|  | /* | 
|  | * Copyright (C) 1995  Linus Torvalds | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/homecache.h> | 
|  | #include <hv/hypervisor.h> | 
|  | #include <arch/chip.h> | 
|  |  | 
|  | #include "migrate.h" | 
|  |  | 
|  | #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  | unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; | 
|  | EXPORT_SYMBOL(VMALLOC_RESERVE); | 
|  | #endif | 
|  |  | 
|  | /* Create an L2 page table */ | 
|  | static pte_t * __init alloc_pte(void) | 
|  | { | 
|  | return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * L2 page tables per controller.  We allocate these all at once from | 
|  | * the bootmem allocator and store them here.  This saves on kernel L2 | 
|  | * page table memory, compared to allocating a full 64K page per L2 | 
|  | * page table, and also means that in cases where we use huge pages, | 
|  | * we are guaranteed to later be able to shatter those huge pages and | 
|  | * switch to using these page tables instead, without requiring | 
|  | * further allocation.  Each l2_ptes[] entry points to the first page | 
|  | * table for the first hugepage-size piece of memory on the | 
|  | * controller; other page tables are just indexed directly, i.e. the | 
|  | * L2 page tables are contiguous in memory for each controller. | 
|  | */ | 
|  | static pte_t *l2_ptes[MAX_NUMNODES]; | 
|  | static int num_l2_ptes[MAX_NUMNODES]; | 
|  |  | 
|  | static void init_prealloc_ptes(int node, int pages) | 
|  | { | 
|  | BUG_ON(pages & (PTRS_PER_PTE - 1)); | 
|  | if (pages) { | 
|  | num_l2_ptes[node] = pages; | 
|  | l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), | 
|  | HV_PAGE_TABLE_ALIGN, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | pte_t *get_prealloc_pte(unsigned long pfn) | 
|  | { | 
|  | int node = pfn_to_nid(pfn); | 
|  | pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)); | 
|  | BUG_ON(node >= MAX_NUMNODES); | 
|  | BUG_ON(pfn >= num_l2_ptes[node]); | 
|  | return &l2_ptes[node][pfn]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * What caching do we expect pages from the heap to have when | 
|  | * they are allocated during bootup?  (Once we've installed the | 
|  | * "real" swapper_pg_dir.) | 
|  | */ | 
|  | static int initial_heap_home(void) | 
|  | { | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | if (hash_default) | 
|  | return PAGE_HOME_HASH; | 
|  | #endif | 
|  | return smp_processor_id(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Place a pointer to an L2 page table in a middle page | 
|  | * directory entry. | 
|  | */ | 
|  | static void __init assign_pte(pmd_t *pmd, pte_t *page_table) | 
|  | { | 
|  | phys_addr_t pa = __pa(page_table); | 
|  | unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN; | 
|  | pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn); | 
|  | BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0); | 
|  | pteval = pte_set_home(pteval, initial_heap_home()); | 
|  | *(pte_t *)pmd = pteval; | 
|  | if (page_table != (pte_t *)pmd_page_vaddr(*pmd)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | #ifdef __tilegx__ | 
|  |  | 
|  | static inline pmd_t *alloc_pmd(void) | 
|  | { | 
|  | return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); | 
|  | } | 
|  |  | 
|  | static inline void assign_pmd(pud_t *pud, pmd_t *pmd) | 
|  | { | 
|  | assign_pte((pmd_t *)pud, (pte_t *)pmd); | 
|  | } | 
|  |  | 
|  | #endif /* __tilegx__ */ | 
|  |  | 
|  | /* Replace the given pmd with a full PTE table. */ | 
|  | void __init shatter_pmd(pmd_t *pmd) | 
|  | { | 
|  | pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd)); | 
|  | assign_pte(pmd, pte); | 
|  | } | 
|  |  | 
|  | #ifdef __tilegx__ | 
|  | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) | 
|  | { | 
|  | pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); | 
|  | if (pud_none(*pud)) | 
|  | assign_pmd(pud, alloc_pmd()); | 
|  | return pmd_offset(pud, va); | 
|  | } | 
|  | #else | 
|  | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) | 
|  | { | 
|  | return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This function initializes a certain range of kernel virtual memory | 
|  | * with new bootmem page tables, everywhere page tables are missing in | 
|  | * the given range. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * NOTE: The pagetables are allocated contiguous on the physical space | 
|  | * so we can cache the place of the first one and move around without | 
|  | * checking the pgd every time. | 
|  | */ | 
