|  | /* | 
|  | * intel_pstate.c: Native P state management for Intel processors | 
|  | * | 
|  | * (C) Copyright 2012 Intel Corporation | 
|  | * Author: Dirk Brandewie <[email protected]> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <trace/events/power.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/cpufeature.h> | 
|  |  | 
|  | #define ATOM_RATIOS		0x66a | 
|  | #define ATOM_VIDS		0x66b | 
|  | #define ATOM_TURBO_RATIOS	0x66c | 
|  | #define ATOM_TURBO_VIDS		0x66d | 
|  |  | 
|  | #define FRAC_BITS 8 | 
|  | #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) | 
|  | #define fp_toint(X) ((X) >> FRAC_BITS) | 
|  |  | 
|  | static inline int32_t mul_fp(int32_t x, int32_t y) | 
|  | { | 
|  | return ((int64_t)x * (int64_t)y) >> FRAC_BITS; | 
|  | } | 
|  |  | 
|  | static inline int32_t div_fp(s64 x, s64 y) | 
|  | { | 
|  | return div64_s64((int64_t)x << FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | static inline int ceiling_fp(int32_t x) | 
|  | { | 
|  | int mask, ret; | 
|  |  | 
|  | ret = fp_toint(x); | 
|  | mask = (1 << FRAC_BITS) - 1; | 
|  | if (x & mask) | 
|  | ret += 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct sample { | 
|  | int32_t core_pct_busy; | 
|  | int32_t busy_scaled; | 
|  | u64 aperf; | 
|  | u64 mperf; | 
|  | u64 tsc; | 
|  | int freq; | 
|  | u64 time; | 
|  | }; | 
|  |  | 
|  | struct pstate_data { | 
|  | int	current_pstate; | 
|  | int	min_pstate; | 
|  | int	max_pstate; | 
|  | int	max_pstate_physical; | 
|  | int	scaling; | 
|  | int	turbo_pstate; | 
|  | }; | 
|  |  | 
|  | struct vid_data { | 
|  | int min; | 
|  | int max; | 
|  | int turbo; | 
|  | int32_t ratio; | 
|  | }; | 
|  |  | 
|  | struct _pid { | 
|  | int setpoint; | 
|  | int32_t integral; | 
|  | int32_t p_gain; | 
|  | int32_t i_gain; | 
|  | int32_t d_gain; | 
|  | int deadband; | 
|  | int32_t last_err; | 
|  | }; | 
|  |  | 
|  | struct cpudata { | 
|  | int cpu; | 
|  |  | 
|  | struct update_util_data update_util; | 
|  |  | 
|  | struct pstate_data pstate; | 
|  | struct vid_data vid; | 
|  | struct _pid pid; | 
|  |  | 
|  | u64	last_sample_time; | 
|  | u64	prev_aperf; | 
|  | u64	prev_mperf; | 
|  | u64	prev_tsc; | 
|  | u64	prev_cummulative_iowait; | 
|  | struct sample sample; | 
|  | }; | 
|  |  | 
|  | static struct cpudata **all_cpu_data; | 
|  | struct pstate_adjust_policy { | 
|  | int sample_rate_ms; | 
|  | s64 sample_rate_ns; | 
|  | int deadband; | 
|  | int setpoint; | 
|  | int p_gain_pct; | 
|  | int d_gain_pct; | 
|  | int i_gain_pct; | 
|  | }; | 
|  |  | 
|  | struct pstate_funcs { | 
|  | int (*get_max)(void); | 
|  | int (*get_max_physical)(void); | 
|  | int (*get_min)(void); | 
|  | int (*get_turbo)(void); | 
|  | int (*get_scaling)(void); | 
|  | u64 (*get_val)(struct cpudata*, int pstate); | 
|  | void (*get_vid)(struct cpudata *); | 
|  | int32_t (*get_target_pstate)(struct cpudata *); | 
|  | }; | 
|  |  | 
|  | struct cpu_defaults { | 
|  | struct pstate_adjust_policy pid_policy; | 
|  | struct pstate_funcs funcs; | 
|  | }; | 
|  |  | 
|  | static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu); | 
|  | static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu); | 
|  |  | 
|  | static struct pstate_adjust_policy pid_params; | 
|  | static struct pstate_funcs pstate_funcs; | 
|  | static int hwp_active; | 
|  |  | 
|  | struct perf_limits { | 
|  | int no_turbo; | 
|  | int turbo_disabled; | 
|  | int max_perf_pct; | 
|  | int min_perf_pct; | 
|  | int32_t max_perf; | 
|  | int32_t min_perf; | 
|  | int max_policy_pct; | 
|  | int max_sysfs_pct; | 
|  | int min_policy_pct; | 
|  | int min_sysfs_pct; | 
|  | }; | 
|  |  | 
|  | static struct perf_limits performance_limits = { | 
|  | .no_turbo = 0, | 
|  | .turbo_disabled = 0, | 
|  | .max_perf_pct = 100, | 
|  | .max_perf = int_tofp(1), | 
|  | .min_perf_pct = 100, | 
|  | .min_perf = int_tofp(1), | 
|  | .max_policy_pct = 100, | 
|  | .max_sysfs_pct = 100, | 
|  | .min_policy_pct = 0, | 
|  | .min_sysfs_pct = 0, | 
|  | }; | 
|  |  | 
|  | static struct perf_limits powersave_limits = { | 
|  | .no_turbo = 0, | 
|  | .turbo_disabled = 0, | 
|  | .max_perf_pct = 100, | 
|  | .max_perf = int_tofp(1), | 
|  | .min_perf_pct = 0, | 
|  | .min_perf = 0, | 
|  | .max_policy_pct = 100, | 
|  | .max_sysfs_pct = 100, | 
|  | .min_policy_pct = 0, | 
|  | .min_sysfs_pct = 0, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE | 
|  | static struct perf_limits *limits = &performance_limits; | 
|  | #else | 
|  | static struct perf_limits *limits = &powersave_limits; | 
|  | #endif | 
|  |  | 
|  | static inline void pid_reset(struct _pid *pid, int setpoint, int busy, | 
|  | int deadband, int integral) { | 
|  | pid->setpoint = int_tofp(setpoint); | 
|  | pid->deadband  = int_tofp(deadband); | 
|  | pid->integral  = int_tofp(integral); | 
|  | pid->last_err  = int_tofp(setpoint) - int_tofp(busy); | 
|  | } | 
|  |  | 
|  | static inline void pid_p_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static inline void pid_i_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static inline void pid_d_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static signed int pid_calc(struct _pid *pid, int32_t busy) | 
