|  | /* | 
|  | * intel_powerclamp.c - package c-state idle injection | 
|  | * | 
|  | * Copyright (c) 2012, Intel Corporation. | 
|  | * | 
|  | * Authors: | 
|  | *     Arjan van de Ven <[email protected]> | 
|  | *     Jacob Pan <[email protected]> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | * | 
|  | * | 
|  | *	TODO: | 
|  | *           1. better handle wakeup from external interrupts, currently a fixed | 
|  | *              compensation is added to clamping duration when excessive amount | 
|  | *              of wakeups are observed during idle time. the reason is that in | 
|  | *              case of external interrupts without need for ack, clamping down | 
|  | *              cpu in non-irq context does not reduce irq. for majority of the | 
|  | *              cases, clamping down cpu does help reduce irq as well, we should | 
|  | *              be able to differenciate the two cases and give a quantitative | 
|  | *              solution for the irqs that we can control. perhaps based on | 
|  | *              get_cpu_iowait_time_us() | 
|  | * | 
|  | *	     2. synchronization with other hw blocks | 
|  | * | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/thermal.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sched/rt.h> | 
|  |  | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/mwait.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/idle.h> | 
|  | #include <asm/hardirq.h> | 
|  |  | 
|  | #define MAX_TARGET_RATIO (50U) | 
|  | /* For each undisturbed clamping period (no extra wake ups during idle time), | 
|  | * we increment the confidence counter for the given target ratio. | 
|  | * CONFIDENCE_OK defines the level where runtime calibration results are | 
|  | * valid. | 
|  | */ | 
|  | #define CONFIDENCE_OK (3) | 
|  | /* Default idle injection duration, driver adjust sleep time to meet target | 
|  | * idle ratio. Similar to frequency modulation. | 
|  | */ | 
|  | #define DEFAULT_DURATION_JIFFIES (6) | 
|  |  | 
|  | static unsigned int target_mwait; | 
|  | static struct dentry *debug_dir; | 
|  |  | 
|  | /* user selected target */ | 
|  | static unsigned int set_target_ratio; | 
|  | static unsigned int current_ratio; | 
|  | static bool should_skip; | 
|  | static bool reduce_irq; | 
|  | static atomic_t idle_wakeup_counter; | 
|  | static unsigned int control_cpu; /* The cpu assigned to collect stat and update | 
|  | * control parameters. default to BSP but BSP | 
|  | * can be offlined. | 
|  | */ | 
|  | static bool clamping; | 
|  |  | 
|  |  | 
|  | static struct task_struct * __percpu *powerclamp_thread; | 
|  | static struct thermal_cooling_device *cooling_dev; | 
|  | static unsigned long *cpu_clamping_mask;  /* bit map for tracking per cpu | 
|  | * clamping thread | 
|  | */ | 
|  |  | 
|  | static unsigned int duration; | 
|  | static unsigned int pkg_cstate_ratio_cur; | 
|  | static unsigned int window_size; | 
|  |  | 
|  | static int duration_set(const char *arg, const struct kernel_param *kp) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long new_duration; | 
|  |  | 
|  | ret = kstrtoul(arg, 10, &new_duration); | 
|  | if (ret) | 
|  | goto exit; | 
|  | if (new_duration > 25 || new_duration < 6) { | 
|  | pr_err("Out of recommended range %lu, between 6-25ms\n", | 
|  | new_duration); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | duration = clamp(new_duration, 6ul, 25ul); | 
|  | smp_mb(); | 
|  |  | 
|  | exit: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops duration_ops = { | 
|  | .set = duration_set, | 
|  | .get = param_get_int, | 
|  | }; | 
|  |  | 
|  |  | 