|  | static void __init page_table_range_init(unsigned long start, | 
|  | unsigned long end, pgd_t *pgd) | 
|  | { | 
|  | unsigned long vaddr; | 
|  | start = round_down(start, PMD_SIZE); | 
|  | end = round_up(end, PMD_SIZE); | 
|  | for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) { | 
|  | pmd_t *pmd = get_pmd(pgd, vaddr); | 
|  | if (pmd_none(*pmd)) | 
|  | assign_pte(pmd, alloc_pte()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  |  | 
|  | static int __initdata ktext_hash = 1;  /* .text pages */ | 
|  | static int __initdata kdata_hash = 1;  /* .data and .bss pages */ | 
|  | int __write_once hash_default = 1;     /* kernel allocator pages */ | 
|  | EXPORT_SYMBOL(hash_default); | 
|  | int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */ | 
|  | #endif /* CHIP_HAS_CBOX_HOME_MAP */ | 
|  |  | 
|  | /* | 
|  | * CPUs to use to for striping the pages of kernel data.  If hash-for-home | 
|  | * is available, this is only relevant if kcache_hash sets up the | 
|  | * .data and .bss to be page-homed, and we don't want the default mode | 
|  | * of using the full set of kernel cpus for the striping. | 
|  | */ | 
|  | static __initdata struct cpumask kdata_mask; | 
|  | static __initdata int kdata_arg_seen; | 
|  |  | 
|  | int __write_once kdata_huge;       /* if no homecaching, small pages */ | 
|  |  | 
|  |  | 
|  | /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */ | 
|  | static pgprot_t __init construct_pgprot(pgprot_t prot, int home) | 
|  | { | 
|  | prot = pte_set_home(prot, home); | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | if (home == PAGE_HOME_IMMUTABLE) { | 
|  | if (ktext_hash) | 
|  | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); | 
|  | else | 
|  | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); | 
|  | } | 
|  | #endif | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For a given kernel data VA, how should it be cached? | 
|  | * We return the complete pgprot_t with caching bits set. | 
|  | */ | 
|  | static pgprot_t __init init_pgprot(ulong address) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long page; | 
|  | enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; | 
|  |  | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | /* For kdata=huge, everything is just hash-for-home. */ | 
|  | if (kdata_huge) | 
|  | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | 
|  | #endif | 
|  |  | 
|  | /* We map the aliased pages of permanent text inaccessible. */ | 
|  | if (address < (ulong) _sinittext - CODE_DELTA) | 
|  | return PAGE_NONE; | 
|  |  | 
|  | /* | 
|  | * We map read-only data non-coherent for performance.  We could | 
|  | * use neighborhood caching on TILE64, but it's not clear it's a win. | 
|  | */ | 
|  | if ((address >= (ulong) __start_rodata && | 
|  | address < (ulong) __end_rodata) || | 
|  | address == (ulong) empty_zero_page) { | 
|  | return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); | 
|  | } | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
|  | /* Force the atomic_locks[] array page to be hash-for-home. */ | 
|  | if (address == (ulong) atomic_locks) | 
|  | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Everything else that isn't data or bss is heap, so mark it | 
|  | * with the initial heap home (hash-for-home, or this cpu).  This | 
|  | * includes any addresses after the loaded image and any address before | 
|  | * _einitdata, since we already captured the case of text before | 
|  | * _sinittext, and __pa(einittext) is approximately __pa(sinitdata). | 
|  | * | 
|  | * All the LOWMEM pages that we mark this way will get their | 
|  | * struct page homecache properly marked later, in set_page_homes(). | 
|  | * The HIGHMEM pages we leave with a default zero for their | 
|  | * homes, but with a zero free_time we don't have to actually | 
|  | * do a flush action the first time we use them, either. | 
|  | */ | 
|  | if (address >= (ulong) _end || address < (ulong) _einitdata) | 
|  | return construct_pgprot(PAGE_KERNEL, initial_heap_home()); | 
|  |  | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | /* Use hash-for-home if requested for data/bss. */ | 
|  | if (kdata_hash) | 
|  | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Make the w1data homed like heap to start with, to avoid | 
|  | * making it part of the page-striped data area when we're just | 
|  | * going to convert it to read-only soon anyway. | 
|  | */ | 
|  | if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end) | 
