|  | /* | 
|  | * Code for working with individual keys, and sorted sets of keys with in a | 
|  | * btree node | 
|  | * | 
|  | * Copyright 2012 Google, Inc. | 
|  | */ | 
|  |  | 
|  | #include "bcache.h" | 
|  | #include "btree.h" | 
|  | #include "debug.h" | 
|  |  | 
|  | #include <linux/random.h> | 
|  | #include <linux/prefetch.h> | 
|  |  | 
|  | /* Keylists */ | 
|  |  | 
|  | void bch_keylist_copy(struct keylist *dest, struct keylist *src) | 
|  | { | 
|  | *dest = *src; | 
|  |  | 
|  | if (src->list == src->d) { | 
|  | size_t n = (uint64_t *) src->top - src->d; | 
|  | dest->top = (struct bkey *) &dest->d[n]; | 
|  | dest->list = dest->d; | 
|  | } | 
|  | } | 
|  |  | 
|  | int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) | 
|  | { | 
|  | unsigned oldsize = (uint64_t *) l->top - l->list; | 
|  | unsigned newsize = oldsize + 2 + nptrs; | 
|  | uint64_t *new; | 
|  |  | 
|  | /* The journalling code doesn't handle the case where the keys to insert | 
|  | * is bigger than an empty write: If we just return -ENOMEM here, | 
|  | * bio_insert() and bio_invalidate() will insert the keys created so far | 
|  | * and finish the rest when the keylist is empty. | 
|  | */ | 
|  | if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | newsize = roundup_pow_of_two(newsize); | 
|  |  | 
|  | if (newsize <= KEYLIST_INLINE || | 
|  | roundup_pow_of_two(oldsize) == newsize) | 
|  | return 0; | 
|  |  | 
|  | new = krealloc(l->list == l->d ? NULL : l->list, | 
|  | sizeof(uint64_t) * newsize, GFP_NOIO); | 
|  |  | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (l->list == l->d) | 
|  | memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE); | 
|  |  | 
|  | l->list = new; | 
|  | l->top = (struct bkey *) (&l->list[oldsize]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct bkey *bch_keylist_pop(struct keylist *l) | 
|  | { | 
|  | struct bkey *k = l->bottom; | 
|  |  | 
|  | if (k == l->top) | 
|  | return NULL; | 
|  |  | 
|  | while (bkey_next(k) != l->top) | 
|  | k = bkey_next(k); | 
|  |  | 
|  | return l->top = k; | 
|  | } | 
|  |  | 
|  | /* Pointer validation */ | 
|  |  | 
|  | bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k) | 
|  | { | 
|  | unsigned i; | 
|  | char buf[80]; | 
|  |  | 
|  | if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))) | 
|  | goto bad; | 
|  |  | 
|  | if (!level && KEY_SIZE(k) > KEY_OFFSET(k)) | 
|  | goto bad; | 
|  |  | 
|  | if (!KEY_SIZE(k)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (ptr_available(c, k, i)) { | 
|  | struct cache *ca = PTR_CACHE(c, k, i); | 
|  | size_t bucket = PTR_BUCKET_NR(c, k, i); | 
|  | size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); | 
|  |  | 
|  | if (KEY_SIZE(k) + r > c->sb.bucket_size || | 
|  | bucket <  ca->sb.first_bucket || | 
|  | bucket >= ca->sb.nbuckets) | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | bad: | 
|  | bch_bkey_to_text(buf, sizeof(buf), k); | 
|  | cache_bug(c, "spotted bad key %s: %s", buf, bch_ptr_status(c, k)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool bch_ptr_bad(struct btree *b, const struct bkey *k) | 
|  | { | 
|  | struct bucket *g; | 
|  | unsigned i, stale; | 
|  |  | 
|  | if (!bkey_cmp(k, &ZERO_KEY) || | 
|  | !KEY_PTRS(k) || | 
|  | bch_ptr_invalid(b, k)) | 
|  | return true; | 
|  |  | 
|  | if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (ptr_available(b->c, k, i)) { | 
|  | g = PTR_BUCKET(b->c, k, i); | 
|  | stale = ptr_stale(b->c, k, i); | 
|  |  | 
|  | btree_bug_on(stale > 96, b, | 
|  | "key too stale: %i, need_gc %u", | 
|  | stale, b->c->need_gc); | 
|  |  | 
|  | btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), | 
|  | b, "stale dirty pointer"); | 
|  |  | 
|  | if (stale) | 
|  | return true; | 
|  |  | 
|  | #ifdef CONFIG_BCACHE_EDEBUG | 
|  | if (!mutex_trylock(&b->c->bucket_lock)) | 
|  | continue; | 
|  |  | 
|  | if (b->level) { | 
|  | if (KEY_DIRTY(k) || | 
|  | g->prio != BTREE_PRIO || | 
|  | (b->c->gc_mark_valid && | 
|  | GC_MARK(g) != GC_MARK_METADATA)) | 
|  | goto bug; | 
|  |  | 
|  | } else { | 
|  | if (g->prio == BTREE_PRIO) | 
|  | goto bug; | 
|  |  | 
|  | if (KEY_DIRTY(k) && | 
|  | b->c->gc_mark_valid && | 
|  | GC_MARK(g) != GC_MARK_DIRTY) | 
|  | goto bug; | 
