|  | /* | 
|  | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
|  | * | 
|  | * Floating-point emulation code | 
|  | *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <[email protected]> | 
|  | * | 
|  | *    This program is free software; you can redistribute it and/or modify | 
|  | *    it under the terms of the GNU General Public License as published by | 
|  | *    the Free Software Foundation; either version 2, or (at your option) | 
|  | *    any later version. | 
|  | * | 
|  | *    This program is distributed in the hope that it will be useful, | 
|  | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *    GNU General Public License for more details. | 
|  | * | 
|  | *    You should have received a copy of the GNU General Public License | 
|  | *    along with this program; if not, write to the Free Software | 
|  | *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  | /* | 
|  | * BEGIN_DESC | 
|  | * | 
|  | *  File: | 
|  | *	@(#)	pa/spmath/dfsub.c		$Revision: 1.1 $ | 
|  | * | 
|  | *  Purpose: | 
|  | *	Double_subtract: subtract two double precision values. | 
|  | * | 
|  | *  External Interfaces: | 
|  | *	dbl_fsub(leftptr, rightptr, dstptr, status) | 
|  | * | 
|  | *  Internal Interfaces: | 
|  | * | 
|  | *  Theory: | 
|  | *	<<please update with a overview of the operation of this file>> | 
|  | * | 
|  | * END_DESC | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "float.h" | 
|  | #include "dbl_float.h" | 
|  |  | 
|  | /* | 
|  | * Double_subtract: subtract two double precision values. | 
|  | */ | 
|  | int | 
|  | dbl_fsub( | 
|  | dbl_floating_point *leftptr, | 
|  | dbl_floating_point *rightptr, | 
|  | dbl_floating_point *dstptr, | 
|  | unsigned int *status) | 
|  | { | 
|  | register unsigned int signless_upper_left, signless_upper_right, save; | 
|  | register unsigned int leftp1, leftp2, rightp1, rightp2, extent; | 
|  | register unsigned int resultp1 = 0, resultp2 = 0; | 
|  |  | 
|  | register int result_exponent, right_exponent, diff_exponent; | 
|  | register int sign_save, jumpsize; | 
|  | register boolean inexact = FALSE, underflowtrap; | 
|  |  | 
|  | /* Create local copies of the numbers */ | 
|  | Dbl_copyfromptr(leftptr,leftp1,leftp2); | 
|  | Dbl_copyfromptr(rightptr,rightp1,rightp2); | 
|  |  | 
|  | /* A zero "save" helps discover equal operands (for later),  * | 
|  | * and is used in swapping operands (if needed).             */ | 
|  | Dbl_xortointp1(leftp1,rightp1,/*to*/save); | 
|  |  | 
|  | /* | 
|  | * check first operand for NaN's or infinity | 
|  | */ | 
|  | if ((result_exponent = Dbl_exponent(leftp1)) == DBL_INFINITY_EXPONENT) | 
|  | { | 
|  | if (Dbl_iszero_mantissa(leftp1,leftp2)) | 
|  | { | 
|  | if (Dbl_isnotnan(rightp1,rightp2)) | 
|  | { | 
|  | if (Dbl_isinfinity(rightp1,rightp2) && save==0) | 
|  | { | 
|  | /* | 
|  | * invalid since operands are same signed infinity's | 
|  | */ | 
|  | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
|  | Set_invalidflag(); | 
|  | Dbl_makequietnan(resultp1,resultp2); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return infinity | 
|  | */ | 
|  | Dbl_copytoptr(leftp1,leftp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(leftp1)) | 
|  | { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(leftp1); | 
|  | } | 
|  | /* | 
|  | * is second operand a signaling NaN? | 
|  | */ | 
|  | else if (Dbl_is_signalingnan(rightp1)) | 
|  | { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(rightp1); | 
|  | Dbl_copytoptr(rightp1,rightp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(leftp1,leftp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } /* End left NaN or Infinity processing */ | 
|  | /* | 
|  | * check second operand for NaN's or infinity | 
|  | */ | 
|  | if (Dbl_isinfinity_exponent(rightp1)) | 
|  | { | 
|  | if (Dbl_iszero_mantissa(rightp1,rightp2)) | 
|  | { | 
|  | /* return infinity */ | 
|  | Dbl_invert_sign(rightp1); | 
|  | Dbl_copytoptr(rightp1,rightp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * is NaN; signaling or quiet? | 
|  | */ | 
|  | if (Dbl_isone_signaling(rightp1)) | 
|  | { | 
|  | /* trap if INVALIDTRAP enabled */ | 