|  | return construct_pgprot(PAGE_KERNEL, initial_heap_home()); | 
|  |  | 
|  | /* | 
|  | * Otherwise we just hand out consecutive cpus.  To avoid | 
|  | * requiring this function to hold state, we just walk forward from | 
|  | * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach | 
|  | * the requested address, while walking cpu home around kdata_mask. | 
|  | * This is typically no more than a dozen or so iterations. | 
|  | */ | 
|  | page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK; | 
|  | BUG_ON(address < page || address >= (ulong)_end); | 
|  | cpu = cpumask_first(&kdata_mask); | 
|  | for (; page < address; page += PAGE_SIZE) { | 
|  | if (page >= (ulong)&init_thread_union && | 
|  | page < (ulong)&init_thread_union + THREAD_SIZE) | 
|  | continue; | 
|  | if (page == (ulong)empty_zero_page) | 
|  | continue; | 
|  | #ifndef __tilegx__ | 
|  | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
|  | if (page == (ulong)atomic_locks) | 
|  | continue; | 
|  | #endif | 
|  | #endif | 
|  | cpu = cpumask_next(cpu, &kdata_mask); | 
|  | if (cpu == NR_CPUS) | 
|  | cpu = cpumask_first(&kdata_mask); | 
|  | } | 
|  | return construct_pgprot(PAGE_KERNEL, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function sets up how we cache the kernel text.  If we have | 
|  | * hash-for-home support, normally that is used instead (see the | 
|  | * kcache_hash boot flag for more information).  But if we end up | 
|  | * using a page-based caching technique, this option sets up the | 
|  | * details of that.  In addition, the "ktext=nocache" option may | 
|  | * always be used to disable local caching of text pages, if desired. | 
|  | */ | 
|  |  | 
|  | static int __initdata ktext_arg_seen; | 
|  | static int __initdata ktext_small; | 
|  | static int __initdata ktext_local; | 
|  | static int __initdata ktext_all; | 
|  | static int __initdata ktext_nondataplane; | 
|  | static int __initdata ktext_nocache; | 
|  | static struct cpumask __initdata ktext_mask; | 
|  |  | 
|  | static int __init setup_ktext(char *str) | 
|  | { | 
|  | if (str == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If you have a leading "nocache", turn off ktext caching */ | 
|  | if (strncmp(str, "nocache", 7) == 0) { | 
|  | ktext_nocache = 1; | 
|  | pr_info("ktext: disabling local caching of kernel text\n"); | 
|  | str += 7; | 
|  | if (*str == ',') | 
|  | ++str; | 
|  | if (*str == '\0') | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ktext_arg_seen = 1; | 
|  |  | 
|  | /* Default setting on Tile64: use a huge page */ | 
|  | if (strcmp(str, "huge") == 0) | 
|  | pr_info("ktext: using one huge locally cached page\n"); | 
|  |  | 
|  | /* Pay TLB cost but get no cache benefit: cache small pages locally */ | 
|  | else if (strcmp(str, "local") == 0) { | 
|  | ktext_small = 1; | 
|  | ktext_local = 1; | 
|  | pr_info("ktext: using small pages with local caching\n"); | 
|  | } | 
|  |  | 
|  | /* Neighborhood cache ktext pages on all cpus. */ | 
|  | else if (strcmp(str, "all") == 0) { | 
|  | ktext_small = 1; | 
|  | ktext_all = 1; | 
|  | pr_info("ktext: using maximal caching neighborhood\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Neighborhood ktext pages on specified mask */ | 
|  | else if (cpulist_parse(str, &ktext_mask) == 0) { | 
|  | char buf[NR_CPUS * 5]; | 
|  | cpulist_scnprintf(buf, sizeof(buf), &ktext_mask); | 
|  | if (cpumask_weight(&ktext_mask) > 1) { | 
|  | ktext_small = 1; | 
|  | pr_info("ktext: using caching neighborhood %s " | 
|  | "with small pages\n", buf); | 
|  | } else { | 
|  | pr_info("ktext: caching on cpu %s with one huge page\n", | 
|  | buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (*str) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | early_param("ktext", setup_ktext); | 
|  |  | 
|  |  | 
|  | static inline pgprot_t ktext_set_nocache(pgprot_t prot) | 
|  | { | 
|  | if (!ktext_nocache) | 
|  | prot = hv_pte_set_nc(prot); | 
|  | #if CHIP_HAS_NC_AND_NOALLOC_BITS() | 
|  | else | 
|  | prot = hv_pte_set_no_alloc_l2(prot); | 
|  | #endif | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | /* Temporary page table we use for staging. */ | 
|  | static pgd_t pgtables[PTRS_PER_PGD] | 
|  | __attribute__((aligned(HV_PAGE_TABLE_ALIGN))); | 
|  |  | 
|  | /* | 
|  | * This maps the physical memory to kernel virtual address space, a total | 
|  | * of max_low_pfn pages, by creating page tables starting from address | 
|  | * PAGE_OFFSET. | 
|  | * | 
|  | * This routine transitions us from using a set of compiled-in large | 