|  | } | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return false; | 
|  | #ifdef CONFIG_BCACHE_EDEBUG | 
|  | bug: | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  |  | 
|  | { | 
|  | char buf[80]; | 
|  |  | 
|  | bch_bkey_to_text(buf, sizeof(buf), k); | 
|  | btree_bug(b, | 
|  | "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i", | 
|  | buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), | 
|  | g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); | 
|  | } | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Key/pointer manipulation */ | 
|  |  | 
|  | void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, | 
|  | unsigned i) | 
|  | { | 
|  | BUG_ON(i > KEY_PTRS(src)); | 
|  |  | 
|  | /* Only copy the header, key, and one pointer. */ | 
|  | memcpy(dest, src, 2 * sizeof(uint64_t)); | 
|  | dest->ptr[0] = src->ptr[i]; | 
|  | SET_KEY_PTRS(dest, 1); | 
|  | /* We didn't copy the checksum so clear that bit. */ | 
|  | SET_KEY_CSUM(dest, 0); | 
|  | } | 
|  |  | 
|  | bool __bch_cut_front(const struct bkey *where, struct bkey *k) | 
|  | { | 
|  | unsigned i, len = 0; | 
|  |  | 
|  | if (bkey_cmp(where, &START_KEY(k)) <= 0) | 
|  | return false; | 
|  |  | 
|  | if (bkey_cmp(where, k) < 0) | 
|  | len = KEY_OFFSET(k) - KEY_OFFSET(where); | 
|  | else | 
|  | bkey_copy_key(k, where); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); | 
|  |  | 
|  | BUG_ON(len > KEY_SIZE(k)); | 
|  | SET_KEY_SIZE(k, len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool __bch_cut_back(const struct bkey *where, struct bkey *k) | 
|  | { | 
|  | unsigned len = 0; | 
|  |  | 
|  | if (bkey_cmp(where, k) >= 0) | 
|  | return false; | 
|  |  | 
|  | BUG_ON(KEY_INODE(where) != KEY_INODE(k)); | 
|  |  | 
|  | if (bkey_cmp(where, &START_KEY(k)) > 0) | 
|  | len = KEY_OFFSET(where) - KEY_START(k); | 
|  |  | 
|  | bkey_copy_key(k, where); | 
|  |  | 
|  | BUG_ON(len > KEY_SIZE(k)); | 
|  | SET_KEY_SIZE(k, len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static uint64_t merge_chksums(struct bkey *l, struct bkey *r) | 
|  | { | 
|  | return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & | 
|  | ~((uint64_t)1 << 63); | 
|  | } | 
|  |  | 
|  | /* Tries to merge l and r: l should be lower than r | 
|  | * Returns true if we were able to merge. If we did merge, l will be the merged | 
|  | * key, r will be untouched. | 
|  | */ | 
|  | bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | if (key_merging_disabled(b->c)) | 
|  | return false; | 
|  |  | 
|  | if (KEY_PTRS(l) != KEY_PTRS(r) || | 
|  | KEY_DIRTY(l) != KEY_DIRTY(r) || | 
|  | bkey_cmp(l, &START_KEY(r))) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(l); i++) | 
|  | if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || | 
|  | PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) | 
|  | return false; | 
|  |  | 
|  | /* Keys with no pointers aren't restricted to one bucket and could | 
|  | * overflow KEY_SIZE | 
|  | */ | 
|  | if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { | 
|  | SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); | 
|  | SET_KEY_SIZE(l, USHRT_MAX); | 
|  |  | 
|  | bch_cut_front(l, r); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (KEY_CSUM(l)) { | 
|  | if (KEY_CSUM(r)) | 
|  | l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); | 
|  | else | 
|  | SET_KEY_CSUM(l, 0); | 
|  | } | 
|  |  | 
|  | SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); | 
|  | SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Binary tree stuff for auxiliary search trees */ | 
|  |  | 
|  | static unsigned inorder_next(unsigned j, unsigned size) | 
|  | { | 
|  | if (j * 2 + 1 < size) { | 
|  | j = j * 2 + 1; | 
|  |  | 
|  | while (j * 2 < size) | 
|  | j *= 2; | 
|  | } else | 
|  | j >>= ffz(j) + 1; | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | static unsigned inorder_prev(unsigned j, unsigned size) | 
|  | { | 
|  | if (j * 2 < size) { | 
|  | j = j * 2; | 
|  |  | 
|  | while (j * 2 + 1 < size) | 
|  | j = j * 2 + 1; | 
|  | } else | 
|  | j >>= ffs(j); | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | /* I have no idea why this code works... and I'm the one who wrote it | 
|  | * | 
|  | * However, I do know what it does: | 
