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* within limits, let's charge and dispatch directly */ | 
 | 		throtl_charge_bio(tg, bio); | 
 |  | 
 | 		/* | 
 | 		 * We need to trim slice even when bios are not being queued | 
 | 		 * otherwise it might happen that a bio is not queued for | 
 | 		 * a long time and slice keeps on extending and trim is not | 
 | 		 * called for a long time. Now if limits are reduced suddenly | 
 | 		 * we take into account all the IO dispatched so far at new | 
 | 		 * low rate and * newly queued IO gets a really long dispatch | 
 | 		 * time. | 
 | 		 * | 
 | 		 * So keep on trimming slice even if bio is not queued. | 
 | 		 */ | 
 | 		throtl_trim_slice(tg, rw); | 
 |  | 
 | 		/* | 
 | 		 * @bio passed through this layer without being throttled. | 
 | 		 * Climb up the ladder.  If we''re already at the top, it | 
 | 		 * can be executed directly. | 
 | 		 */ | 
 | 		qn = &tg->qnode_on_parent[rw]; | 
 | 		sq = sq->parent_sq; | 
 | 		tg = sq_to_tg(sq); | 
 | 		if (!tg) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* out-of-limit, queue to @tg */ | 
 | 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", | 
 | 		   rw == READ ? 'R' : 'W', | 
 | 		   tg->bytes_disp[rw], bio->bi_iter.bi_size, | 
 | 		   tg_bps_limit(tg, rw), | 
 | 		   tg->io_disp[rw], tg_iops_limit(tg, rw), | 
 | 		   sq->nr_queued[READ], sq->nr_queued[WRITE]); | 
 |  | 
 | 	tg->last_low_overflow_time[rw] = jiffies; | 
 |  | 
 | 	td->nr_queued[rw]++; | 
 | 	throtl_add_bio_tg(bio, qn, tg); | 
 | 	throttled = true; | 
 |  | 
 | 	/* | 
 | 	 * Update @tg's dispatch time and force schedule dispatch if @tg | 
 | 	 * was empty before @bio.  The forced scheduling isn't likely to | 
 | 	 * cause undue delay as @bio is likely to be dispatched directly if | 
 | 	 * its @tg's disptime is not in the future. | 
 | 	 */ | 
 | 	if (tg->flags & THROTL_TG_WAS_EMPTY) { | 
 | 		tg_update_disptime(tg); | 
 | 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&q->queue_lock); | 
 | out: | 
 | 	bio_set_flag(bio, BIO_THROTTLED); | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | 	if (throttled || !td->track_bio_latency) | 
 | 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; | 
 | #endif | 
 | 	return throttled; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | static void throtl_track_latency(struct throtl_data *td, sector_t size, | 
 | 	int op, unsigned long time) | 
 | { | 
 | 	struct latency_bucket *latency; | 
 | 	int index; | 
 |  | 
 | 	if (!td || td->limit_index != LIMIT_LOW || | 
 | 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) || | 
 | 	    !blk_queue_nonrot(td->queue)) | 
 | 		return; | 
 |  | 
 | 	index = request_bucket_index(size); | 
 |  | 
 | 	latency = get_cpu_ptr(td->latency_buckets[op]); | 
 | 	latency[index].total_latency += time; | 
 | 	latency[index].samples++; | 
 | 	put_cpu_ptr(td->latency_buckets[op]); | 
 | } | 
 |  | 
 | void blk_throtl_stat_add(struct request *rq, u64 time_ns) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 | 	struct throtl_data *td = q->td; | 
 |  | 
 | 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), | 
 | 			     time_ns >> 10); | 
 | } | 
 |  | 
 | void blk_throtl_bio_endio(struct bio *bio) | 
 | { | 
 | 	struct blkcg_gq *blkg; | 
 | 	struct throtl_grp *tg; | 
 | 	u64 finish_time_ns; | 
 | 	unsigned long finish_time; | 
 | 	unsigned long start_time; | 
 | 	unsigned long lat; | 
 | 	int rw = bio_data_dir(bio); | 
 |  | 
 | 	blkg = bio->bi_blkg; | 