|  | * pages to using some more precise caching, including removing access | 
|  | * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START) | 
|  | * marking read-only data as locally cacheable, striping the remaining | 
|  | * .data and .bss across all the available tiles, and removing access | 
|  | * to pages above the top of RAM (thus ensuring a page fault from a bad | 
|  | * virtual address rather than a hypervisor shoot down for accessing | 
|  | * memory outside the assigned limits). | 
|  | */ | 
|  | static void __init kernel_physical_mapping_init(pgd_t *pgd_base) | 
|  | { | 
|  | unsigned long long irqmask; | 
|  | unsigned long address, pfn; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | int pte_ofs; | 
|  | const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id()); | 
|  | struct cpumask kstripe_mask; | 
|  | int rc, i; | 
|  |  | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | if (ktext_arg_seen && ktext_hash) { | 
|  | pr_warning("warning: \"ktext\" boot argument ignored" | 
|  | " if \"kcache_hash\" sets up text hash-for-home\n"); | 
|  | ktext_small = 0; | 
|  | } | 
|  |  | 
|  | if (kdata_arg_seen && kdata_hash) { | 
|  | pr_warning("warning: \"kdata\" boot argument ignored" | 
|  | " if \"kcache_hash\" sets up data hash-for-home\n"); | 
|  | } | 
|  |  | 
|  | if (kdata_huge && !hash_default) { | 
|  | pr_warning("warning: disabling \"kdata=huge\"; requires" | 
|  | " kcache_hash=all or =allbutstack\n"); | 
|  | kdata_huge = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up a mask for cpus to use for kernel striping. | 
|  | * This is normally all cpus, but minus dataplane cpus if any. | 
|  | * If the dataplane covers the whole chip, we stripe over | 
|  | * the whole chip too. | 
|  | */ | 
|  | cpumask_copy(&kstripe_mask, cpu_possible_mask); | 
|  | if (!kdata_arg_seen) | 
|  | kdata_mask = kstripe_mask; | 
|  |  | 
|  | /* Allocate and fill in L2 page tables */ | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | unsigned long end_pfn = node_lowmem_end_pfn[i]; | 
|  | #else | 
|  | unsigned long end_pfn = node_end_pfn[i]; | 
|  | #endif | 
|  | unsigned long end_huge_pfn = 0; | 
|  |  | 
|  | /* Pre-shatter the last huge page to allow per-cpu pages. */ | 
|  | if (kdata_huge) | 
|  | end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT); | 
|  |  | 
|  | pfn = node_start_pfn[i]; | 
|  |  | 
|  | /* Allocate enough memory to hold L2 page tables for node. */ | 
|  | init_prealloc_ptes(i, end_pfn - pfn); | 
|  |  | 
|  | address = (unsigned long) pfn_to_kaddr(pfn); | 
|  | while (pfn < end_pfn) { | 
|  | BUG_ON(address & (HPAGE_SIZE-1)); | 
|  | pmd = get_pmd(pgtables, address); | 
|  | pte = get_prealloc_pte(pfn); | 
|  | if (pfn < end_huge_pfn) { | 
|  | pgprot_t prot = init_pgprot(address); | 
|  | *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot)); | 
|  | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; | 
|  | pfn++, pte_ofs++, address += PAGE_SIZE) | 
|  | pte[pte_ofs] = pfn_pte(pfn, prot); | 
|  | } else { | 
|  | if (kdata_huge) | 
|  | printk(KERN_DEBUG "pre-shattered huge" | 
|  | " page at %#lx\n", address); | 
|  | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; | 
|  | pfn++, pte_ofs++, address += PAGE_SIZE) { | 
|  | pgprot_t prot = init_pgprot(address); | 
|  | pte[pte_ofs] = pfn_pte(pfn, prot); | 
|  | } | 
|  | assign_pte(pmd, pte); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set or check ktext_map now that we have cpu_possible_mask | 
|  | * and kstripe_mask to work with. | 
|  | */ | 
|  | if (ktext_all) | 
|  | cpumask_copy(&ktext_mask, cpu_possible_mask); | 
|  | else if (ktext_nondataplane) | 
|  | ktext_mask = kstripe_mask; | 
|  | else if (!cpumask_empty(&ktext_mask)) { | 
|  | /* Sanity-check any mask that was requested */ | 
|  | struct cpumask bad; | 
|  | cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask); | 
|  | cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask); | 
|  | if (!cpumask_empty(&bad)) { | 
|  | char buf[NR_CPUS * 5]; | 
|  | cpulist_scnprintf(buf, sizeof(buf), &bad); | 
|  | pr_info("ktext: not using unavailable cpus %s\n", buf); | 
|  | } | 
|  | if (cpumask_empty(&ktext_mask)) { | 
|  | pr_warning("ktext: no valid cpus; caching on %d.\n", | 
|  | smp_processor_id()); | 
|  | cpumask_copy(&ktext_mask, | 
|  | cpumask_of(smp_processor_id())); | 
|  | } | 
|  | } | 
|  |  | 
|  | address = MEM_SV_INTRPT; | 
|  | pmd = get_pmd(pgtables, address); | 
|  | pfn = 0;  /* code starts at PA 0 */ | 
|  | if (ktext_small) { | 