|  | * Given a binary tree constructed in an array (i.e. how you normally implement | 
|  | * a heap), it converts a node in the tree - referenced by array index - to the | 
|  | * index it would have if you did an inorder traversal. | 
|  | * | 
|  | * Also tested for every j, size up to size somewhere around 6 million. | 
|  | * | 
|  | * The binary tree starts at array index 1, not 0 | 
|  | * extra is a function of size: | 
|  | *   extra = (size - rounddown_pow_of_two(size - 1)) << 1; | 
|  | */ | 
|  | static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) | 
|  | { | 
|  | unsigned b = fls(j); | 
|  | unsigned shift = fls(size - 1) - b; | 
|  |  | 
|  | j  ^= 1U << (b - 1); | 
|  | j <<= 1; | 
|  | j  |= 1; | 
|  | j <<= shift; | 
|  |  | 
|  | if (j > extra) | 
|  | j -= (j - extra) >> 1; | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | static unsigned to_inorder(unsigned j, struct bset_tree *t) | 
|  | { | 
|  | return __to_inorder(j, t->size, t->extra); | 
|  | } | 
|  |  | 
|  | static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) | 
|  | { | 
|  | unsigned shift; | 
|  |  | 
|  | if (j > extra) | 
|  | j += j - extra; | 
|  |  | 
|  | shift = ffs(j); | 
|  |  | 
|  | j >>= shift; | 
|  | j  |= roundup_pow_of_two(size) >> shift; | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) | 
|  | { | 
|  | return __inorder_to_tree(j, t->size, t->extra); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | void inorder_test(void) | 
|  | { | 
|  | unsigned long done = 0; | 
|  | ktime_t start = ktime_get(); | 
|  |  | 
|  | for (unsigned size = 2; | 
|  | size < 65536000; | 
|  | size++) { | 
|  | unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; | 
|  | unsigned i = 1, j = rounddown_pow_of_two(size - 1); | 
|  |  | 
|  | if (!(size % 4096)) | 
|  | printk(KERN_NOTICE "loop %u, %llu per us\n", size, | 
|  | done / ktime_us_delta(ktime_get(), start)); | 
|  |  | 
|  | while (1) { | 
|  | if (__inorder_to_tree(i, size, extra) != j) | 
|  | panic("size %10u j %10u i %10u", size, j, i); | 
|  |  | 
|  | if (__to_inorder(j, size, extra) != i) | 
|  | panic("size %10u j %10u i %10u", size, j, i); | 
|  |  | 
|  | if (j == rounddown_pow_of_two(size) - 1) | 
|  | break; | 
|  |  | 
|  | BUG_ON(inorder_prev(inorder_next(j, size), size) != j); | 
|  |  | 
|  | j = inorder_next(j, size); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | done += size - 1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Cacheline/offset <-> bkey pointer arithmetic: | 
|  | * | 
|  | * t->tree is a binary search tree in an array; each node corresponds to a key | 
|  | * in one cacheline in t->set (BSET_CACHELINE bytes). | 
|  | * | 
|  | * This means we don't have to store the full index of the key that a node in | 
|  | * the binary tree points to; to_inorder() gives us the cacheline, and then | 
|  | * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. | 
|  | * | 
|  | * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to | 
|  | * make this work. | 
|  | * | 
|  | * To construct the bfloat for an arbitrary key we need to know what the key | 
|  | * immediately preceding it is: we have to check if the two keys differ in the | 
|  | * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size | 
|  | * of the previous key so we can walk backwards to it from t->tree[j]'s key. | 
|  | */ | 
|  |  | 
|  | static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, | 
|  | unsigned offset) | 
|  | { | 
|  | return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; | 
|  | } | 
|  |  | 
|  | static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) | 
|  | { | 
|  | return ((void *) k - (void *) t->data) / BSET_CACHELINE; | 
|  | } | 
|  |  | 
|  | static unsigned bkey_to_cacheline_offset(struct bkey *k) | 
|  | { | 
|  | return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) | 
|  | { | 
|  | return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); | 
|  | } | 
|  |  | 
|  | static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) | 
|  | { | 
|  | return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the write set - the one we're currently inserting keys into - we don't | 
|  | * maintain a full search tree, we just keep a simple lookup table in t->prev. | 
|  | */ | 