|  | { | 
|  | signed int result; | 
|  | int32_t pterm, dterm, fp_error; | 
|  | int32_t integral_limit; | 
|  |  | 
|  | fp_error = pid->setpoint - busy; | 
|  |  | 
|  | if (abs(fp_error) <= pid->deadband) | 
|  | return 0; | 
|  |  | 
|  | pterm = mul_fp(pid->p_gain, fp_error); | 
|  |  | 
|  | pid->integral += fp_error; | 
|  |  | 
|  | /* | 
|  | * We limit the integral here so that it will never | 
|  | * get higher than 30.  This prevents it from becoming | 
|  | * too large an input over long periods of time and allows | 
|  | * it to get factored out sooner. | 
|  | * | 
|  | * The value of 30 was chosen through experimentation. | 
|  | */ | 
|  | integral_limit = int_tofp(30); | 
|  | if (pid->integral > integral_limit) | 
|  | pid->integral = integral_limit; | 
|  | if (pid->integral < -integral_limit) | 
|  | pid->integral = -integral_limit; | 
|  |  | 
|  | dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); | 
|  | pid->last_err = fp_error; | 
|  |  | 
|  | result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; | 
|  | result = result + (1 << (FRAC_BITS-1)); | 
|  | return (signed int)fp_toint(result); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) | 
|  | { | 
|  | pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); | 
|  | pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); | 
|  | pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); | 
|  |  | 
|  | pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_reset_all_pid(void) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | if (all_cpu_data[cpu]) | 
|  | intel_pstate_busy_pid_reset(all_cpu_data[cpu]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void update_turbo_state(void) | 
|  | { | 
|  | u64 misc_en; | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); | 
|  | limits->turbo_disabled = | 
|  | (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || | 
|  | cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_hwp_set(const struct cpumask *cpumask) | 
|  | { | 
|  | int min, hw_min, max, hw_max, cpu, range, adj_range; | 
|  | u64 value, cap; | 
|  |  | 
|  | rdmsrl(MSR_HWP_CAPABILITIES, cap); | 
|  | hw_min = HWP_LOWEST_PERF(cap); | 
|  | hw_max = HWP_HIGHEST_PERF(cap); | 
|  | range = hw_max - hw_min; | 
|  |  | 
|  | for_each_cpu(cpu, cpumask) { | 
|  | rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); | 
|  | adj_range = limits->min_perf_pct * range / 100; | 
|  | min = hw_min + adj_range; | 
|  | value &= ~HWP_MIN_PERF(~0L); | 
|  | value |= HWP_MIN_PERF(min); | 
|  |  | 
|  | adj_range = limits->max_perf_pct * range / 100; | 
|  | max = hw_min + adj_range; | 
|  | if (limits->no_turbo) { | 
|  | hw_max = HWP_GUARANTEED_PERF(cap); | 
|  | if (hw_max < max) | 
|  | max = hw_max; | 
|  | } | 
|  |  | 
|  | value &= ~HWP_MAX_PERF(~0L); | 
|  | value |= HWP_MAX_PERF(max); | 
|  | wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_pstate_hwp_set_online_cpus(void) | 
|  | { | 
|  | get_online_cpus(); | 
|  | intel_pstate_hwp_set(cpu_online_mask); | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | /************************** debugfs begin ************************/ | 
|  | static int pid_param_set(void *data, u64 val) | 
|  | { | 
|  | *(u32 *)data = val; | 
|  | intel_pstate_reset_all_pid(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pid_param_get(void *data, u64 *val) | 
|  | { | 
|  | *val = *(u32 *)data; | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); | 
|  |  | 
|  | struct pid_param { | 
|  | char *name; | 
|  | void *value; | 
|  | }; | 
|  |  | 
|  | static struct pid_param pid_files[] = { | 
|  | {"sample_rate_ms", &pid_params.sample_rate_ms}, | 
|  | {"d_gain_pct", &pid_params.d_gain_pct}, | 
|  | {"i_gain_pct", &pid_params.i_gain_pct}, | 
|  | {"deadband", &pid_params.deadband}, | 
|  | {"setpoint", &pid_params.setpoint}, | 
|  | {"p_gain_pct", &pid_params.p_gain_pct}, | 
|  | {NULL, NULL} | 
|  | }; | 
|  |  | 
|  | static void __init intel_pstate_debug_expose_params(void) | 
|  | { | 
|  | struct dentry *debugfs_parent; | 
|  | int i = 0; | 
|  |  | 
|  | if (hwp_active) | 
|  | return; | 
|  | debugfs_parent = debugfs_create_dir("pstate_snb", NULL); | 
|  | if (IS_ERR_OR_NULL(debugfs_parent)) | 
|  | return; | 
|  | while (pid_files[i].name) { | 
|  | debugfs_create_file(pid_files[i].name, 0660, | 
|  | debugfs_parent, pid_files[i].value, | 
|  | &fops_pid_param); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************** debugfs end ************************/ | 
|  |  | 
|  | /************************** sysfs begin ************************/ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name					\ | 
|  | (struct kobject *kobj, struct attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | return sprintf(buf, "%u\n", limits->object);		\ | 
|  | } | 
|  |  | 
|  | static ssize_t show_turbo_pct(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total, no_turbo, turbo_pct; | 