|  | module_param_cb(duration, &duration_ops, &duration, 0644); | 
|  | MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); | 
|  |  | 
|  | struct powerclamp_calibration_data { | 
|  | unsigned long confidence;  /* used for calibration, basically a counter | 
|  | * gets incremented each time a clamping | 
|  | * period is completed without extra wakeups | 
|  | * once that counter is reached given level, | 
|  | * compensation is deemed usable. | 
|  | */ | 
|  | unsigned long steady_comp; /* steady state compensation used when | 
|  | * no extra wakeups occurred. | 
|  | */ | 
|  | unsigned long dynamic_comp; /* compensate excessive wakeup from idle | 
|  | * mostly from external interrupts. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; | 
|  |  | 
|  | static int window_size_set(const char *arg, const struct kernel_param *kp) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long new_window_size; | 
|  |  | 
|  | ret = kstrtoul(arg, 10, &new_window_size); | 
|  | if (ret) | 
|  | goto exit_win; | 
|  | if (new_window_size > 10 || new_window_size < 2) { | 
|  | pr_err("Out of recommended window size %lu, between 2-10\n", | 
|  | new_window_size); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | window_size = clamp(new_window_size, 2ul, 10ul); | 
|  | smp_mb(); | 
|  |  | 
|  | exit_win: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops window_size_ops = { | 
|  | .set = window_size_set, | 
|  | .get = param_get_int, | 
|  | }; | 
|  |  | 
|  | module_param_cb(window_size, &window_size_ops, &window_size, 0644); | 
|  | MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" | 
|  | "\tpowerclamp controls idle ratio within this window. larger\n" | 
|  | "\twindow size results in slower response time but more smooth\n" | 
|  | "\tclamping results. default to 2."); | 
|  |  | 
|  | static void find_target_mwait(void) | 
|  | { | 
|  | unsigned int eax, ebx, ecx, edx; | 
|  | unsigned int highest_cstate = 0; | 
|  | unsigned int highest_subcstate = 0; | 
|  | int i; | 
|  |  | 
|  | if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) | 
|  | return; | 
|  |  | 
|  | cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || | 
|  | !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) | 
|  | return; | 
|  |  | 
|  | edx >>= MWAIT_SUBSTATE_SIZE; | 
|  | for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { | 
|  | if (edx & MWAIT_SUBSTATE_MASK) { | 
|  | highest_cstate = i; | 
|  | highest_subcstate = edx & MWAIT_SUBSTATE_MASK; | 
|  | } | 
|  | } | 
|  | target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | | 
|  | (highest_subcstate - 1); | 
|  |  | 
|  | } | 
|  |  | 
|  | struct pkg_cstate_info { | 
|  | bool skip; | 
|  | int msr_index; | 
|  | int cstate_id; | 
|  | }; | 
|  |  | 
|  | #define PKG_CSTATE_INIT(id) {				\ | 
|  | .msr_index = MSR_PKG_C##id##_RESIDENCY, \ | 
|  | .cstate_id = id				\ | 
|  | } | 
|  |  | 
|  | static struct pkg_cstate_info pkg_cstates[] = { | 
|  | PKG_CSTATE_INIT(2), | 
|  | PKG_CSTATE_INIT(3), | 
|  | PKG_CSTATE_INIT(6), | 
|  | PKG_CSTATE_INIT(7), | 
|  | PKG_CSTATE_INIT(8), | 
|  | PKG_CSTATE_INIT(9), | 
|  | PKG_CSTATE_INIT(10), | 
|  | {NULL}, | 
|  | }; | 
|  |  | 
|  | static bool has_pkg_state_counter(void) | 
|  | { | 
|  | u64 val; | 
|  | struct pkg_cstate_info *info = pkg_cstates; | 
|  |  | 
|  | /* check if any one of the counter msrs exists */ | 
|  | while (info->msr_index) { | 
|  | if (!rdmsrl_safe(info->msr_index, &val)) | 
|  | return true; | 
|  | info++; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static u64 pkg_state_counter(void) | 
|  | { | 
|  | u64 val; | 
|  | u64 count = 0; | 
|  | struct pkg_cstate_info *info = pkg_cstates; | 