|  | static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) | 
|  | { | 
|  | return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); | 
|  | } | 
|  |  | 
|  | static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | asm("shrd %[shift],%[high],%[low]" | 
|  | : [low] "+Rm" (low) | 
|  | : [high] "R" (high), | 
|  | [shift] "ci" (shift) | 
|  | : "cc"); | 
|  | #else | 
|  | low >>= shift; | 
|  | low  |= (high << 1) << (63U - shift); | 
|  | #endif | 
|  | return low; | 
|  | } | 
|  |  | 
|  | static inline unsigned bfloat_mantissa(const struct bkey *k, | 
|  | struct bkey_float *f) | 
|  | { | 
|  | const uint64_t *p = &k->low - (f->exponent >> 6); | 
|  | return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; | 
|  | } | 
|  |  | 
|  | static void make_bfloat(struct bset_tree *t, unsigned j) | 
|  | { | 
|  | struct bkey_float *f = &t->tree[j]; | 
|  | struct bkey *m = tree_to_bkey(t, j); | 
|  | struct bkey *p = tree_to_prev_bkey(t, j); | 
|  |  | 
|  | struct bkey *l = is_power_of_2(j) | 
|  | ? t->data->start | 
|  | : tree_to_prev_bkey(t, j >> ffs(j)); | 
|  |  | 
|  | struct bkey *r = is_power_of_2(j + 1) | 
|  | ? node(t->data, t->data->keys - bkey_u64s(&t->end)) | 
|  | : tree_to_bkey(t, j >> (ffz(j) + 1)); | 
|  |  | 
|  | BUG_ON(m < l || m > r); | 
|  | BUG_ON(bkey_next(p) != m); | 
|  |  | 
|  | if (KEY_INODE(l) != KEY_INODE(r)) | 
|  | f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; | 
|  | else | 
|  | f->exponent = fls64(r->low ^ l->low); | 
|  |  | 
|  | f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); | 
|  |  | 
|  | /* | 
|  | * Setting f->exponent = 127 flags this node as failed, and causes the | 
|  | * lookup code to fall back to comparing against the original key. | 
|  | */ | 
|  |  | 
|  | if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) | 
|  | f->mantissa = bfloat_mantissa(m, f) - 1; | 
|  | else | 
|  | f->exponent = 127; | 
|  | } | 
|  |  | 
|  | static void bset_alloc_tree(struct btree *b, struct bset_tree *t) | 
|  | { | 
|  | if (t != b->sets) { | 
|  | unsigned j = roundup(t[-1].size, | 
|  | 64 / sizeof(struct bkey_float)); | 
|  |  | 
|  | t->tree = t[-1].tree + j; | 
|  | t->prev = t[-1].prev + j; | 
|  | } | 
|  |  | 
|  | while (t < b->sets + MAX_BSETS) | 
|  | t++->size = 0; | 
|  | } | 
|  |  | 
|  | static void bset_build_unwritten_tree(struct btree *b) | 
|  | { | 
|  | struct bset_tree *t = b->sets + b->nsets; | 
|  |  | 
|  | bset_alloc_tree(b, t); | 
|  |  | 
|  | if (t->tree != b->sets->tree + bset_tree_space(b)) { | 
|  | t->prev[0] = bkey_to_cacheline_offset(t->data->start); | 
|  | t->size = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bset_build_written_tree(struct btree *b) | 
|  | { | 
|  | struct bset_tree *t = b->sets + b->nsets; | 
|  | struct bkey *k = t->data->start; | 
|  | unsigned j, cacheline = 1; | 
|  |  | 
|  | bset_alloc_tree(b, t); | 
|  |  | 
|  | t->size = min_t(unsigned, | 
|  | bkey_to_cacheline(t, end(t->data)), | 
|  | b->sets->tree + bset_tree_space(b) - t->tree); | 
|  |  | 
|  | if (t->size < 2) { | 
|  | t->size = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; | 
|  |  | 
|  | /* First we figure out where the first key in each cacheline is */ | 
|  | for (j = inorder_next(0, t->size); | 
|  | j; | 
|  | j = inorder_next(j, t->size)) { | 
|  | while (bkey_to_cacheline(t, k) != cacheline) | 
|  | k = bkey_next(k); | 
|  |  | 
|  | t->prev[j] = bkey_u64s(k); | 
|  | k = bkey_next(k); | 
|  | cacheline++; | 
|  | t->tree[j].m = bkey_to_cacheline_offset(k); | 
|  | } | 
|  |  | 
|  | while (bkey_next(k) != end(t->data)) | 
|  | k = bkey_next(k); | 
|  |  | 
|  | t->end = *k; | 
|  |  | 
|  | /* Then we build the tree */ | 
|  | for (j = inorder_next(0, t->size); | 
|  | j; | 
|  | j = inorder_next(j, t->size)) | 
|  | make_bfloat(t, j); | 
|  | } | 
|  |  | 
|  | void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) | 
|  | { | 
|  | struct bset_tree *t; | 
|  | unsigned inorder, j = 1; | 
|  |  | 
|  | for (t = b->sets; t <= &b->sets[b->nsets]; t++) | 
|  | if (k < end(t->data)) | 
|  | goto found_set; | 
|  |  | 
|  | BUG(); | 
|  | found_set: | 
|  | if (!t->size || !bset_written(b, t)) | 
|  | return; | 
|  |  | 
|  | inorder = bkey_to_cacheline(t, k); | 