 | 	if (!blkg) | 
 | 		return; | 
 | 	tg = blkg_to_tg(blkg); | 
 |  | 
 | 	finish_time_ns = ktime_get_ns(); | 
 | 	tg->last_finish_time = finish_time_ns >> 10; | 
 |  | 
 | 	start_time = bio_issue_time(&bio->bi_issue) >> 10; | 
 | 	finish_time = __bio_issue_time(finish_time_ns) >> 10; | 
 | 	if (!start_time || finish_time <= start_time) | 
 | 		return; | 
 |  | 
 | 	lat = finish_time - start_time; | 
 | 	/* this is only for bio based driver */ | 
 | 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) | 
 | 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), | 
 | 				     bio_op(bio), lat); | 
 |  | 
 | 	if (tg->latency_target && lat >= tg->td->filtered_latency) { | 
 | 		int bucket; | 
 | 		unsigned int threshold; | 
 |  | 
 | 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); | 
 | 		threshold = tg->td->avg_buckets[rw][bucket].latency + | 
 | 			tg->latency_target; | 
 | 		if (lat > threshold) | 
 | 			tg->bad_bio_cnt++; | 
 | 		/* | 
 | 		 * Not race free, could get wrong count, which means cgroups | 
 | 		 * will be throttled | 
 | 		 */ | 
 | 		tg->bio_cnt++; | 
 | 	} | 
 |  | 
 | 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { | 
 | 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; | 
 | 		tg->bio_cnt /= 2; | 
 | 		tg->bad_bio_cnt /= 2; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Dispatch all bios from all children tg's queued on @parent_sq.  On | 
 |  * return, @parent_sq is guaranteed to not have any active children tg's | 
 |  * and all bios from previously active tg's are on @parent_sq->bio_lists[]. | 
 |  */ | 
 | static void tg_drain_bios(struct throtl_service_queue *parent_sq) | 
 | { | 
 | 	struct throtl_grp *tg; | 
 |  | 
 | 	while ((tg = throtl_rb_first(parent_sq))) { | 
 | 		struct throtl_service_queue *sq = &tg->service_queue; | 
 | 		struct bio *bio; | 
 |  | 
 | 		throtl_dequeue_tg(tg); | 
 |  | 
 | 		while ((bio = throtl_peek_queued(&sq->queued[READ]))) | 
 | 			tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
 | 		while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) | 
 | 			tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * blk_throtl_drain - drain throttled bios | 
 |  * @q: request_queue to drain throttled bios for | 
 |  * | 
 |  * Dispatch all currently throttled bios on @q through ->make_request_fn(). | 
 |  */ | 
 | void blk_throtl_drain(struct request_queue *q) | 
 | 	__releases(&q->queue_lock) __acquires(&q->queue_lock) | 
 | { | 
 | 	struct throtl_data *td = q->td; | 
 | 	struct blkcg_gq *blkg; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct bio *bio; | 
 | 	int rw; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* | 
 | 	 * Drain each tg while doing post-order walk on the blkg tree, so | 
 | 	 * that all bios are propagated to td->service_queue.  It'd be | 
 | 	 * better to walk service_queue tree directly but blkg walk is | 
 | 	 * easier. | 
 | 	 */ | 
 | 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) | 
 | 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue); | 
 |  | 
 | 	/* finally, transfer bios from top-level tg's into the td */ | 
 | 	tg_drain_bios(&td->service_queue); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	spin_unlock_irq(&q->queue_lock); | 
 |  | 
 | 	/* all bios now should be in td->service_queue, issue them */ | 
 | 	for (rw = READ; rw <= WRITE; rw++) | 
 | 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], | 
 | 						NULL))) | 
 | 			generic_make_request(bio); | 