|  | uint32_t turbo_fp; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  |  | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  | no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; | 
|  | turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total)); | 
|  | turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); | 
|  | return sprintf(buf, "%u\n", turbo_pct); | 
|  | } | 
|  |  | 
|  | static ssize_t show_num_pstates(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  | return sprintf(buf, "%u\n", total); | 
|  | } | 
|  |  | 
|  | static ssize_t show_no_turbo(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (limits->turbo_disabled) | 
|  | ret = sprintf(buf, "%u\n", limits->turbo_disabled); | 
|  | else | 
|  | ret = sprintf(buf, "%u\n", limits->no_turbo); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (limits->turbo_disabled) { | 
|  | pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | limits->no_turbo = clamp_t(int, input, 0, 1); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set_online_cpus(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); | 
|  | limits->max_perf_pct = min(limits->max_policy_pct, | 
|  | limits->max_sysfs_pct); | 
|  | limits->max_perf_pct = max(limits->min_policy_pct, | 
|  | limits->max_perf_pct); | 
|  | limits->max_perf_pct = max(limits->min_perf_pct, | 
|  | limits->max_perf_pct); | 
|  | limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), | 
|  | int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set_online_cpus(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); | 
|  | limits->min_perf_pct = max(limits->min_policy_pct, | 
|  | limits->min_sysfs_pct); | 
|  | limits->min_perf_pct = min(limits->max_policy_pct, | 
|  | limits->min_perf_pct); | 
|  | limits->min_perf_pct = min(limits->max_perf_pct, | 
|  | limits->min_perf_pct); | 
|  | limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), | 
|  | int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set_online_cpus(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | show_one(max_perf_pct, max_perf_pct); | 
|  | show_one(min_perf_pct, min_perf_pct); | 
|  |  | 
|  | define_one_global_rw(no_turbo); | 
|  | define_one_global_rw(max_perf_pct); | 
|  | define_one_global_rw(min_perf_pct); | 
|  | define_one_global_ro(turbo_pct); | 
|  | define_one_global_ro(num_pstates); | 
|  |  | 
|  | static struct attribute *intel_pstate_attributes[] = { | 
|  | &no_turbo.attr, | 
|  | &max_perf_pct.attr, | 
|  | &min_perf_pct.attr, | 
|  | &turbo_pct.attr, | 
|  | &num_pstates.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group intel_pstate_attr_group = { | 
|  | .attrs = intel_pstate_attributes, | 
|  | }; | 
|  |  | 
|  | static void __init intel_pstate_sysfs_expose_params(void) | 
|  | { | 
|  | struct kobject *intel_pstate_kobject; | 
|  | int rc; | 
|  |  | 
|  | intel_pstate_kobject = kobject_create_and_add("intel_pstate", | 
|  | &cpu_subsys.dev_root->kobj); | 
|  | BUG_ON(!intel_pstate_kobject); | 
|  | rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); | 
|  | BUG_ON(rc); | 
|  | } | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void intel_pstate_hwp_enable(struct cpudata *cpudata) | 
|  | { | 
|  | /* First disable HWP notification interrupt as we don't process them */ | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); | 
|  |  | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); | 
|  | } | 
|  |  | 
|  | static int atom_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(ATOM_RATIOS, value); | 
|  | return (value >> 8) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int atom_get_max_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(ATOM_RATIOS, value); | 
|  | return (value >> 16) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int atom_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(ATOM_TURBO_RATIOS, value); | 
|  | return value & 0x7F; | 
|  | } | 
|  |  | 
|  | static u64 atom_get_val(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  | int32_t vid_fp; | 
|  | u32 vid; | 
|  |  | 
|  | val = (u64)pstate << 8; | 
|  | if (limits->no_turbo && !limits->turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | vid_fp = cpudata->vid.min + mul_fp( | 
|  | int_tofp(pstate - cpudata->pstate.min_pstate), | 
|  | cpudata->vid.ratio); | 
|  |  | 
|  | vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); | 
|  | vid = ceiling_fp(vid_fp); | 
|  |  | 
|  | if (pstate > cpudata->pstate.max_pstate) | 
|  | vid = cpudata->vid.turbo; | 
|  |  | 
|  | return val | vid; | 
|  | } | 
|  |  | 
|  | static int silvermont_get_scaling(void) | 
|  | { | 
|  | u64 value; | 
|  | int i; | 
|  | /* Defined in Table 35-6 from SDM (Sept 2015) */ | 
|  | static int silvermont_freq_table[] = { | 
|  | 83300, 100000, 133300, 116700, 80000}; | 
|  |  | 
|  | rdmsrl(MSR_FSB_FREQ, value); | 
|  | i = value & 0x7; | 
|  | WARN_ON(i > 4); | 
|  |  | 
|  | return silvermont_freq_table[i]; | 
|  | } | 
|  |  | 
|  | static int airmont_get_scaling(void) | 
|  | { | 
|  | u64 value; | 
|  | int i; | 
|  | /* Defined in Table 35-10 from SDM (Sept 2015) */ | 
|  | static int airmont_freq_table[] = { | 