|  |  | 
|  | if (k == t->data->start) | 
|  | goto fix_left; | 
|  |  | 
|  | if (bkey_next(k) == end(t->data)) { | 
|  | t->end = *k; | 
|  | goto fix_right; | 
|  | } | 
|  |  | 
|  | j = inorder_to_tree(inorder, t); | 
|  |  | 
|  | if (j && | 
|  | j < t->size && | 
|  | k == tree_to_bkey(t, j)) | 
|  | fix_left:	do { | 
|  | make_bfloat(t, j); | 
|  | j = j * 2; | 
|  | } while (j < t->size); | 
|  |  | 
|  | j = inorder_to_tree(inorder + 1, t); | 
|  |  | 
|  | if (j && | 
|  | j < t->size && | 
|  | k == tree_to_prev_bkey(t, j)) | 
|  | fix_right:	do { | 
|  | make_bfloat(t, j); | 
|  | j = j * 2 + 1; | 
|  | } while (j < t->size); | 
|  | } | 
|  |  | 
|  | void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) | 
|  | { | 
|  | struct bset_tree *t = &b->sets[b->nsets]; | 
|  | unsigned shift = bkey_u64s(k); | 
|  | unsigned j = bkey_to_cacheline(t, k); | 
|  |  | 
|  | /* We're getting called from btree_split() or btree_gc, just bail out */ | 
|  | if (!t->size) | 
|  | return; | 
|  |  | 
|  | /* k is the key we just inserted; we need to find the entry in the | 
|  | * lookup table for the first key that is strictly greater than k: | 
|  | * it's either k's cacheline or the next one | 
|  | */ | 
|  | if (j < t->size && | 
|  | table_to_bkey(t, j) <= k) | 
|  | j++; | 
|  |  | 
|  | /* Adjust all the lookup table entries, and find a new key for any that | 
|  | * have gotten too big | 
|  | */ | 
|  | for (; j < t->size; j++) { | 
|  | t->prev[j] += shift; | 
|  |  | 
|  | if (t->prev[j] > 7) { | 
|  | k = table_to_bkey(t, j - 1); | 
|  |  | 
|  | while (k < cacheline_to_bkey(t, j, 0)) | 
|  | k = bkey_next(k); | 
|  |  | 
|  | t->prev[j] = bkey_to_cacheline_offset(k); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) | 
|  | return; | 
|  |  | 
|  | /* Possibly add a new entry to the end of the lookup table */ | 
|  |  | 
|  | for (k = table_to_bkey(t, t->size - 1); | 
|  | k != end(t->data); | 
|  | k = bkey_next(k)) | 
|  | if (t->size == bkey_to_cacheline(t, k)) { | 
|  | t->prev[t->size] = bkey_to_cacheline_offset(k); | 
|  | t->size++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bch_bset_init_next(struct btree *b) | 
|  | { | 
|  | struct bset *i = write_block(b); | 
|  |  | 
|  | if (i != b->sets[0].data) { | 
|  | b->sets[++b->nsets].data = i; | 
|  | i->seq = b->sets[0].data->seq; | 
|  | } else | 
|  | get_random_bytes(&i->seq, sizeof(uint64_t)); | 
|  |  | 
|  | i->magic	= bset_magic(b->c); | 
|  | i->version	= 0; | 
|  | i->keys		= 0; | 
|  |  | 
|  | bset_build_unwritten_tree(b); | 
|  | } | 
|  |  | 
|  | struct bset_search_iter { | 
|  | struct bkey *l, *r; | 
|  | }; | 
|  |  | 
|  | static struct bset_search_iter bset_search_write_set(struct btree *b, | 
|  | struct bset_tree *t, | 
|  | const struct bkey *search) | 
|  | { | 
|  | unsigned li = 0, ri = t->size; | 
|  |  | 
|  | BUG_ON(!b->nsets && | 
|  | t->size < bkey_to_cacheline(t, end(t->data))); | 
|  |  | 
|  | while (li + 1 != ri) { | 
|  | unsigned m = (li + ri) >> 1; | 
|  |  | 
|  | if (bkey_cmp(table_to_bkey(t, m), search) > 0) | 
|  | ri = m; | 
|  | else | 
|  | li = m; | 
|  | } | 
|  |  | 
|  | return (struct bset_search_iter) { | 
|  | table_to_bkey(t, li), | 
|  | ri < t->size ? table_to_bkey(t, ri) : end(t->data) | 
|  | }; | 
|  | } | 
|  |  | 
|  | static struct bset_search_iter bset_search_tree(struct btree *b, | 
|  | struct bset_tree *t, | 
|  | const struct bkey *search) | 
|  | { | 
|  | struct bkey *l, *r; | 
|  | struct bkey_float *f; | 
|  | unsigned inorder, j, n = 1; | 
|  |  | 
|  | do { | 
|  | unsigned p = n << 4; | 
|  | p &= ((int) (p - t->size)) >> 31; | 
|  |  | 
|  | prefetch(&t->tree[p]); | 
|  |  | 
|  | j = n; | 
|  | f = &t->tree[j]; | 
|  |  | 
|  | /* | 
|  | * n = (f->mantissa > bfloat_mantissa()) | 
|  | *	? j * 2 | 
|  | *	: j * 2 + 1; | 
|  | * | 
|  | * We need to subtract 1 from f->mantissa for the sign bit trick | 
|  | * to work  - that's done in make_bfloat() | 
|  | */ | 
|  | if (likely(f->exponent != 127)) | 
|  | n = j * 2 + (((unsigned) | 
|  | (f->mantissa - | 
|  | bfloat_mantissa(search, f))) >> 31); | 
|  | else | 
|  | n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) | 
|  | ? j * 2 | 
|  | : j * 2 + 1; | 
|  | } while (n < t->size); | 