|  |  | 
|  | while (info->msr_index) { | 
|  | if (!info->skip) { | 
|  | if (!rdmsrl_safe(info->msr_index, &val)) | 
|  | count += val; | 
|  | else | 
|  | info->skip = true; | 
|  | } | 
|  | info++; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void noop_timer(unsigned long foo) | 
|  | { | 
|  | /* empty... just the fact that we get the interrupt wakes us up */ | 
|  | } | 
|  |  | 
|  | static unsigned int get_compensation(int ratio) | 
|  | { | 
|  | unsigned int comp = 0; | 
|  |  | 
|  | /* we only use compensation if all adjacent ones are good */ | 
|  | if (ratio == 1 && | 
|  | cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio + 1].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { | 
|  | comp = (cal_data[ratio].steady_comp + | 
|  | cal_data[ratio + 1].steady_comp + | 
|  | cal_data[ratio + 2].steady_comp) / 3; | 
|  | } else if (ratio == MAX_TARGET_RATIO - 1 && | 
|  | cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { | 
|  | comp = (cal_data[ratio].steady_comp + | 
|  | cal_data[ratio - 1].steady_comp + | 
|  | cal_data[ratio - 2].steady_comp) / 3; | 
|  | } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && | 
|  | cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { | 
|  | comp = (cal_data[ratio].steady_comp + | 
|  | cal_data[ratio - 1].steady_comp + | 
|  | cal_data[ratio + 1].steady_comp) / 3; | 
|  | } | 
|  |  | 
|  | /* REVISIT: simple penalty of double idle injection */ | 
|  | if (reduce_irq) | 
|  | comp = ratio; | 
|  | /* do not exceed limit */ | 
|  | if (comp + ratio >= MAX_TARGET_RATIO) | 
|  | comp = MAX_TARGET_RATIO - ratio - 1; | 
|  |  | 
|  | return comp; | 
|  | } | 
|  |  | 
|  | static void adjust_compensation(int target_ratio, unsigned int win) | 
|  | { | 
|  | int delta; | 
|  | struct powerclamp_calibration_data *d = &cal_data[target_ratio]; | 
|  |  | 
|  | /* | 
|  | * adjust compensations if confidence level has not been reached or | 
|  | * there are too many wakeups during the last idle injection period, we | 
|  | * cannot trust the data for compensation. | 
|  | */ | 
|  | if (d->confidence >= CONFIDENCE_OK || | 
|  | atomic_read(&idle_wakeup_counter) > | 
|  | win * num_online_cpus()) | 
|  | return; | 
|  |  | 
|  | delta = set_target_ratio - current_ratio; | 
|  | /* filter out bad data */ | 
|  | if (delta >= 0 && delta <= (1+target_ratio/10)) { | 
|  | if (d->steady_comp) | 
|  | d->steady_comp = | 
|  | roundup(delta+d->steady_comp, 2)/2; | 
|  | else | 
|  | d->steady_comp = delta; | 
|  | d->confidence++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool powerclamp_adjust_controls(unsigned int target_ratio, | 
|  | unsigned int guard, unsigned int win) | 
|  | { | 
|  | static u64 msr_last, tsc_last; | 
|  | u64 msr_now, tsc_now; | 
|  | u64 val64; | 
|  |  | 
|  | /* check result for the last window */ | 
|  | msr_now = pkg_state_counter(); | 
|  | tsc_now = rdtsc(); | 
|  |  | 
|  | /* calculate pkg cstate vs tsc ratio */ | 
|  | if (!msr_last || !tsc_last) | 
|  | current_ratio = 1; | 
|  | else if (tsc_now-tsc_last) { | 
|  | val64 = 100*(msr_now-msr_last); | 
|  | do_div(val64, (tsc_now-tsc_last)); | 
|  | current_ratio = val64; | 
|  | } | 
|  |  | 
|  | /* update record */ | 
|  | msr_last = msr_now; | 
|  | tsc_last = tsc_now; | 
|  |  | 
|  | adjust_compensation(target_ratio, win); | 
|  | /* | 
|  | * too many external interrupts, set flag such | 
|  | * that we can take measure later. | 
|  | */ | 
|  | reduce_irq = atomic_read(&idle_wakeup_counter) >= | 
|  | 2 * win * num_online_cpus(); | 
|  |  | 
|  | atomic_set(&idle_wakeup_counter, 0); | 