|  | /* Allocate an L2 PTE for the kernel text */ | 
|  | int cpu = 0; | 
|  | pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC, | 
|  | PAGE_HOME_IMMUTABLE); | 
|  |  | 
|  | if (ktext_local) { | 
|  | if (ktext_nocache) | 
|  | prot = hv_pte_set_mode(prot, | 
|  | HV_PTE_MODE_UNCACHED); | 
|  | else | 
|  | prot = hv_pte_set_mode(prot, | 
|  | HV_PTE_MODE_CACHE_NO_L3); | 
|  | } else { | 
|  | prot = hv_pte_set_mode(prot, | 
|  | HV_PTE_MODE_CACHE_TILE_L3); | 
|  | cpu = cpumask_first(&ktext_mask); | 
|  |  | 
|  | prot = ktext_set_nocache(prot); | 
|  | } | 
|  |  | 
|  | BUG_ON(address != (unsigned long)_stext); | 
|  | pte = NULL; | 
|  | for (; address < (unsigned long)_einittext; | 
|  | pfn++, address += PAGE_SIZE) { | 
|  | pte_ofs = pte_index(address); | 
|  | if (pte_ofs == 0) { | 
|  | if (pte) | 
|  | assign_pte(pmd++, pte); | 
|  | pte = alloc_pte(); | 
|  | } | 
|  | if (!ktext_local) { | 
|  | prot = set_remote_cache_cpu(prot, cpu); | 
|  | cpu = cpumask_next(cpu, &ktext_mask); | 
|  | if (cpu == NR_CPUS) | 
|  | cpu = cpumask_first(&ktext_mask); | 
|  | } | 
|  | pte[pte_ofs] = pfn_pte(pfn, prot); | 
|  | } | 
|  | if (pte) | 
|  | assign_pte(pmd, pte); | 
|  | } else { | 
|  | pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); | 
|  | pteval = pte_mkhuge(pteval); | 
|  | #if CHIP_HAS_CBOX_HOME_MAP() | 
|  | if (ktext_hash) { | 
|  | pteval = hv_pte_set_mode(pteval, | 
|  | HV_PTE_MODE_CACHE_HASH_L3); | 
|  | pteval = ktext_set_nocache(pteval); | 
|  | } else | 
|  | #endif /* CHIP_HAS_CBOX_HOME_MAP() */ | 
|  | if (cpumask_weight(&ktext_mask) == 1) { | 
|  | pteval = set_remote_cache_cpu(pteval, | 
|  | cpumask_first(&ktext_mask)); | 
|  | pteval = hv_pte_set_mode(pteval, | 
|  | HV_PTE_MODE_CACHE_TILE_L3); | 
|  | pteval = ktext_set_nocache(pteval); | 
|  | } else if (ktext_nocache) | 
|  | pteval = hv_pte_set_mode(pteval, | 
|  | HV_PTE_MODE_UNCACHED); | 
|  | else | 
|  | pteval = hv_pte_set_mode(pteval, | 
|  | HV_PTE_MODE_CACHE_NO_L3); | 
|  | for (; address < (unsigned long)_einittext; | 
|  | pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE) | 
|  | *(pte_t *)(pmd++) = pfn_pte(pfn, pteval); | 
|  | } | 
|  |  | 
|  | /* Set swapper_pgprot here so it is flushed to memory right away. */ | 
|  | swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir); | 
|  |  | 
|  | /* | 
|  | * Since we may be changing the caching of the stack and page | 
|  | * table itself, we invoke an assembly helper to do the | 
|  | * following steps: | 
|  | * | 
|  | *  - flush the cache so we start with an empty slate | 
|  | *  - install pgtables[] as the real page table | 
|  | *  - flush the TLB so the new page table takes effect | 
|  | */ | 
|  | irqmask = interrupt_mask_save_mask(); | 
|  | interrupt_mask_set_mask(-1ULL); | 
|  | rc = flush_and_install_context(__pa(pgtables), | 
|  | init_pgprot((unsigned long)pgtables), | 
|  | __get_cpu_var(current_asid), | 
|  | cpumask_bits(my_cpu_mask)); | 
|  | interrupt_mask_restore_mask(irqmask); | 
|  | BUG_ON(rc != 0); | 
|  |  | 
|  | /* Copy the page table back to the normal swapper_pg_dir. */ | 
|  | memcpy(pgd_base, pgtables, sizeof(pgtables)); | 
|  | __install_page_table(pgd_base, __get_cpu_var(current_asid), | 
|  | swapper_pgprot); | 
|  |  | 
|  | /* | 
|  | * We just read swapper_pgprot and thus brought it into the cache, | 
|  | * with its new home & caching mode.  When we start the other CPUs, | 
|  | * they're going to reference swapper_pgprot via their initial fake | 
|  | * VA-is-PA mappings, which cache everything locally.  At that | 
|  | * time, if it's in our cache with a conflicting home, the | 
|  | * simulator's coherence checker will complain.  So, flush it out | 
|  | * of our cache; we're not going to ever use it again anyway. | 
|  | */ | 
|  | __insn_finv(&swapper_pgprot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|  | * is valid. The argument is a physical page number. | 
|  | * | 
|  | * On Tile, the only valid things for which we can just hand out unchecked | 
|  | * PTEs are the kernel code and data.  Anything else might change its | 
|  | * homing with time, and we wouldn't know to adjust the /dev/mem PTEs. | 
|  | * Note that init_thread_union is released to heap soon after boot, | 
|  | * so we include it in the init data. | 
|  | * | 
|  | * For TILE-Gx, we might want to consider allowing access to PA | 
|  | * regions corresponding to PCI space, etc. | 
|  | */ | 
|  | int devmem_is_allowed(unsigned long pagenr) | 
|  | { | 