|  | 83300, 100000, 133300, 116700, 80000, | 
|  | 93300, 90000, 88900, 87500}; | 
|  |  | 
|  | rdmsrl(MSR_FSB_FREQ, value); | 
|  | i = value & 0xF; | 
|  | WARN_ON(i > 8); | 
|  |  | 
|  | return airmont_freq_table[i]; | 
|  | } | 
|  |  | 
|  | static void atom_get_vid(struct cpudata *cpudata) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(ATOM_VIDS, value); | 
|  | cpudata->vid.min = int_tofp((value >> 8) & 0x7f); | 
|  | cpudata->vid.max = int_tofp((value >> 16) & 0x7f); | 
|  | cpudata->vid.ratio = div_fp( | 
|  | cpudata->vid.max - cpudata->vid.min, | 
|  | int_tofp(cpudata->pstate.max_pstate - | 
|  | cpudata->pstate.min_pstate)); | 
|  |  | 
|  | rdmsrl(ATOM_TURBO_VIDS, value); | 
|  | cpudata->vid.turbo = value & 0x7f; | 
|  | } | 
|  |  | 
|  | static int core_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 40) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_max_pstate_physical(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 8) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_max_pstate(void) | 
|  | { | 
|  | u64 tar; | 
|  | u64 plat_info; | 
|  | int max_pstate; | 
|  | int err; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, plat_info); | 
|  | max_pstate = (plat_info >> 8) & 0xFF; | 
|  |  | 
|  | err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); | 
|  | if (!err) { | 
|  | /* Do some sanity checking for safety */ | 
|  | if (plat_info & 0x600000000) { | 
|  | u64 tdp_ctrl; | 
|  | u64 tdp_ratio; | 
|  | int tdp_msr; | 
|  |  | 
|  | err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); | 
|  | if (err) | 
|  | goto skip_tar; | 
|  |  | 
|  | tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl; | 
|  | err = rdmsrl_safe(tdp_msr, &tdp_ratio); | 
|  | if (err) | 
|  | goto skip_tar; | 
|  |  | 
|  | if (tdp_ratio - 1 == tar) { | 
|  | max_pstate = tar; | 
|  | pr_debug("max_pstate=TAC %x\n", max_pstate); | 
|  | } else { | 
|  | goto skip_tar; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | skip_tar: | 
|  | return max_pstate; | 
|  | } | 
|  |  | 
|  | static int core_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (value) & 255; | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int core_get_scaling(void) | 
|  | { | 
|  | return 100000; | 
|  | } | 
|  |  | 
|  | static u64 core_get_val(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | val = (u64)pstate << 8; | 
|  | if (limits->no_turbo && !limits->turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int knl_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (((value) >> 8) & 0xFF); | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct cpu_defaults core_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 97, | 
|  | .p_gain_pct = 20, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 0, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_max_physical = core_get_max_pstate_physical, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = core_get_turbo_pstate, | 
|  | .get_scaling = core_get_scaling, | 
|  | .get_val = core_get_val, | 
|  | .get_target_pstate = get_target_pstate_use_performance, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cpu_defaults silvermont_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 60, | 
|  | .p_gain_pct = 14, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 4, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = atom_get_max_pstate, | 
|  | .get_max_physical = atom_get_max_pstate, | 
|  | .get_min = atom_get_min_pstate, | 
|  | .get_turbo = atom_get_turbo_pstate, | 
|  | .get_val = atom_get_val, | 
|  | .get_scaling = silvermont_get_scaling, | 
|  | .get_vid = atom_get_vid, | 
|  | .get_target_pstate = get_target_pstate_use_cpu_load, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cpu_defaults airmont_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 60, | 
|  | .p_gain_pct = 14, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 4, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = atom_get_max_pstate, | 
|  | .get_max_physical = atom_get_max_pstate, | 
|  | .get_min = atom_get_min_pstate, | 
|  | .get_turbo = atom_get_turbo_pstate, | 
|  | .get_val = atom_get_val, | 
|  | .get_scaling = airmont_get_scaling, | 
|  | .get_vid = atom_get_vid, | 
|  | .get_target_pstate = get_target_pstate_use_cpu_load, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cpu_defaults knl_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 97, | 
|  | .p_gain_pct = 20, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 0, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_max_physical = core_get_max_pstate_physical, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = knl_get_turbo_pstate, | 
|  | .get_scaling = core_get_scaling, | 
|  | .get_val = core_get_val, | 
|  | .get_target_pstate = get_target_pstate_use_performance, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) | 
|  | { | 
|  | int max_perf = cpu->pstate.turbo_pstate; | 
|  | int max_perf_adj; | 
|  | int min_perf; | 
|  |  | 
|  | if (limits->no_turbo || limits->turbo_disabled) | 
|  | max_perf = cpu->pstate.max_pstate; | 
|  |  | 
|  | /* | 