|  |  | 
|  | inorder = to_inorder(j, t); | 
|  |  | 
|  | /* | 
|  | * n would have been the node we recursed to - the low bit tells us if | 
|  | * we recursed left or recursed right. | 
|  | */ | 
|  | if (n & 1) { | 
|  | l = cacheline_to_bkey(t, inorder, f->m); | 
|  |  | 
|  | if (++inorder != t->size) { | 
|  | f = &t->tree[inorder_next(j, t->size)]; | 
|  | r = cacheline_to_bkey(t, inorder, f->m); | 
|  | } else | 
|  | r = end(t->data); | 
|  | } else { | 
|  | r = cacheline_to_bkey(t, inorder, f->m); | 
|  |  | 
|  | if (--inorder) { | 
|  | f = &t->tree[inorder_prev(j, t->size)]; | 
|  | l = cacheline_to_bkey(t, inorder, f->m); | 
|  | } else | 
|  | l = t->data->start; | 
|  | } | 
|  |  | 
|  | return (struct bset_search_iter) {l, r}; | 
|  | } | 
|  |  | 
|  | struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, | 
|  | const struct bkey *search) | 
|  | { | 
|  | struct bset_search_iter i; | 
|  |  | 
|  | /* | 
|  | * First, we search for a cacheline, then lastly we do a linear search | 
|  | * within that cacheline. | 
|  | * | 
|  | * To search for the cacheline, there's three different possibilities: | 
|  | *  * The set is too small to have a search tree, so we just do a linear | 
|  | *    search over the whole set. | 
|  | *  * The set is the one we're currently inserting into; keeping a full | 
|  | *    auxiliary search tree up to date would be too expensive, so we | 
|  | *    use a much simpler lookup table to do a binary search - | 
|  | *    bset_search_write_set(). | 
|  | *  * Or we use the auxiliary search tree we constructed earlier - | 
|  | *    bset_search_tree() | 
|  | */ | 
|  |  | 
|  | if (unlikely(!t->size)) { | 
|  | i.l = t->data->start; | 
|  | i.r = end(t->data); | 
|  | } else if (bset_written(b, t)) { | 
|  | /* | 
|  | * Each node in the auxiliary search tree covers a certain range | 
|  | * of bits, and keys above and below the set it covers might | 
|  | * differ outside those bits - so we have to special case the | 
|  | * start and end - handle that here: | 
|  | */ | 
|  |  | 
|  | if (unlikely(bkey_cmp(search, &t->end) >= 0)) | 
|  | return end(t->data); | 
|  |  | 
|  | if (unlikely(bkey_cmp(search, t->data->start) < 0)) | 
|  | return t->data->start; | 
|  |  | 
|  | i = bset_search_tree(b, t, search); | 
|  | } else | 
|  | i = bset_search_write_set(b, t, search); | 
|  |  | 
|  | #ifdef CONFIG_BCACHE_EDEBUG | 
|  | BUG_ON(bset_written(b, t) && | 
|  | i.l != t->data->start && | 
|  | bkey_cmp(tree_to_prev_bkey(t, | 
|  | inorder_to_tree(bkey_to_cacheline(t, i.l), t)), | 
|  | search) > 0); | 
|  |  | 
|  | BUG_ON(i.r != end(t->data) && | 
|  | bkey_cmp(i.r, search) <= 0); | 
|  | #endif | 
|  |  | 
|  | while (likely(i.l != i.r) && | 
|  | bkey_cmp(i.l, search) <= 0) | 
|  | i.l = bkey_next(i.l); | 
|  |  | 
|  | return i.l; | 
|  | } | 
|  |  | 
|  | /* Btree iterator */ | 
|  |  | 
|  | static inline bool btree_iter_cmp(struct btree_iter_set l, | 
|  | struct btree_iter_set r) | 
|  | { | 
|  | int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); | 
|  |  | 
|  | return c ? c > 0 : l.k < r.k; | 
|  | } | 
|  |  | 
|  | static inline bool btree_iter_end(struct btree_iter *iter) | 
|  | { | 
|  | return !iter->used; | 
|  | } | 
|  |  | 
|  | void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, | 
|  | struct bkey *end) | 
|  | { | 
|  | if (k != end) | 
|  | BUG_ON(!heap_add(iter, | 
|  | ((struct btree_iter_set) { k, end }), | 
|  | btree_iter_cmp)); | 
|  | } | 
|  |  | 
|  | struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, | 
|  | struct bkey *search, struct bset_tree *start) | 
|  | { | 
|  | struct bkey *ret = NULL; | 
|  | iter->size = ARRAY_SIZE(iter->data); | 
|  | iter->used = 0; | 
|  |  | 
|  | for (; start <= &b->sets[b->nsets]; start++) { | 
|  | ret = bch_bset_search(b, start, search); | 
|  | bch_btree_iter_push(iter, ret, end(start->data)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bkey *bch_btree_iter_next(struct btree_iter *iter) | 
|  | { | 
|  | struct btree_iter_set unused; | 
|  | struct bkey *ret = NULL; | 
|  |  | 
|  | if (!btree_iter_end(iter)) { | 
|  | ret = iter->data->k; | 
|  | iter->data->k = bkey_next(iter->data->k); | 
|  |  | 
|  | if (iter->data->k > iter->data->end) { | 