|  | /* if we are above target+guard, skip */ | 
|  | return set_target_ratio + guard <= current_ratio; | 
|  | } | 
|  |  | 
|  | static int clamp_thread(void *arg) | 
|  | { | 
|  | int cpunr = (unsigned long)arg; | 
|  | DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0); | 
|  | static const struct sched_param param = { | 
|  | .sched_priority = MAX_USER_RT_PRIO/2, | 
|  | }; | 
|  | unsigned int count = 0; | 
|  | unsigned int target_ratio; | 
|  |  | 
|  | set_bit(cpunr, cpu_clamping_mask); | 
|  | set_freezable(); | 
|  | init_timer_on_stack(&wakeup_timer); | 
|  | sched_setscheduler(current, SCHED_FIFO, ¶m); | 
|  |  | 
|  | while (true == clamping && !kthread_should_stop() && | 
|  | cpu_online(cpunr)) { | 
|  | int sleeptime; | 
|  | unsigned long target_jiffies; | 
|  | unsigned int guard; | 
|  | unsigned int compensation = 0; | 
|  | int interval; /* jiffies to sleep for each attempt */ | 
|  | unsigned int duration_jiffies = msecs_to_jiffies(duration); | 
|  | unsigned int window_size_now; | 
|  |  | 
|  | try_to_freeze(); | 
|  | /* | 
|  | * make sure user selected ratio does not take effect until | 
|  | * the next round. adjust target_ratio if user has changed | 
|  | * target such that we can converge quickly. | 
|  | */ | 
|  | target_ratio = set_target_ratio; | 
|  | guard = 1 + target_ratio/20; | 
|  | window_size_now = window_size; | 
|  | count++; | 
|  |  | 
|  | /* | 
|  | * systems may have different ability to enter package level | 
|  | * c-states, thus we need to compensate the injected idle ratio | 
|  | * to achieve the actual target reported by the HW. | 
|  | */ | 
|  | compensation = get_compensation(target_ratio); | 
|  | interval = duration_jiffies*100/(target_ratio+compensation); | 
|  |  | 
|  | /* align idle time */ | 
|  | target_jiffies = roundup(jiffies, interval); | 
|  | sleeptime = target_jiffies - jiffies; | 
|  | if (sleeptime <= 0) | 
|  | sleeptime = 1; | 
|  | schedule_timeout_interruptible(sleeptime); | 
|  | /* | 
|  | * only elected controlling cpu can collect stats and update | 
|  | * control parameters. | 
|  | */ | 
|  | if (cpunr == control_cpu && !(count%window_size_now)) { | 
|  | should_skip = | 
|  | powerclamp_adjust_controls(target_ratio, | 
|  | guard, window_size_now); | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | if (should_skip) | 
|  | continue; | 
|  |  | 
|  | target_jiffies = jiffies + duration_jiffies; | 
|  | mod_timer(&wakeup_timer, target_jiffies); | 
|  | if (unlikely(local_softirq_pending())) | 
|  | continue; | 
|  | /* | 
|  | * stop tick sched during idle time, interrupts are still | 
|  | * allowed. thus jiffies are updated properly. | 
|  | */ | 
|  | preempt_disable(); | 
|  | /* mwait until target jiffies is reached */ | 
|  | while (time_before(jiffies, target_jiffies)) { | 
|  | unsigned long ecx = 1; | 
|  | unsigned long eax = target_mwait; | 
|  |  | 
|  | /* | 
|  | * REVISIT: may call enter_idle() to notify drivers who | 
|  | * can save power during cpu idle. same for exit_idle() | 
|  | */ | 
|  | local_touch_nmi(); | 
|  | stop_critical_timings(); | 
|  | mwait_idle_with_hints(eax, ecx); | 
|  | start_critical_timings(); | 
|  | atomic_inc(&idle_wakeup_counter); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | del_timer_sync(&wakeup_timer); | 
|  | clear_bit(cpunr, cpu_clamping_mask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 1 HZ polling while clamping is active, useful for userspace | 
|  | * to monitor actual idle ratio. | 
|  | */ | 
|  | static void poll_pkg_cstate(struct work_struct *dummy); | 
|  | static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); | 