|  | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
|  | /* make NaN quiet */ | 
|  | Set_invalidflag(); | 
|  | Dbl_set_quiet(rightp1); | 
|  | } | 
|  | /* | 
|  | * return quiet NaN | 
|  | */ | 
|  | Dbl_copytoptr(rightp1,rightp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } /* End right NaN or Infinity processing */ | 
|  |  | 
|  | /* Invariant: Must be dealing with finite numbers */ | 
|  |  | 
|  | /* Compare operands by removing the sign */ | 
|  | Dbl_copytoint_exponentmantissap1(leftp1,signless_upper_left); | 
|  | Dbl_copytoint_exponentmantissap1(rightp1,signless_upper_right); | 
|  |  | 
|  | /* sign difference selects add or sub operation. */ | 
|  | if(Dbl_ismagnitudeless(leftp2,rightp2,signless_upper_left,signless_upper_right)) | 
|  | { | 
|  | /* Set the left operand to the larger one by XOR swap * | 
|  | *  First finish the first word using "save"          */ | 
|  | Dbl_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | Dbl_xorfromintp1(save,leftp1,/*to*/leftp1); | 
|  | Dbl_swap_lower(leftp2,rightp2); | 
|  | result_exponent = Dbl_exponent(leftp1); | 
|  | Dbl_invert_sign(leftp1); | 
|  | } | 
|  | /* Invariant:  left is not smaller than right. */ | 
|  |  | 
|  | if((right_exponent = Dbl_exponent(rightp1)) == 0) | 
|  | { | 
|  | /* Denormalized operands.  First look for zeroes */ | 
|  | if(Dbl_iszero_mantissa(rightp1,rightp2)) | 
|  | { | 
|  | /* right is zero */ | 
|  | if(Dbl_iszero_exponentmantissa(leftp1,leftp2)) | 
|  | { | 
|  | /* Both operands are zeros */ | 
|  | Dbl_invert_sign(rightp1); | 
|  | if(Is_rounding_mode(ROUNDMINUS)) | 
|  | { | 
|  | Dbl_or_signs(leftp1,/*with*/rightp1); | 
|  | } | 
|  | else | 
|  | { | 
|  | Dbl_and_signs(leftp1,/*with*/rightp1); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Left is not a zero and must be the result.  Trapped | 
|  | * underflows are signaled if left is denormalized.  Result | 
|  | * is always exact. */ | 
|  | if( (result_exponent == 0) && Is_underflowtrap_enabled() ) | 
|  | { | 
|  | /* need to normalize results mantissa */ | 
|  | sign_save = Dbl_signextendedsign(leftp1); | 
|  | Dbl_leftshiftby1(leftp1,leftp2); | 
|  | Dbl_normalize(leftp1,leftp2,result_exponent); | 
|  | Dbl_set_sign(leftp1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(leftp1,result_exponent,unfl); | 
|  | Dbl_copytoptr(leftp1,leftp2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(UNDERFLOWEXCEPTION); | 
|  | } | 
|  | } | 
|  | Dbl_copytoptr(leftp1,leftp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  |  | 
|  | /* Neither are zeroes */ | 
|  | Dbl_clear_sign(rightp1);	/* Exponent is already cleared */ | 
|  | if(result_exponent == 0 ) | 
|  | { | 
|  | /* Both operands are denormalized.  The result must be exact | 
|  | * and is simply calculated.  A sum could become normalized and a | 
|  | * difference could cancel to a true zero. */ | 
|  | if( (/*signed*/int) save >= 0 ) | 
|  | { | 
|  | Dbl_subtract(leftp1,leftp2,/*minus*/rightp1,rightp2, | 
|  | /*into*/resultp1,resultp2); | 
|  | if(Dbl_iszero_mantissa(resultp1,resultp2)) | 
|  | { | 
|  | if(Is_rounding_mode(ROUNDMINUS)) | 
|  | { | 
|  | Dbl_setone_sign(resultp1); | 
|  | } | 
|  | else | 
|  | { | 
|  | Dbl_setzero_sign(resultp1); | 
|  | } | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | Dbl_addition(leftp1,leftp2,rightp1,rightp2, | 
|  | /*into*/resultp1,resultp2); | 
|  | if(Dbl_isone_hidden(resultp1)) | 
|  | { | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | } | 
|  | if(Is_underflowtrap_enabled()) | 
|  | { | 
|  | /* need to normalize result */ | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | Dbl_leftshiftby1(resultp1,resultp2); | 
|  | Dbl_normalize(resultp1,resultp2,result_exponent); | 
|  | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(UNDERFLOWEXCEPTION); | 
|  | } | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | right_exponent = 1;	/* Set exponent to reflect different bias | 
|  | * with denomalized numbers. */ | 
|  | } | 
|  | else | 
|  | { | 
|  | Dbl_clear_signexponent_set_hidden(rightp1); | 
|  | } | 
|  | Dbl_clear_exponent_set_hidden(leftp1); | 
|  | diff_exponent = result_exponent - right_exponent; | 