|  | WARN_ONCE(1, "bset was corrupt!\n"); | 
|  | iter->data->k = iter->data->end; | 
|  | } | 
|  |  | 
|  | if (iter->data->k == iter->data->end) | 
|  | heap_pop(iter, unused, btree_iter_cmp); | 
|  | else | 
|  | heap_sift(iter, 0, btree_iter_cmp); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, | 
|  | struct btree *b, ptr_filter_fn fn) | 
|  | { | 
|  | struct bkey *ret; | 
|  |  | 
|  | do { | 
|  | ret = bch_btree_iter_next(iter); | 
|  | } while (ret && fn(b, ret)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search) | 
|  | { | 
|  | struct btree_iter iter; | 
|  |  | 
|  | bch_btree_iter_init(b, &iter, search); | 
|  | return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); | 
|  | } | 
|  |  | 
|  | /* Mergesort */ | 
|  |  | 
|  | static void btree_sort_fixup(struct btree_iter *iter) | 
|  | { | 
|  | while (iter->used > 1) { | 
|  | struct btree_iter_set *top = iter->data, *i = top + 1; | 
|  | struct bkey *k; | 
|  |  | 
|  | if (iter->used > 2 && | 
|  | btree_iter_cmp(i[0], i[1])) | 
|  | i++; | 
|  |  | 
|  | for (k = i->k; | 
|  | k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0; | 
|  | k = bkey_next(k)) | 
|  | if (top->k > i->k) | 
|  | __bch_cut_front(top->k, k); | 
|  | else if (KEY_SIZE(k)) | 
|  | bch_cut_back(&START_KEY(k), top->k); | 
|  |  | 
|  | if (top->k < i->k || k == i->k) | 
|  | break; | 
|  |  | 
|  | heap_sift(iter, i - top, btree_iter_cmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btree_mergesort(struct btree *b, struct bset *out, | 
|  | struct btree_iter *iter, | 
|  | bool fixup, bool remove_stale) | 
|  | { | 
|  | struct bkey *k, *last = NULL; | 
|  | bool (*bad)(struct btree *, const struct bkey *) = remove_stale | 
|  | ? bch_ptr_bad | 
|  | : bch_ptr_invalid; | 
|  |  | 
|  | while (!btree_iter_end(iter)) { | 
|  | if (fixup && !b->level) | 
|  | btree_sort_fixup(iter); | 
|  |  | 
|  | k = bch_btree_iter_next(iter); | 
|  | if (bad(b, k)) | 
|  | continue; | 
|  |  | 
|  | if (!last) { | 
|  | last = out->start; | 
|  | bkey_copy(last, k); | 
|  | } else if (b->level || | 
|  | !bch_bkey_try_merge(b, last, k)) { | 
|  | last = bkey_next(last); | 
|  | bkey_copy(last, k); | 
|  | } | 
|  | } | 
|  |  | 
|  | out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; | 
|  |  | 
|  | pr_debug("sorted %i keys", out->keys); | 
|  | bch_check_key_order(b, out); | 
|  | } | 
|  |  | 
|  | static void __btree_sort(struct btree *b, struct btree_iter *iter, | 
|  | unsigned start, unsigned order, bool fixup) | 
|  | { | 
|  | uint64_t start_time; | 
|  | bool remove_stale = !b->written; | 
|  | struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, | 
|  | order); | 
|  | if (!out) { | 
|  | mutex_lock(&b->c->sort_lock); | 
|  | out = b->c->sort; | 
|  | order = ilog2(bucket_pages(b->c)); | 
|  | } | 
|  |  | 
|  | start_time = local_clock(); | 
|  |  | 
|  | btree_mergesort(b, out, iter, fixup, remove_stale); | 
|  | b->nsets = start; | 
|  |  | 
|  | if (!fixup && !start && b->written) | 
|  | bch_btree_verify(b, out); | 
|  |  | 
|  | if (!start && order == b->page_order) { | 
|  | /* | 
|  | * Our temporary buffer is the same size as the btree node's | 
|  | * buffer, we can just swap buffers instead of doing a big | 
|  | * memcpy() | 
|  | */ | 
|  |  | 
|  | out->magic	= bset_magic(b->c); | 
|  | out->seq	= b->sets[0].data->seq; | 
|  | out->version	= b->sets[0].data->version; | 
|  | swap(out, b->sets[0].data); | 
|  |  | 
|  | if (b->c->sort == b->sets[0].data) | 
|  | b->c->sort = out; | 
|  | } else { | 
|  | b->sets[start].data->keys = out->keys; | 
|  | memcpy(b->sets[start].data->start, out->start, | 
|  | (void *) end(out) - (void *) out->start); | 
|  | } | 
|  |  | 
|  | if (out == b->c->sort) | 
|  | mutex_unlock(&b->c->sort_lock); | 
|  | else | 
|  | free_pages((unsigned long) out, order); | 
|  |  | 
|  | if (b->written) | 
|  | bset_build_written_tree(b); | 
|  |  | 
|  | if (!start) { | 
|  | spin_lock(&b->c->sort_time_lock); | 
|  | bch_time_stats_update(&b->c->sort_time, start_time); | 
|  | spin_unlock(&b->c->sort_time_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bch_btree_sort_partial(struct btree *b, unsigned start) | 
|  | { | 
|  | size_t oldsize = 0, order = b->page_order, keys = 0; | 