|  | return pagenr < kaddr_to_pfn(_end) && | 
|  | !(pagenr >= kaddr_to_pfn(&init_thread_union) || | 
|  | pagenr < kaddr_to_pfn(_einitdata)) && | 
|  | !(pagenr >= kaddr_to_pfn(_sinittext) || | 
|  | pagenr <= kaddr_to_pfn(_einittext-1)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static void __init permanent_kmaps_init(pgd_t *pgd_base) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | unsigned long vaddr; | 
|  |  | 
|  | vaddr = PKMAP_BASE; | 
|  | page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); | 
|  |  | 
|  | pgd = swapper_pg_dir + pgd_index(vaddr); | 
|  | pud = pud_offset(pgd, vaddr); | 
|  | pmd = pmd_offset(pud, vaddr); | 
|  | pte = pte_offset_kernel(pmd, vaddr); | 
|  | pkmap_page_table = pte; | 
|  | } | 
|  | #endif /* CONFIG_HIGHMEM */ | 
|  |  | 
|  |  | 
|  | #ifndef CONFIG_64BIT | 
|  | static void __init init_free_pfn_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  | struct page *page = pfn_to_page(start); | 
|  |  | 
|  | for (pfn = start; pfn < end; ) { | 
|  | /* Optimize by freeing pages in large batches */ | 
|  | int order = __ffs(pfn); | 
|  | int count, i; | 
|  | struct page *p; | 
|  |  | 
|  | if (order >= MAX_ORDER) | 
|  | order = MAX_ORDER-1; | 
|  | count = 1 << order; | 
|  | while (pfn + count > end) { | 
|  | count >>= 1; | 
|  | --order; | 
|  | } | 
|  | for (p = page, i = 0; i < count; ++i, ++p) { | 
|  | __ClearPageReserved(p); | 
|  | /* | 
|  | * Hacky direct set to avoid unnecessary | 
|  | * lock take/release for EVERY page here. | 
|  | */ | 
|  | p->_count.counter = 0; | 
|  | p->_mapcount.counter = -1; | 
|  | } | 
|  | init_page_count(page); | 
|  | __free_pages(page, order); | 
|  | totalram_pages += count; | 
|  |  | 
|  | page += count; | 
|  | pfn += count; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init set_non_bootmem_pages_init(void) | 
|  | { | 
|  | struct zone *z; | 
|  | for_each_zone(z) { | 
|  | unsigned long start, end; | 
|  | int nid = z->zone_pgdat->node_id; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | int idx = zone_idx(z); | 
|  | #endif | 
|  |  | 
|  | start = z->zone_start_pfn; | 
|  | end = start + z->spanned_pages; | 
|  | start = max(start, node_free_pfn[nid]); | 
|  | start = max(start, max_low_pfn); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (idx == ZONE_HIGHMEM) | 
|  | totalhigh_pages += z->spanned_pages; | 
|  | #endif | 
|  | if (kdata_huge) { | 
|  | unsigned long percpu_pfn = node_percpu_pfn[nid]; | 
|  | if (start < percpu_pfn && end > percpu_pfn) | 
|  | end = percpu_pfn; | 
|  | } | 
|  | #ifdef CONFIG_PCI | 
|  | if (start <= pci_reserve_start_pfn && | 
|  | end > pci_reserve_start_pfn) { | 
|  | if (end > pci_reserve_end_pfn) | 
|  | init_free_pfn_range(pci_reserve_end_pfn, end); | 
|  | end = pci_reserve_start_pfn; | 
|  | } | 
|  | #endif | 
|  | init_free_pfn_range(start, end); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables - note that all of lowmem is | 
|  | * already mapped by head.S. | 
|  | */ | 
|  | void __init paging_init(void) | 
|  | { | 
|  | #ifdef __tilegx__ | 
|  | pud_t *pud; | 
|  | #endif | 
|  | pgd_t *pgd_base = swapper_pg_dir; | 
|  |  | 
|  | kernel_physical_mapping_init(pgd_base); | 
|  |  | 
|  | /* | 
|  | * Fixed mappings, only the page table structure has to be | 
|  | * created - mappings will be set by set_fixmap(): | 
|  | */ | 
|  | page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1), | 
|  | FIXADDR_TOP, pgd_base); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | permanent_kmaps_init(pgd_base); | 
|  | #endif | 
|  |  | 
|  | #ifdef __tilegx__ | 
|  | /* | 
|  | * Since GX allocates just one pmd_t array worth of vmalloc space, | 
|  | * we go ahead and allocate it statically here, then share it | 
|  | * globally.  As a result we don't have to worry about any task | 
|  | * changing init_mm once we get up and running, and there's no | 
|  | * need for e.g. vmalloc_sync_all(). | 
|  | */ | 
|  | BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1)); | 
|  | pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); | 
|  | assign_pmd(pud, alloc_pmd()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Walk the kernel page tables and derive the page_home() from | 
|  | * the PTEs, so that set_pte() can properly validate the caching | 
|  | * of all PTEs it sees. | 
|  | */ | 
|  | void __init set_page_homes(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void __init set_max_mapnr_init(void) | 
|  | { | 
|  | #ifdef CONFIG_FLATMEM | 