|  | static void poll_pkg_cstate(struct work_struct *dummy) | 
|  | { | 
|  | static u64 msr_last; | 
|  | static u64 tsc_last; | 
|  | static unsigned long jiffies_last; | 
|  |  | 
|  | u64 msr_now; | 
|  | unsigned long jiffies_now; | 
|  | u64 tsc_now; | 
|  | u64 val64; | 
|  |  | 
|  | msr_now = pkg_state_counter(); | 
|  | tsc_now = rdtsc(); | 
|  | jiffies_now = jiffies; | 
|  |  | 
|  | /* calculate pkg cstate vs tsc ratio */ | 
|  | if (!msr_last || !tsc_last) | 
|  | pkg_cstate_ratio_cur = 1; | 
|  | else { | 
|  | if (tsc_now - tsc_last) { | 
|  | val64 = 100 * (msr_now - msr_last); | 
|  | do_div(val64, (tsc_now - tsc_last)); | 
|  | pkg_cstate_ratio_cur = val64; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update record */ | 
|  | msr_last = msr_now; | 
|  | jiffies_last = jiffies_now; | 
|  | tsc_last = tsc_now; | 
|  |  | 
|  | if (true == clamping) | 
|  | schedule_delayed_work(&poll_pkg_cstate_work, HZ); | 
|  | } | 
|  |  | 
|  | static int start_power_clamp(void) | 
|  | { | 
|  | unsigned long cpu; | 
|  | struct task_struct *thread; | 
|  |  | 
|  | /* check if pkg cstate counter is completely 0, abort in this case */ | 
|  | if (!has_pkg_state_counter()) { | 
|  | pr_err("pkg cstate counter not functional, abort\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); | 
|  | /* prevent cpu hotplug */ | 
|  | get_online_cpus(); | 
|  |  | 
|  | /* prefer BSP */ | 
|  | control_cpu = 0; | 
|  | if (!cpu_online(control_cpu)) | 
|  | control_cpu = smp_processor_id(); | 
|  |  | 
|  | clamping = true; | 
|  | schedule_delayed_work(&poll_pkg_cstate_work, 0); | 
|  |  | 
|  | /* start one thread per online cpu */ | 
|  | for_each_online_cpu(cpu) { | 
|  | struct task_struct **p = | 
|  | per_cpu_ptr(powerclamp_thread, cpu); | 
|  |  | 
|  | thread = kthread_create_on_node(clamp_thread, | 
|  | (void *) cpu, | 
|  | cpu_to_node(cpu), | 
|  | "kidle_inject/%ld", cpu); | 
|  | /* bind to cpu here */ | 
|  | if (likely(!IS_ERR(thread))) { | 
|  | kthread_bind(thread, cpu); | 
|  | wake_up_process(thread); | 
|  | *p = thread; | 
|  | } | 
|  |  | 
|  | } | 
|  | put_online_cpus(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void end_power_clamp(void) | 
|  | { | 
|  | int i; | 
|  | struct task_struct *thread; | 
|  |  | 
|  | clamping = false; | 
|  | /* | 
|  | * make clamping visible to other cpus and give per cpu clamping threads | 
|  | * sometime to exit, or gets killed later. | 
|  | */ | 
|  | smp_mb(); | 
|  | msleep(20); | 
|  | if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { | 
|  | for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { | 
|  | pr_debug("clamping thread for cpu %d alive, kill\n", i); | 
|  | thread = *per_cpu_ptr(powerclamp_thread, i); | 
|  | kthread_stop(thread); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int powerclamp_cpu_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned long cpu = (unsigned long)hcpu; | 
|  | struct task_struct *thread; | 
|  | struct task_struct **percpu_thread = | 
|  | per_cpu_ptr(powerclamp_thread, cpu); | 
|  |  | 
|  | if (false == clamping) | 
|  | goto exit_ok; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_ONLINE: | 
|  | thread = kthread_create_on_node(clamp_thread, | 
|  | (void *) cpu, | 
|  | cpu_to_node(cpu), | 
|  | "kidle_inject/%lu", cpu); | 
|  | if (likely(!IS_ERR(thread))) { | 
|  | kthread_bind(thread, cpu); | 
|  | wake_up_process(thread); | 
|  | *percpu_thread = thread; | 
|  | } | 
|  | /* prefer BSP as controlling CPU */ | 
|  | if (cpu == 0) { | 
|  | control_cpu = 0; | 
|  | smp_mb(); | 
|  | } | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | if (test_bit(cpu, cpu_clamping_mask)) { | 