|  | struct btree_iter iter; | 
|  | __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); | 
|  |  | 
|  | BUG_ON(b->sets[b->nsets].data == write_block(b) && | 
|  | (b->sets[b->nsets].size || b->nsets)); | 
|  |  | 
|  | if (b->written) | 
|  | oldsize = bch_count_data(b); | 
|  |  | 
|  | if (start) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = start; i <= b->nsets; i++) | 
|  | keys += b->sets[i].data->keys; | 
|  |  | 
|  | order = roundup_pow_of_two(__set_bytes(b->sets->data, | 
|  | keys)) / PAGE_SIZE; | 
|  | if (order) | 
|  | order = ilog2(order); | 
|  | } | 
|  |  | 
|  | __btree_sort(b, &iter, start, order, false); | 
|  |  | 
|  | EBUG_ON(b->written && bch_count_data(b) != oldsize); | 
|  | } | 
|  |  | 
|  | void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) | 
|  | { | 
|  | BUG_ON(!b->written); | 
|  | __btree_sort(b, iter, 0, b->page_order, true); | 
|  | } | 
|  |  | 
|  | void bch_btree_sort_into(struct btree *b, struct btree *new) | 
|  | { | 
|  | uint64_t start_time = local_clock(); | 
|  |  | 
|  | struct btree_iter iter; | 
|  | bch_btree_iter_init(b, &iter, NULL); | 
|  |  | 
|  | btree_mergesort(b, new->sets->data, &iter, false, true); | 
|  |  | 
|  | spin_lock(&b->c->sort_time_lock); | 
|  | bch_time_stats_update(&b->c->sort_time, start_time); | 
|  | spin_unlock(&b->c->sort_time_lock); | 
|  |  | 
|  | bkey_copy_key(&new->key, &b->key); | 
|  | new->sets->size = 0; | 
|  | } | 
|  |  | 
|  | #define SORT_CRIT	(4096 / sizeof(uint64_t)) | 
|  |  | 
|  | void bch_btree_sort_lazy(struct btree *b) | 
|  | { | 
|  | unsigned crit = SORT_CRIT; | 
|  | int i; | 
|  |  | 
|  | /* Don't sort if nothing to do */ | 
|  | if (!b->nsets) | 
|  | goto out; | 
|  |  | 
|  | /* If not a leaf node, always sort */ | 
|  | if (b->level) { | 
|  | bch_btree_sort(b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = b->nsets - 1; i >= 0; --i) { | 
|  | crit *= b->c->sort_crit_factor; | 
|  |  | 
|  | if (b->sets[i].data->keys < crit) { | 
|  | bch_btree_sort_partial(b, i); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sort if we'd overflow */ | 
|  | if (b->nsets + 1 == MAX_BSETS) { | 
|  | bch_btree_sort(b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | out: | 
|  | bset_build_written_tree(b); | 
|  | } | 
|  |  | 
|  | /* Sysfs stuff */ | 
|  |  | 
|  | struct bset_stats { | 
|  | size_t nodes; | 
|  | size_t sets_written, sets_unwritten; | 
|  | size_t bytes_written, bytes_unwritten; | 
|  | size_t floats, failed; | 
|  | }; | 
|  |  | 
|  | static int bch_btree_bset_stats(struct btree *b, struct btree_op *op, | 
|  | struct bset_stats *stats) | 
|  | { | 
|  | struct bkey *k; | 
|  | unsigned i; | 
|  |  | 
|  | stats->nodes++; | 
|  |  | 
|  | for (i = 0; i <= b->nsets; i++) { | 
|  | struct bset_tree *t = &b->sets[i]; | 
|  | size_t bytes = t->data->keys * sizeof(uint64_t); | 
|  | size_t j; | 
|  |  | 
|  | if (bset_written(b, t)) { | 
|  | stats->sets_written++; | 
|  | stats->bytes_written += bytes; | 
|  |  | 
|  | stats->floats += t->size - 1; | 
|  |  | 
|  | for (j = 1; j < t->size; j++) | 
|  | if (t->tree[j].exponent == 127) | 
|  | stats->failed++; | 
|  | } else { | 
|  | stats->sets_unwritten++; | 
|  | stats->bytes_unwritten += bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (b->level) { | 
|  | struct btree_iter iter; | 
|  |  | 
|  | for_each_key_filter(b, k, &iter, bch_ptr_bad) { | 
|  | int ret = btree(bset_stats, k, b, op, stats); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bch_bset_print_stats(struct cache_set *c, char *buf) | 
|  | { | 
|  | struct btree_op op; | 
|  | struct bset_stats t; | 
|  | int ret; | 
|  |  | 
|  | bch_btree_op_init_stack(&op); | 
|  | memset(&t, 0, sizeof(struct bset_stats)); | 
|  |  | 
|  | ret = btree_root(bset_stats, c, &op, &t); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return snprintf(buf, PAGE_SIZE, | 
|  | "btree nodes:		%zu\n" | 
|  | "written sets:		%zu\n" | 
|  | "unwritten sets:		%zu\n" | 
|  | "written key bytes:	%zu\n" | 
|  | "unwritten key bytes:	%zu\n" | 
|  | "floats:			%zu\n" | 
|  | "failed:			%zu\n", | 
|  | t.nodes, | 
|  | t.sets_written, t.sets_unwritten, | 
|  | t.bytes_written, t.bytes_unwritten, | 
|  | t.floats, t.failed); | 
|  | } |