|  | max_mapnr = max_low_pfn; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init mem_init(void) | 
|  | { | 
|  | int codesize, datasize, initsize; | 
|  | int i; | 
|  | #ifndef __tilegx__ | 
|  | void *last; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | BUG_ON(!mem_map); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* check that fixmap and pkmap do not overlap */ | 
|  | if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) { | 
|  | pr_err("fixmap and kmap areas overlap" | 
|  | " - this will crash\n"); | 
|  | pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n", | 
|  | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), | 
|  | FIXADDR_START); | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | set_max_mapnr_init(); | 
|  |  | 
|  | /* this will put all bootmem onto the freelists */ | 
|  | totalram_pages += free_all_bootmem(); | 
|  |  | 
|  | #ifndef CONFIG_64BIT | 
|  | /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ | 
|  | set_non_bootmem_pages_init(); | 
|  | #endif | 
|  |  | 
|  | codesize =  (unsigned long)&_etext - (unsigned long)&_text; | 
|  | datasize =  (unsigned long)&_end - (unsigned long)&_sdata; | 
|  | initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext; | 
|  | initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata; | 
|  |  | 
|  | pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", | 
|  | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | 
|  | num_physpages << (PAGE_SHIFT-10), | 
|  | codesize >> 10, | 
|  | datasize >> 10, | 
|  | initsize >> 10, | 
|  | (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) | 
|  | ); | 
|  |  | 
|  | /* | 
|  | * In debug mode, dump some interesting memory mappings. | 
|  | */ | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n", | 
|  | FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1); | 
|  | printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n", | 
|  | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); | 
|  | #endif | 
|  | #ifdef CONFIG_HUGEVMAP | 
|  | printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n", | 
|  | HUGE_VMAP_BASE, HUGE_VMAP_END - 1); | 
|  | #endif | 
|  | printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n", | 
|  | _VMALLOC_START, _VMALLOC_END - 1); | 
|  | #ifdef __tilegx__ | 
|  | for (i = MAX_NUMNODES-1; i >= 0; --i) { | 
|  | struct pglist_data *node = &node_data[i]; | 
|  | if (node->node_present_pages) { | 
|  | unsigned long start = (unsigned long) | 
|  | pfn_to_kaddr(node->node_start_pfn); | 
|  | unsigned long end = start + | 
|  | (node->node_present_pages << PAGE_SHIFT); | 
|  | printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n", | 
|  | i, start, end - 1); | 
|  | } | 
|  | } | 
|  | #else | 
|  | last = high_memory; | 
|  | for (i = MAX_NUMNODES-1; i >= 0; --i) { | 
|  | if ((unsigned long)vbase_map[i] != -1UL) { | 
|  | printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n", | 
|  | i, (unsigned long) (vbase_map[i]), | 
|  | (unsigned long) (last-1)); | 
|  | last = vbase_map[i]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  | /* | 
|  | * Convert from using one lock for all atomic operations to | 
|  | * one per cpu. | 
|  | */ | 
|  | __init_atomic_per_cpu(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is for the non-NUMA, single node SMP system case. | 
|  | * Specifically, in the case of x86, we will always add | 
|  | * memory to the highmem for now. | 
|  | */ | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | int arch_add_memory(u64 start, u64 size) | 
|  | { | 
|  | struct pglist_data *pgdata = &contig_page_data; | 
|  | struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1; | 
|  | unsigned long start_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long nr_pages = size >> PAGE_SHIFT; | 
|  |  | 
|  | return __add_pages(zone, start_pfn, nr_pages); | 
|  | } | 
|  |  | 
|  | int remove_memory(u64 start, u64 size) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | int arch_remove_memory(u64 start, u64 size) | 
|  | { | 
|  | /* TODO */ | 
|  | return -EBUSY; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | struct kmem_cache *pgd_cache; | 
|  |  | 
|  | void __init pgtable_cache_init(void) | 
|  | { | 
|  | pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL); | 
|  | if (!pgd_cache) | 
|  | panic("pgtable_cache_init(): Cannot create pgd cache"); | 
|  | } | 
|  |  | 
|  | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() | 
|  | /* | 
|  | * The __w1data area holds data that is only written during initialization, | 