|  | pr_err("cpu %lu dead but powerclamping thread is not\n", | 
|  | cpu); | 
|  | kthread_stop(*percpu_thread); | 
|  | } | 
|  | if (cpu == control_cpu) { | 
|  | control_cpu = smp_processor_id(); | 
|  | smp_mb(); | 
|  | } | 
|  | } | 
|  |  | 
|  | exit_ok: | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block powerclamp_cpu_notifier = { | 
|  | .notifier_call = powerclamp_cpu_callback, | 
|  | }; | 
|  |  | 
|  | static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, | 
|  | unsigned long *state) | 
|  | { | 
|  | *state = MAX_TARGET_RATIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, | 
|  | unsigned long *state) | 
|  | { | 
|  | if (true == clamping) | 
|  | *state = pkg_cstate_ratio_cur; | 
|  | else | 
|  | /* to save power, do not poll idle ratio while not clamping */ | 
|  | *state = -1; /* indicates invalid state */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, | 
|  | unsigned long new_target_ratio) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | new_target_ratio = clamp(new_target_ratio, 0UL, | 
|  | (unsigned long) (MAX_TARGET_RATIO-1)); | 
|  | if (set_target_ratio == 0 && new_target_ratio > 0) { | 
|  | pr_info("Start idle injection to reduce power\n"); | 
|  | set_target_ratio = new_target_ratio; | 
|  | ret = start_power_clamp(); | 
|  | goto exit_set; | 
|  | } else	if (set_target_ratio > 0 && new_target_ratio == 0) { | 
|  | pr_info("Stop forced idle injection\n"); | 
|  | set_target_ratio = 0; | 
|  | end_power_clamp(); | 
|  | } else	/* adjust currently running */ { | 
|  | set_target_ratio = new_target_ratio; | 
|  | /* make new set_target_ratio visible to other cpus */ | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | exit_set: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* bind to generic thermal layer as cooling device*/ | 
|  | static struct thermal_cooling_device_ops powerclamp_cooling_ops = { | 
|  | .get_max_state = powerclamp_get_max_state, | 
|  | .get_cur_state = powerclamp_get_cur_state, | 
|  | .set_cur_state = powerclamp_set_cur_state, | 
|  | }; | 
|  |  | 
|  | /* runs on Nehalem and later */ | 
|  | static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = { | 
|  | { X86_VENDOR_INTEL, 6, 0x1a}, | 
|  | { X86_VENDOR_INTEL, 6, 0x1c}, | 
|  | { X86_VENDOR_INTEL, 6, 0x1e}, | 
|  | { X86_VENDOR_INTEL, 6, 0x1f}, | 
|  | { X86_VENDOR_INTEL, 6, 0x25}, | 
|  | { X86_VENDOR_INTEL, 6, 0x26}, | 
|  | { X86_VENDOR_INTEL, 6, 0x2a}, | 
|  | { X86_VENDOR_INTEL, 6, 0x2c}, | 
|  | { X86_VENDOR_INTEL, 6, 0x2d}, | 
|  | { X86_VENDOR_INTEL, 6, 0x2e}, | 
|  | { X86_VENDOR_INTEL, 6, 0x2f}, | 
|  | { X86_VENDOR_INTEL, 6, 0x37}, | 
|  | { X86_VENDOR_INTEL, 6, 0x3a}, | 
|  | { X86_VENDOR_INTEL, 6, 0x3c}, | 
|  | { X86_VENDOR_INTEL, 6, 0x3d}, | 
|  | { X86_VENDOR_INTEL, 6, 0x3e}, | 
|  | { X86_VENDOR_INTEL, 6, 0x3f}, | 
|  | { X86_VENDOR_INTEL, 6, 0x45}, | 
|  | { X86_VENDOR_INTEL, 6, 0x46}, | 
|  | { X86_VENDOR_INTEL, 6, 0x47}, | 
|  | { X86_VENDOR_INTEL, 6, 0x4c}, | 
|  | { X86_VENDOR_INTEL, 6, 0x4d}, | 
|  | { X86_VENDOR_INTEL, 6, 0x4e}, | 
|  | { X86_VENDOR_INTEL, 6, 0x4f}, | 
|  | { X86_VENDOR_INTEL, 6, 0x56}, | 
|  | { X86_VENDOR_INTEL, 6, 0x57}, | 
|  | { X86_VENDOR_INTEL, 6, 0x5e}, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); | 
|  |  | 
|  | static int __init powerclamp_probe(void) | 
|  | { | 
|  | if (!x86_match_cpu(intel_powerclamp_ids)) { | 
|  | pr_err("Intel powerclamp does not run on family %d model %d\n", | 
|  | boot_cpu_data.x86, boot_cpu_data.x86_model); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || | 
|  | !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) || | 