|  | * performance can be limited by user through sysfs, by cpufreq | 
|  | * policy, or by cpu specific default values determined through | 
|  | * experimentation. | 
|  | */ | 
|  | max_perf_adj = fp_toint(max_perf * limits->max_perf); | 
|  | *max = clamp_t(int, max_perf_adj, | 
|  | cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); | 
|  |  | 
|  | min_perf = fp_toint(max_perf * limits->min_perf); | 
|  | *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); | 
|  | cpu->pstate.current_pstate = pstate; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_set_min_pstate(struct cpudata *cpu) | 
|  | { | 
|  | int pstate = cpu->pstate.min_pstate; | 
|  |  | 
|  | intel_pstate_record_pstate(cpu, pstate); | 
|  | /* | 
|  | * Generally, there is no guarantee that this code will always run on | 
|  | * the CPU being updated, so force the register update to run on the | 
|  | * right CPU. | 
|  | */ | 
|  | wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, | 
|  | pstate_funcs.get_val(cpu, pstate)); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) | 
|  | { | 
|  | cpu->pstate.min_pstate = pstate_funcs.get_min(); | 
|  | cpu->pstate.max_pstate = pstate_funcs.get_max(); | 
|  | cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); | 
|  | cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); | 
|  | cpu->pstate.scaling = pstate_funcs.get_scaling(); | 
|  |  | 
|  | if (pstate_funcs.get_vid) | 
|  | pstate_funcs.get_vid(cpu); | 
|  |  | 
|  | intel_pstate_set_min_pstate(cpu); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_calc_busy(struct cpudata *cpu) | 
|  | { | 
|  | struct sample *sample = &cpu->sample; | 
|  | int64_t core_pct; | 
|  |  | 
|  | core_pct = int_tofp(sample->aperf) * int_tofp(100); | 
|  | core_pct = div64_u64(core_pct, int_tofp(sample->mperf)); | 
|  |  | 
|  | sample->core_pct_busy = (int32_t)core_pct; | 
|  | } | 
|  |  | 
|  | static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) | 
|  | { | 
|  | u64 aperf, mperf; | 
|  | unsigned long flags; | 
|  | u64 tsc; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rdmsrl(MSR_IA32_APERF, aperf); | 
|  | rdmsrl(MSR_IA32_MPERF, mperf); | 
|  | tsc = rdtsc(); | 
|  | if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { | 
|  | local_irq_restore(flags); | 
|  | return false; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | cpu->last_sample_time = cpu->sample.time; | 
|  | cpu->sample.time = time; | 
|  | cpu->sample.aperf = aperf; | 
|  | cpu->sample.mperf = mperf; | 
|  | cpu->sample.tsc =  tsc; | 
|  | cpu->sample.aperf -= cpu->prev_aperf; | 
|  | cpu->sample.mperf -= cpu->prev_mperf; | 
|  | cpu->sample.tsc -= cpu->prev_tsc; | 
|  |  | 
|  | cpu->prev_aperf = aperf; | 
|  | cpu->prev_mperf = mperf; | 
|  | cpu->prev_tsc = tsc; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline int32_t get_avg_frequency(struct cpudata *cpu) | 
|  | { | 
|  | return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf * | 
|  | cpu->pstate.scaling, cpu->sample.mperf); | 
|  | } | 
|  |  | 
|  | static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu) | 
|  | { | 
|  | struct sample *sample = &cpu->sample; | 
|  | u64 cummulative_iowait, delta_iowait_us; | 
|  | u64 delta_iowait_mperf; | 
|  | u64 mperf, now; | 
|  | int32_t cpu_load; | 
|  |  | 
|  | cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now); | 
|  |  | 
|  | /* | 
|  | * Convert iowait time into number of IO cycles spent at max_freq. | 
|  | * IO is considered as busy only for the cpu_load algorithm. For | 
|  | * performance this is not needed since we always try to reach the | 
|  | * maximum P-State, so we are already boosting the IOs. | 
|  | */ | 
|  | delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait; | 
|  | delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling * | 
|  | cpu->pstate.max_pstate, MSEC_PER_SEC); | 
|  |  | 
|  | mperf = cpu->sample.mperf + delta_iowait_mperf; | 
|  | cpu->prev_cummulative_iowait = cummulative_iowait; | 
|  |  | 
|  | /* | 
|  | * The load can be estimated as the ratio of the mperf counter | 
|  | * running at a constant frequency during active periods | 
|  | * (C0) and the time stamp counter running at the same frequency | 
|  | * also during C-states. | 
|  | */ | 
|  | cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc); | 
|  | cpu->sample.busy_scaled = cpu_load; | 
|  |  | 
|  | return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load); | 
|  | } | 
|  |  | 
|  | static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu) | 
|  | { | 
|  | int32_t core_busy, max_pstate, current_pstate, sample_ratio; | 
|  | u64 duration_ns; | 
|  |  | 
|  | intel_pstate_calc_busy(cpu); | 
|  |  | 
|  | /* | 
|  | * core_busy is the ratio of actual performance to max | 
|  | * max_pstate is the max non turbo pstate available | 
|  | * current_pstate was the pstate that was requested during | 
|  | * 	the last sample period. | 
|  | * | 
|  | * We normalize core_busy, which was our actual percent | 
|  | * performance to what we requested during the last sample | 