|  |  | 
|  | /* | 
|  | * Special case alignment of operands that would force alignment | 
|  | * beyond the extent of the extension.  A further optimization | 
|  | * could special case this but only reduces the path length for this | 
|  | * infrequent case. | 
|  | */ | 
|  | if(diff_exponent > DBL_THRESHOLD) | 
|  | { | 
|  | diff_exponent = DBL_THRESHOLD; | 
|  | } | 
|  |  | 
|  | /* Align right operand by shifting to right */ | 
|  | Dbl_right_align(/*operand*/rightp1,rightp2,/*shifted by*/diff_exponent, | 
|  | /*and lower to*/extent); | 
|  |  | 
|  | /* Treat sum and difference of the operands separately. */ | 
|  | if( (/*signed*/int) save >= 0 ) | 
|  | { | 
|  | /* | 
|  | * Difference of the two operands.  Their can be no overflow.  A | 
|  | * borrow can occur out of the hidden bit and force a post | 
|  | * normalization phase. | 
|  | */ | 
|  | Dbl_subtract_withextension(leftp1,leftp2,/*minus*/rightp1,rightp2, | 
|  | /*with*/extent,/*into*/resultp1,resultp2); | 
|  | if(Dbl_iszero_hidden(resultp1)) | 
|  | { | 
|  | /* Handle normalization */ | 
|  | /* A straight forward algorithm would now shift the result | 
|  | * and extension left until the hidden bit becomes one.  Not | 
|  | * all of the extension bits need participate in the shift. | 
|  | * Only the two most significant bits (round and guard) are | 
|  | * needed.  If only a single shift is needed then the guard | 
|  | * bit becomes a significant low order bit and the extension | 
|  | * must participate in the rounding.  If more than a single | 
|  | * shift is needed, then all bits to the right of the guard | 
|  | * bit are zeros, and the guard bit may or may not be zero. */ | 
|  | sign_save = Dbl_signextendedsign(resultp1); | 
|  | Dbl_leftshiftby1_withextent(resultp1,resultp2,extent,resultp1,resultp2); | 
|  |  | 
|  | /* Need to check for a zero result.  The sign and exponent | 
|  | * fields have already been zeroed.  The more efficient test | 
|  | * of the full object can be used. | 
|  | */ | 
|  | if(Dbl_iszero(resultp1,resultp2)) | 
|  | /* Must have been "x-x" or "x+(-x)". */ | 
|  | { | 
|  | if(Is_rounding_mode(ROUNDMINUS)) Dbl_setone_sign(resultp1); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | result_exponent--; | 
|  | /* Look to see if normalization is finished. */ | 
|  | if(Dbl_isone_hidden(resultp1)) | 
|  | { | 
|  | if(result_exponent==0) | 
|  | { | 
|  | /* Denormalized, exponent should be zero.  Left operand * | 
|  | * was normalized, so extent (guard, round) was zero    */ | 
|  | goto underflow; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* No further normalization is needed. */ | 
|  | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | Ext_leftshiftby1(extent); | 
|  | goto round; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for denormalized, exponent should be zero.  Left    * | 
|  | * operand was normalized, so extent (guard, round) was zero */ | 
|  | if(!(underflowtrap = Is_underflowtrap_enabled()) && | 
|  | result_exponent==0) goto underflow; | 
|  |  | 
|  | /* Shift extension to complete one bit of normalization and | 
|  | * update exponent. */ | 
|  | Ext_leftshiftby1(extent); | 
|  |  | 
|  | /* Discover first one bit to determine shift amount.  Use a | 
|  | * modified binary search.  We have already shifted the result | 
|  | * one position right and still not found a one so the remainder | 
|  | * of the extension must be zero and simplifies rounding. */ | 
|  | /* Scan bytes */ | 
|  | while(Dbl_iszero_hiddenhigh7mantissa(resultp1)) | 
|  | { | 
|  | Dbl_leftshiftby8(resultp1,resultp2); | 
|  | if((result_exponent -= 8) <= 0  && !underflowtrap) | 
|  | goto underflow; | 
|  | } | 
|  | /* Now narrow it down to the nibble */ | 
|  | if(Dbl_iszero_hiddenhigh3mantissa(resultp1)) | 
|  | { | 
|  | /* The lower nibble contains the normalizing one */ | 
|  | Dbl_leftshiftby4(resultp1,resultp2); | 
|  | if((result_exponent -= 4) <= 0 && !underflowtrap) | 
|  | goto underflow; | 
|  | } | 
|  | /* Select case were first bit is set (already normalized) | 
|  | * otherwise select the proper shift. */ | 
|  | if((jumpsize = Dbl_hiddenhigh3mantissa(resultp1)) > 7) | 