|  | !boot_cpu_has(X86_FEATURE_MWAIT) || | 
|  | !boot_cpu_has(X86_FEATURE_ARAT)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* find the deepest mwait value */ | 
|  | find_target_mwait(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int powerclamp_debug_show(struct seq_file *m, void *unused) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | seq_printf(m, "controlling cpu: %d\n", control_cpu); | 
|  | seq_printf(m, "pct confidence steady dynamic (compensation)\n"); | 
|  | for (i = 0; i < MAX_TARGET_RATIO; i++) { | 
|  | seq_printf(m, "%d\t%lu\t%lu\t%lu\n", | 
|  | i, | 
|  | cal_data[i].confidence, | 
|  | cal_data[i].steady_comp, | 
|  | cal_data[i].dynamic_comp); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int powerclamp_debug_open(struct inode *inode, | 
|  | struct file *file) | 
|  | { | 
|  | return single_open(file, powerclamp_debug_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations powerclamp_debug_fops = { | 
|  | .open		= powerclamp_debug_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .owner		= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static inline void powerclamp_create_debug_files(void) | 
|  | { | 
|  | debug_dir = debugfs_create_dir("intel_powerclamp", NULL); | 
|  | if (!debug_dir) | 
|  | return; | 
|  |  | 
|  | if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, | 
|  | cal_data, &powerclamp_debug_fops)) | 
|  | goto file_error; | 
|  |  | 
|  | return; | 
|  |  | 
|  | file_error: | 
|  | debugfs_remove_recursive(debug_dir); | 
|  | } | 
|  |  | 
|  | static int __init powerclamp_init(void) | 
|  | { | 
|  | int retval; | 
|  | int bitmap_size; | 
|  |  | 
|  | bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); | 
|  | cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); | 
|  | if (!cpu_clamping_mask) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* probe cpu features and ids here */ | 
|  | retval = powerclamp_probe(); | 
|  | if (retval) | 
|  | goto exit_free; | 
|  |  | 
|  | /* set default limit, maybe adjusted during runtime based on feedback */ | 
|  | window_size = 2; | 
|  | register_hotcpu_notifier(&powerclamp_cpu_notifier); | 
|  |  | 
|  | powerclamp_thread = alloc_percpu(struct task_struct *); | 
|  | if (!powerclamp_thread) { | 
|  | retval = -ENOMEM; | 
|  | goto exit_unregister; | 
|  | } | 
|  |  | 
|  | cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, | 
|  | &powerclamp_cooling_ops); | 
|  | if (IS_ERR(cooling_dev)) { | 
|  | retval = -ENODEV; | 
|  | goto exit_free_thread; | 
|  | } | 
|  |  | 
|  | if (!duration) | 
|  | duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); | 
|  |  | 
|  | powerclamp_create_debug_files(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_free_thread: | 
|  | free_percpu(powerclamp_thread); | 
|  | exit_unregister: | 
|  | unregister_hotcpu_notifier(&powerclamp_cpu_notifier); | 
|  | exit_free: | 
|  | kfree(cpu_clamping_mask); | 
|  | return retval; | 
|  | } | 
|  | module_init(powerclamp_init); | 
|  |  | 
|  | static void __exit powerclamp_exit(void) | 
|  | { | 
|  | unregister_hotcpu_notifier(&powerclamp_cpu_notifier); | 
|  | end_power_clamp(); | 
|  | free_percpu(powerclamp_thread); | 
|  | thermal_cooling_device_unregister(cooling_dev); | 
|  | kfree(cpu_clamping_mask); | 
|  |  | 
|  | cancel_delayed_work_sync(&poll_pkg_cstate_work); | 
|  | debugfs_remove_recursive(debug_dir); | 
|  | } | 
|  | module_exit(powerclamp_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Arjan van de Ven <[email protected]>"); | 
|  | MODULE_AUTHOR("Jacob Pan <[email protected]>"); | 
|  | MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs"); |