 |  | 
 | 	spin_lock_irq(&q->queue_lock); | 
 | } | 
 |  | 
 | int blk_throtl_init(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td; | 
 | 	int ret; | 
 |  | 
 | 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 
 | 	if (!td) | 
 | 		return -ENOMEM; | 
 | 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * | 
 | 		LATENCY_BUCKET_SIZE, __alignof__(u64)); | 
 | 	if (!td->latency_buckets[READ]) { | 
 | 		kfree(td); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * | 
 | 		LATENCY_BUCKET_SIZE, __alignof__(u64)); | 
 | 	if (!td->latency_buckets[WRITE]) { | 
 | 		free_percpu(td->latency_buckets[READ]); | 
 | 		kfree(td); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); | 
 | 	throtl_service_queue_init(&td->service_queue); | 
 |  | 
 | 	q->td = td; | 
 | 	td->queue = q; | 
 |  | 
 | 	td->limit_valid[LIMIT_MAX] = true; | 
 | 	td->limit_index = LIMIT_MAX; | 
 | 	td->low_upgrade_time = jiffies; | 
 | 	td->low_downgrade_time = jiffies; | 
 |  | 
 | 	/* activate policy */ | 
 | 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl); | 
 | 	if (ret) { | 
 | 		free_percpu(td->latency_buckets[READ]); | 
 | 		free_percpu(td->latency_buckets[WRITE]); | 
 | 		kfree(td); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void blk_throtl_exit(struct request_queue *q) | 
 | { | 
 | 	BUG_ON(!q->td); | 
 | 	throtl_shutdown_wq(q); | 
 | 	blkcg_deactivate_policy(q, &blkcg_policy_throtl); | 
 | 	free_percpu(q->td->latency_buckets[READ]); | 
 | 	free_percpu(q->td->latency_buckets[WRITE]); | 
 | 	kfree(q->td); | 
 | } | 
 |  | 
 | void blk_throtl_register_queue(struct request_queue *q) | 
 | { | 
 | 	struct throtl_data *td; | 
 | 	int i; | 
 |  | 
 | 	td = q->td; | 
 | 	BUG_ON(!td); | 
 |  | 
 | 	if (blk_queue_nonrot(q)) { | 
 | 		td->throtl_slice = DFL_THROTL_SLICE_SSD; | 
 | 		td->filtered_latency = LATENCY_FILTERED_SSD; | 
 | 	} else { | 
 | 		td->throtl_slice = DFL_THROTL_SLICE_HD; | 
 | 		td->filtered_latency = LATENCY_FILTERED_HD; | 
 | 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { | 
 | 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; | 
 | 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; | 
 | 		} | 
 | 	} | 
 | #ifndef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | 	/* if no low limit, use previous default */ | 
 | 	td->throtl_slice = DFL_THROTL_SLICE_HD; | 
 | #endif | 
 |  | 
 | 	td->track_bio_latency = !queue_is_mq(q); | 
 | 	if (!td->track_bio_latency) | 
 | 		blk_stat_enable_accounting(q); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW | 
 | ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) | 
 | { | 
 | 	if (!q->td) | 
 | 		return -EINVAL; | 
 | 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); | 
 | } | 
 |  | 
 | ssize_t blk_throtl_sample_time_store(struct request_queue *q, | 
 | 	const char *page, size_t count) | 
 | { | 
 | 	unsigned long v; | 
 | 	unsigned long t; | 
 |  | 
 | 	if (!q->td) | 
 | 		return -EINVAL; | 
 | 	if (kstrtoul(page, 10, &v)) | 
 | 		return -EINVAL; | 
 | 	t = msecs_to_jiffies(v); | 
 | 	if (t == 0 || t > MAX_THROTL_SLICE) | 
 | 		return -EINVAL; | 
 | 	q->td->throtl_slice = t; | 
 | 	return count; | 
 | } | 
 | #endif | 
 |  | 
 | static int __init throtl_init(void) | 
 | { | 
 | 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 
 | 	if (!kthrotld_workqueue) | 
 | 		panic("Failed to create kthrotld\n"); | 
 |  | 
 | 	return blkcg_policy_register(&blkcg_policy_throtl); | 
 | } | 
 |  | 
 | module_init(throtl_init); |