|  | * period. The result will be a percentage of busy at a | 
|  | * specified pstate. | 
|  | */ | 
|  | core_busy = cpu->sample.core_pct_busy; | 
|  | max_pstate = int_tofp(cpu->pstate.max_pstate_physical); | 
|  | current_pstate = int_tofp(cpu->pstate.current_pstate); | 
|  | core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); | 
|  |  | 
|  | /* | 
|  | * Since our utilization update callback will not run unless we are | 
|  | * in C0, check if the actual elapsed time is significantly greater (3x) | 
|  | * than our sample interval.  If it is, then we were idle for a long | 
|  | * enough period of time to adjust our busyness. | 
|  | */ | 
|  | duration_ns = cpu->sample.time - cpu->last_sample_time; | 
|  | if ((s64)duration_ns > pid_params.sample_rate_ns * 3 | 
|  | && cpu->last_sample_time > 0) { | 
|  | sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns), | 
|  | int_tofp(duration_ns)); | 
|  | core_busy = mul_fp(core_busy, sample_ratio); | 
|  | } | 
|  |  | 
|  | cpu->sample.busy_scaled = core_busy; | 
|  | return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | int max_perf, min_perf; | 
|  |  | 
|  | update_turbo_state(); | 
|  |  | 
|  | intel_pstate_get_min_max(cpu, &min_perf, &max_perf); | 
|  | pstate = clamp_t(int, pstate, min_perf, max_perf); | 
|  | if (pstate == cpu->pstate.current_pstate) | 
|  | return; | 
|  |  | 
|  | intel_pstate_record_pstate(cpu, pstate); | 
|  | wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) | 
|  | { | 
|  | int from, target_pstate; | 
|  | struct sample *sample; | 
|  |  | 
|  | from = cpu->pstate.current_pstate; | 
|  |  | 
|  | target_pstate = pstate_funcs.get_target_pstate(cpu); | 
|  |  | 
|  | intel_pstate_update_pstate(cpu, target_pstate); | 
|  |  | 
|  | sample = &cpu->sample; | 
|  | trace_pstate_sample(fp_toint(sample->core_pct_busy), | 
|  | fp_toint(sample->busy_scaled), | 
|  | from, | 
|  | cpu->pstate.current_pstate, | 
|  | sample->mperf, | 
|  | sample->aperf, | 
|  | sample->tsc, | 
|  | get_avg_frequency(cpu)); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_update_util(struct update_util_data *data, u64 time, | 
|  | unsigned long util, unsigned long max) | 
|  | { | 
|  | struct cpudata *cpu = container_of(data, struct cpudata, update_util); | 
|  | u64 delta_ns = time - cpu->sample.time; | 
|  |  | 
|  | if ((s64)delta_ns >= pid_params.sample_rate_ns) { | 
|  | bool sample_taken = intel_pstate_sample(cpu, time); | 
|  |  | 
|  | if (sample_taken && !hwp_active) | 
|  | intel_pstate_adjust_busy_pstate(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ICPU(model, policy) \ | 
|  | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ | 
|  | (unsigned long)&policy } | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_ids[] = { | 
|  | ICPU(0x2a, core_params), | 
|  | ICPU(0x2d, core_params), | 
|  | ICPU(0x37, silvermont_params), | 
|  | ICPU(0x3a, core_params), | 
|  | ICPU(0x3c, core_params), | 
|  | ICPU(0x3d, core_params), | 
|  | ICPU(0x3e, core_params), | 
|  | ICPU(0x3f, core_params), | 
|  | ICPU(0x45, core_params), | 
|  | ICPU(0x46, core_params), | 
|  | ICPU(0x47, core_params), | 
|  | ICPU(0x4c, airmont_params), | 
|  | ICPU(0x4e, core_params), | 
|  | ICPU(0x4f, core_params), | 
|  | ICPU(0x5e, core_params), | 
|  | ICPU(0x56, core_params), | 
|  | ICPU(0x57, knl_params), | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { | 
|  | ICPU(0x56, core_params), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int intel_pstate_init_cpu(unsigned int cpunum) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | if (!all_cpu_data[cpunum]) | 
|  | all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), | 
|  | GFP_KERNEL); | 
|  | if (!all_cpu_data[cpunum]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cpu = all_cpu_data[cpunum]; | 
|  |  | 
|  | cpu->cpu = cpunum; | 
|  |  | 
|  | if (hwp_active) { | 
|  | intel_pstate_hwp_enable(cpu); | 
|  | pid_params.sample_rate_ms = 50; | 
|  | pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC; | 
|  | } | 
|  |  | 
|  | intel_pstate_get_cpu_pstates(cpu); | 
|  |  | 
|  | intel_pstate_busy_pid_reset(cpu); | 
|  | intel_pstate_sample(cpu, 0); | 
|  |  | 
|  | cpu->update_util.func = intel_pstate_update_util; | 
|  | cpufreq_set_update_util_data(cpunum, &cpu->update_util); | 
|  |  | 
|  | pr_debug("intel_pstate: controlling: cpu %d\n", cpunum); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int intel_pstate_get(unsigned int cpu_num) | 
|  | { | 
|  | struct sample *sample; | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[cpu_num]; | 
|  | if (!cpu) | 
|  | return 0; | 
|  | sample = &cpu->sample; | 
|  | return get_avg_frequency(cpu); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_set_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | if (!policy->cpuinfo.max_freq) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (policy->policy == CPUFREQ_POLICY_PERFORMANCE && | 
|  | policy->max >= policy->cpuinfo.max_freq) { | 
|  | pr_debug("intel_pstate: set performance\n"); | 