|  | * and is read-only and thus freely cacheable thereafter.  Fix the page | 
|  | * table entries that cover that region accordingly. | 
|  | */ | 
|  | static void mark_w1data_ro(void) | 
|  | { | 
|  | /* Loop over page table entries */ | 
|  | unsigned long addr = (unsigned long)__w1data_begin; | 
|  | BUG_ON((addr & (PAGE_SIZE-1)) != 0); | 
|  | for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) { | 
|  | unsigned long pfn = kaddr_to_pfn((void *)addr); | 
|  | pte_t *ptep = virt_to_pte(NULL, addr); | 
|  | BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */ | 
|  | set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static long __write_once initfree; | 
|  | #else | 
|  | static long __write_once initfree = 1; | 
|  | #endif | 
|  |  | 
|  | /* Select whether to free (1) or mark unusable (0) the __init pages. */ | 
|  | static int __init set_initfree(char *str) | 
|  | { | 
|  | long val; | 
|  | if (strict_strtol(str, 0, &val) == 0) { | 
|  | initfree = val; | 
|  | pr_info("initfree: %s free init pages\n", | 
|  | initfree ? "will" : "won't"); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("initfree=", set_initfree); | 
|  |  | 
|  | static void free_init_pages(char *what, unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long addr = (unsigned long) begin; | 
|  |  | 
|  | if (kdata_huge && !initfree) { | 
|  | pr_warning("Warning: ignoring initfree=0:" | 
|  | " incompatible with kdata=huge\n"); | 
|  | initfree = 1; | 
|  | } | 
|  | end = (end + PAGE_SIZE - 1) & PAGE_MASK; | 
|  | local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin); | 
|  | for (addr = begin; addr < end; addr += PAGE_SIZE) { | 
|  | /* | 
|  | * Note we just reset the home here directly in the | 
|  | * page table.  We know this is safe because our caller | 
|  | * just flushed the caches on all the other cpus, | 
|  | * and they won't be touching any of these pages. | 
|  | */ | 
|  | int pfn = kaddr_to_pfn((void *)addr); | 
|  | struct page *page = pfn_to_page(pfn); | 
|  | pte_t *ptep = virt_to_pte(NULL, addr); | 
|  | if (!initfree) { | 
|  | /* | 
|  | * If debugging page accesses then do not free | 
|  | * this memory but mark them not present - any | 
|  | * buggy init-section access will create a | 
|  | * kernel page fault: | 
|  | */ | 
|  | pte_clear(&init_mm, addr, ptep); | 
|  | continue; | 
|  | } | 
|  | __ClearPageReserved(page); | 
|  | init_page_count(page); | 
|  | if (pte_huge(*ptep)) | 
|  | BUG_ON(!kdata_huge); | 
|  | else | 
|  | set_pte_at(&init_mm, addr, ptep, | 
|  | pfn_pte(pfn, PAGE_KERNEL)); | 
|  | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | 
|  | free_page(addr); | 
|  | totalram_pages++; | 
|  | } | 
|  | pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10); | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET; | 
|  |  | 
|  | /* | 
|  | * Evict the dirty initdata on the boot cpu, evict the w1data | 
|  | * wherever it's homed, and evict all the init code everywhere. | 
|  | * We are guaranteed that no one will touch the init pages any | 
|  | * more, and although other cpus may be touching the w1data, | 
|  | * we only actually change the caching on tile64, which won't | 
|  | * be keeping local copies in the other tiles' caches anyway. | 
|  | */ | 
|  | homecache_evict(&cpu_cacheable_map); | 
|  |  | 
|  | /* Free the data pages that we won't use again after init. */ | 
|  | free_init_pages("unused kernel data", | 
|  | (unsigned long)_sinitdata, | 
|  | (unsigned long)_einitdata); | 
|  |  | 
|  | /* | 
|  | * Free the pages mapped from 0xc0000000 that correspond to code | 
|  | * pages from MEM_SV_INTRPT that we won't use again after init. | 
|  | */ | 
|  | free_init_pages("unused kernel text", | 
|  | (unsigned long)_sinittext - text_delta, | 
|  | (unsigned long)_einittext - text_delta); | 
|  |  | 
|  | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() | 
|  | /* | 
|  | * Upgrade the .w1data section to globally cached. | 
|  | * We don't do this on tilepro, since the cache architecture | 
|  | * pretty much makes it irrelevant, and in any case we end | 
|  | * up having racing issues with other tiles that may touch | 
|  | * the data after we flush the cache but before we update | 
|  | * the PTEs and flush the TLBs, causing sharer shootdowns | 
|  | * later.  Even though this is to clean data, it seems like | 
|  | * an unnecessary complication. | 
|  | */ | 
|  | mark_w1data_ro(); | 
|  | #endif | 
|  |  | 
|  | /* Do a global TLB flush so everyone sees the changes. */ | 
|  | flush_tlb_all(); | 
|  | } |