|  | { | 
|  | /* Already normalized */ | 
|  | if(result_exponent <= 0) goto underflow; | 
|  | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | Dbl_set_exponent(resultp1,/*using*/result_exponent); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } | 
|  | Dbl_sethigh4bits(resultp1,/*using*/sign_save); | 
|  | switch(jumpsize) | 
|  | { | 
|  | case 1: | 
|  | { | 
|  | Dbl_leftshiftby3(resultp1,resultp2); | 
|  | result_exponent -= 3; | 
|  | break; | 
|  | } | 
|  | case 2: | 
|  | case 3: | 
|  | { | 
|  | Dbl_leftshiftby2(resultp1,resultp2); | 
|  | result_exponent -= 2; | 
|  | break; | 
|  | } | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | case 7: | 
|  | { | 
|  | Dbl_leftshiftby1(resultp1,resultp2); | 
|  | result_exponent -= 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if(result_exponent > 0) | 
|  | { | 
|  | Dbl_set_exponent(resultp1,/*using*/result_exponent); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION);		/* Sign bit is already set */ | 
|  | } | 
|  | /* Fixup potential underflows */ | 
|  | underflow: | 
|  | if(Is_underflowtrap_enabled()) | 
|  | { | 
|  | Dbl_set_sign(resultp1,sign_save); | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | /* inexact = FALSE */ | 
|  | return(UNDERFLOWEXCEPTION); | 
|  | } | 
|  | /* | 
|  | * Since we cannot get an inexact denormalized result, | 
|  | * we can now return. | 
|  | */ | 
|  | Dbl_fix_overshift(resultp1,resultp2,(1-result_exponent),extent); | 
|  | Dbl_clear_signexponent(resultp1); | 
|  | Dbl_set_sign(resultp1,sign_save); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | return(NOEXCEPTION); | 
|  | } /* end if(hidden...)... */ | 
|  | /* Fall through and round */ | 
|  | } /* end if(save >= 0)... */ | 
|  | else | 
|  | { | 
|  | /* Subtract magnitudes */ | 
|  | Dbl_addition(leftp1,leftp2,rightp1,rightp2,/*to*/resultp1,resultp2); | 
|  | if(Dbl_isone_hiddenoverflow(resultp1)) | 
|  | { | 
|  | /* Prenormalization required. */ | 
|  | Dbl_rightshiftby1_withextent(resultp2,extent,extent); | 
|  | Dbl_arithrightshiftby1(resultp1,resultp2); | 
|  | result_exponent++; | 
|  | } /* end if hiddenoverflow... */ | 
|  | } /* end else ...subtract magnitudes... */ | 
|  |  | 
|  | /* Round the result.  If the extension is all zeros,then the result is | 
|  | * exact.  Otherwise round in the correct direction.  No underflow is | 
|  | * possible. If a postnormalization is necessary, then the mantissa is | 
|  | * all zeros so no shift is needed. */ | 
|  | round: | 
|  | if(Ext_isnotzero(extent)) | 
|  | { | 
|  | inexact = TRUE; | 
|  | switch(Rounding_mode()) | 
|  | { | 
|  | case ROUNDNEAREST: /* The default. */ | 
|  | if(Ext_isone_sign(extent)) | 
|  | { | 
|  | /* at least 1/2 ulp */ | 
|  | if(Ext_isnotzero_lower(extent)  || | 
|  | Dbl_isone_lowmantissap2(resultp2)) | 
|  | { | 
|  | /* either exactly half way and odd or more than 1/2ulp */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDPLUS: | 
|  | if(Dbl_iszero_sign(resultp1)) | 
|  | { | 
|  | /* Round up positive results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ROUNDMINUS: | 
|  | if(Dbl_isone_sign(resultp1)) | 
|  | { | 
|  | /* Round down negative results */ | 
|  | Dbl_increment(resultp1,resultp2); | 
|  | } | 
|  |  | 
|  | case ROUNDZERO:; | 
|  | /* truncate is simple */ | 
|  | } /* end switch... */ | 
|  | if(Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | } | 
|  | if(result_exponent == DBL_INFINITY_EXPONENT) | 
|  | { | 
|  | /* Overflow */ | 
|  | if(Is_overflowtrap_enabled()) | 
|  | { | 
|  | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if (inexact) | 
|  | if (Is_inexacttrap_enabled()) | 
|  | return(OVERFLOWEXCEPTION | INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(OVERFLOWEXCEPTION); | 
|  | } | 
|  | else | 
|  | { | 
|  | inexact = TRUE; | 
|  | Set_overflowflag(); | 
|  | Dbl_setoverflow(resultp1,resultp2); | 
|  | } | 
|  | } | 
|  | else Dbl_set_exponent(resultp1,result_exponent); | 
|  | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | if(inexact) | 
|  | if(Is_inexacttrap_enabled()) return(INEXACTEXCEPTION); | 
|  | else Set_inexactflag(); | 
|  | return(NOEXCEPTION); | 
|  | } |