|  | limits = &performance_limits; | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(policy->cpus); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_debug("intel_pstate: set powersave\n"); | 
|  | limits = &powersave_limits; | 
|  | limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; | 
|  | limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100); | 
|  | limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, | 
|  | policy->cpuinfo.max_freq); | 
|  | limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100); | 
|  |  | 
|  | /* Normalize user input to [min_policy_pct, max_policy_pct] */ | 
|  | limits->min_perf_pct = max(limits->min_policy_pct, | 
|  | limits->min_sysfs_pct); | 
|  | limits->min_perf_pct = min(limits->max_policy_pct, | 
|  | limits->min_perf_pct); | 
|  | limits->max_perf_pct = min(limits->max_policy_pct, | 
|  | limits->max_sysfs_pct); | 
|  | limits->max_perf_pct = max(limits->min_policy_pct, | 
|  | limits->max_perf_pct); | 
|  | limits->max_perf = round_up(limits->max_perf, FRAC_BITS); | 
|  |  | 
|  | /* Make sure min_perf_pct <= max_perf_pct */ | 
|  | limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); | 
|  |  | 
|  | limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), | 
|  | int_tofp(100)); | 
|  | limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), | 
|  | int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(policy->cpus); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_verify_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | cpufreq_verify_within_cpu_limits(policy); | 
|  |  | 
|  | if (policy->policy != CPUFREQ_POLICY_POWERSAVE && | 
|  | policy->policy != CPUFREQ_POLICY_PERFORMANCE) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) | 
|  | { | 
|  | int cpu_num = policy->cpu; | 
|  | struct cpudata *cpu = all_cpu_data[cpu_num]; | 
|  |  | 
|  | pr_debug("intel_pstate: CPU %d exiting\n", cpu_num); | 
|  |  | 
|  | cpufreq_set_update_util_data(cpu_num, NULL); | 
|  | synchronize_sched(); | 
|  |  | 
|  | if (hwp_active) | 
|  | return; | 
|  |  | 
|  | intel_pstate_set_min_pstate(cpu); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int rc; | 
|  |  | 
|  | rc = intel_pstate_init_cpu(policy->cpu); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) | 
|  | policy->policy = CPUFREQ_POLICY_PERFORMANCE; | 
|  | else | 
|  | policy->policy = CPUFREQ_POLICY_POWERSAVE; | 
|  |  | 
|  | policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  |  | 
|  | /* cpuinfo and default policy values */ | 
|  | policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | policy->cpuinfo.max_freq = | 
|  | cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | 
|  | cpumask_set_cpu(policy->cpu, policy->cpus); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver intel_pstate_driver = { | 
|  | .flags		= CPUFREQ_CONST_LOOPS, | 
|  | .verify		= intel_pstate_verify_policy, | 
|  | .setpolicy	= intel_pstate_set_policy, | 
|  | .get		= intel_pstate_get, | 
|  | .init		= intel_pstate_cpu_init, | 
|  | .stop_cpu	= intel_pstate_stop_cpu, | 
|  | .name		= "intel_pstate", | 
|  | }; | 
|  |  | 
|  | static int __initdata no_load; | 
|  | static int __initdata no_hwp; | 
|  | static int __initdata hwp_only; | 
|  | static unsigned int force_load; | 
|  |  | 
|  | static int intel_pstate_msrs_not_valid(void) | 
|  | { | 
|  | if (!pstate_funcs.get_max() || | 
|  | !pstate_funcs.get_min() || | 
|  | !pstate_funcs.get_turbo()) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void copy_pid_params(struct pstate_adjust_policy *policy) | 
|  | { | 
|  | pid_params.sample_rate_ms = policy->sample_rate_ms; | 
|  | pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC; | 
|  | pid_params.p_gain_pct = policy->p_gain_pct; | 
|  | pid_params.i_gain_pct = policy->i_gain_pct; | 
|  | pid_params.d_gain_pct = policy->d_gain_pct; | 
|  | pid_params.deadband = policy->deadband; | 
|  | pid_params.setpoint = policy->setpoint; | 
|  | } | 
|  |  | 
|  | static void copy_cpu_funcs(struct pstate_funcs *funcs) | 
|  | { | 
|  | pstate_funcs.get_max   = funcs->get_max; | 
|  | pstate_funcs.get_max_physical = funcs->get_max_physical; | 
|  | pstate_funcs.get_min   = funcs->get_min; | 
|  | pstate_funcs.get_turbo = funcs->get_turbo; | 
|  | pstate_funcs.get_scaling = funcs->get_scaling; | 
|  | pstate_funcs.get_val   = funcs->get_val; | 
|  | pstate_funcs.get_vid   = funcs->get_vid; | 
|  | pstate_funcs.get_target_pstate = funcs->get_target_pstate; | 
|  |  | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ACPI) | 
|  | #include <acpi/processor.h> | 
|  |  | 
|  | static bool intel_pstate_no_acpi_pss(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | acpi_status status; | 
|  | union acpi_object *pss; | 
|  | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  |  | 
|  | status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); | 
|  | if (ACPI_FAILURE(status)) | 
|  | continue; | 
|  |  | 
|  | pss = buffer.pointer; | 
|  | if (pss && pss->type == ACPI_TYPE_PACKAGE) { | 
|  | kfree(pss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | kfree(pss); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool intel_pstate_has_acpi_ppc(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  | if (acpi_has_method(pr->handle, "_PPC")) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | PSS, | 
|  | PPC, | 
|  | }; | 
|  |  | 
|  | struct hw_vendor_info { | 
|  | u16  valid; | 
|  | char oem_id[ACPI_OEM_ID_SIZE]; | 
|  | char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; | 
|  | int  oem_pwr_table; | 
|  | }; | 
|  |  | 
|  | /* Hardware vendor-specific info that has its own power management modes */ | 
|  | static struct hw_vendor_info vendor_info[] = { | 
|  | {1, "HP    ", "ProLiant", PSS}, | 
|  | {1, "ORACLE", "X4-2    ", PPC}, | 
|  | {1, "ORACLE", "X4-2L   ", PPC}, | 
|  | {1, "ORACLE", "X4-2B   ", PPC}, | 
|  | {1, "ORACLE", "X3-2    ", PPC}, | 
|  | {1, "ORACLE", "X3-2L   ", PPC}, | 
|  | {1, "ORACLE", "X3-2B   ", PPC}, | 
|  | {1, "ORACLE", "X4470M2 ", PPC}, | 
|  | {1, "ORACLE", "X4270M3 ", PPC}, | 
|  | {1, "ORACLE", "X4270M2 ", PPC}, | 
|  | {1, "ORACLE", "X4170M2 ", PPC}, | 
|  | {1, "ORACLE", "X4170 M3", PPC}, | 
|  | {1, "ORACLE", "X4275 M3", PPC}, | 
|  | {1, "ORACLE", "X6-2    ", PPC}, | 
|  | {1, "ORACLE", "Sudbury ", PPC}, | 
|  | {0, "", ""}, | 
|  | }; | 
|  |  | 
|  | static bool intel_pstate_platform_pwr_mgmt_exists(void) | 
|  | { | 
|  | struct acpi_table_header hdr; | 
|  | struct hw_vendor_info *v_info; | 
|  | const struct x86_cpu_id *id; | 
|  | u64 misc_pwr; | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_oob_ids); | 
|  | if (id) { | 
|  | rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); | 
|  | if ( misc_pwr & (1 << 8)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (acpi_disabled || | 
|  | ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) | 
|  | return false; | 
|  |  | 
|  | for (v_info = vendor_info; v_info->valid; v_info++) { | 
|  | if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && | 
|  | !strncmp(hdr.oem_table_id, v_info->oem_table_id, | 
|  | ACPI_OEM_TABLE_ID_SIZE)) | 
|  | switch (v_info->oem_pwr_table) { | 
|  | case PSS: | 
|  | return intel_pstate_no_acpi_pss(); | 
|  | case PPC: | 
|  | return intel_pstate_has_acpi_ppc() && | 
|  | (!force_load); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #else /* CONFIG_ACPI not enabled */ | 
|  | static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } | 
|  | static inline bool intel_pstate_has_acpi_ppc(void) { return false; } | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | static const struct x86_cpu_id hwp_support_ids[] __initconst = { | 
|  | { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int __init intel_pstate_init(void) | 
|  | { | 
|  | int cpu, rc = 0; | 
|  | const struct x86_cpu_id *id; | 
|  | struct cpu_defaults *cpu_def; | 
|  |  | 
|  | if (no_load) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (x86_match_cpu(hwp_support_ids) && !no_hwp) { | 
|  | copy_cpu_funcs(&core_params.funcs); | 
|  | hwp_active++; | 
|  | goto hwp_cpu_matched; | 
|  | } | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_ids); | 
|  | if (!id) | 
|  | return -ENODEV; | 
|  |  | 
|  | cpu_def = (struct cpu_defaults *)id->driver_data; | 
|  |  | 
|  | copy_pid_params(&cpu_def->pid_policy); | 
|  | copy_cpu_funcs(&cpu_def->funcs); | 
|  |  | 
|  | if (intel_pstate_msrs_not_valid()) | 
|  | return -ENODEV; | 
|  |  | 
|  | hwp_cpu_matched: | 
|  | /* | 
|  | * The Intel pstate driver will be ignored if the platform | 
|  | * firmware has its own power management modes. | 
|  | */ | 
|  | if (intel_pstate_platform_pwr_mgmt_exists()) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_info("Intel P-state driver initializing.\n"); | 
|  |  | 
|  | all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); | 
|  | if (!all_cpu_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!hwp_active && hwp_only) | 
|  | goto out; | 
|  |  | 
|  | rc = cpufreq_register_driver(&intel_pstate_driver); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | intel_pstate_debug_expose_params(); | 
|  | intel_pstate_sysfs_expose_params(); | 
|  |  | 
|  | if (hwp_active) | 
|  | pr_info("intel_pstate: HWP enabled\n"); | 
|  |  | 
|  | return rc; | 
|  | out: | 
|  | get_online_cpus(); | 
|  | for_each_online_cpu(cpu) { | 
|  | if (all_cpu_data[cpu]) { | 
|  | cpufreq_set_update_util_data(cpu, NULL); | 
|  | synchronize_sched(); | 
|  | kfree(all_cpu_data[cpu]); | 
|  | } | 
|  | } | 
|  |  | 
|  | put_online_cpus(); | 
|  | vfree(all_cpu_data); | 
|  | return -ENODEV; | 
|  | } | 
|  | device_initcall(intel_pstate_init); | 
|  |  | 
|  | static int __init intel_pstate_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "disable")) | 
|  | no_load = 1; | 
|  | if (!strcmp(str, "no_hwp")) { | 
|  | pr_info("intel_pstate: HWP disabled\n"); | 
|  | no_hwp = 1; | 
|  | } | 
|  | if (!strcmp(str, "force")) | 
|  | force_load = 1; | 
|  | if (!strcmp(str, "hwp_only")) | 
|  | hwp_only = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("intel_pstate", intel_pstate_setup); | 
|  |  | 
|  | MODULE_AUTHOR("Dirk Brandewie <[email protected]>"); | 
|  | MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); | 
|  | MODULE_LICENSE("GPL"); |